Joint Learning of Full-structure Noise in Hierarchical Bayesian Regression Models
We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on medical imaging Jg. 43; H. 2; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and fullstructured. Our method has applications in many domains beyond biomagnetic inverse problems. |
|---|---|
| AbstractList | We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and fullstructured. Our method has applications in many domains beyond biomagnetic inverse problems. We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where acrosssensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems. We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems. We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems.We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems. |
| Author | Gao, Yijing Muller, Klaus-Robert Nagarajan, Srikantan S. Cai, Chang Ghosh, Sanjay Hashemi, Ali Haufe, Stefan |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-4957-4630 surname: Hashemi fullname: Hashemi, Ali organization: Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, Germany – sequence: 2 givenname: Chang orcidid: 0000-0003-1082-3388 surname: Cai fullname: Cai, Chang organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA – sequence: 3 givenname: Yijing surname: Gao fullname: Gao, Yijing organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA – sequence: 4 givenname: Sanjay orcidid: 0000-0002-0474-5072 surname: Ghosh fullname: Ghosh, Sanjay organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA – sequence: 5 givenname: Klaus-Robert orcidid: 0000-0002-3861-7685 surname: Muller fullname: Muller, Klaus-Robert organization: Machine Learning Group, Technische Universität Berlin, Germany – sequence: 6 givenname: Srikantan S. orcidid: 0000-0001-7209-3857 surname: Nagarajan fullname: Nagarajan, Srikantan S. organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA – sequence: 7 givenname: Stefan surname: Haufe fullname: Haufe, Stefan organization: Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36423312$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UUFrFDEYDVKx29q7IMiAFy-zJl-SmclJarG2srW0VPAWMtlvtinZpCYzQv-9WXZbtAch8EHy3sv73jsgeyEGJOQNo3PGqPp4c3E-Bwow5wCCdvIFmTEpuxqk-LlHZhTarqa0gX1ykPMdpUxIql6Rfd4I4JzBjFx9iy6M1QJNCi6sqjhUp5P3dR7TZMcpYfU9uoyVC9WZw2SSvXXW-OqzecDsTKiucZUwZxdDdRGX6PNr8nIwPuPRbh6SH6dfbk7O6sXl1_OT40VtBeVjDcgF7wVHyqEXxbUdFO9Vu2wHbkXfsE4ByHLKdYMdDhKGobFtx6ywFDt-SD5tde-nfo1Li2FMxuv75NYmPehonP73JbhbvYq_NWNKtoqxovBhp5DirwnzqNcuW_TeBIxT1tAKKllxu_ns_TPoXZxSKPtpUMBK3pzygnr3t6UnL49xF0CzBdgUc044aOtGM5bwikPnNaN606suvepNr3rXayHSZ8RH7f9Q3m4pDhGf4Eo1XCnG_wBMr6x7 |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TMI_2025_3557528 crossref_primary_10_3389_fnhum_2025_1386275 crossref_primary_10_1016_j_neucom_2025_130250 crossref_primary_10_1109_TMI_2022_3224085 crossref_primary_10_3389_fnins_2024_1237245 crossref_primary_10_1109_TMI_2024_3483292 crossref_primary_10_1186_s40708_024_00221_2 crossref_primary_10_1109_TNSRE_2024_3383452 |
| Cites_doi | 10.1016/j.neuroimage.2020.116525 10.1109/TMI.2019.2932290 10.1137/080731347 10.1109/10.387200 10.1016/j.neuroimage.2020.117411 10.1109/TSP.2007.894265 10.1109/TSP.2004.831016 10.1002/cpa.20124 10.1109/TBME.2002.1001967 10.1109/TSP.2016.2601299 10.1016/j.neuroimage.2011.12.027 10.1016/c2012-0-03334-0 10.1109/TSP.2017.2762279 10.1016/j.neuropsychologia.2020.107500 10.1007/0-387-31077-0 10.1109/TIT.2006.871582 10.1016/S1053-8119(03)00215-5 10.1016/j.neuroimage.2014.12.040 10.1088/0031-9155/51/21/011 10.1109/TSP.2010.2098402 10.1109/TIP.2007.904387 10.1016/0167-8760(84)90014-X 10.1109/TSP.2008.917364 10.1109/LSP.2016.2608845 10.1109/TMI.2022.3224085 10.1109/TMI.2018.2816739 10.3115/1072017.1072026 10.1109/JSTSP.2011.2159773 10.1214/08-STS264 10.1088/0031-9155/57/7/1937 10.1016/j.neuroimage.2022.119369 10.1109/10.623056 10.1109/TSP.2002.1011197 10.1016/0013-4694(95)00107-A 10.1109/MSP.2010.938082 10.1109/ACSSC.2016.7869159 10.1145/1273496.1273523 10.1016/j.neuroimage.2015.05.052 10.1137/120891009 10.1609/aaai.v29i1.9550 10.1016/j.neuroimage.2008.02.059 10.1016/j.neuroimage.2015.12.019 10.1198/0003130042836 10.1523/JNEUROSCI.3001-17.2019 10.1109/TSP.2005.849172 10.1109/TII.2020.2965202 10.1007/s10548-016-0498-y 10.1109/TSP.2005.850882 10.1016/j.neuroimage.2008.04.246 10.3389/fnhum.2020.00105 10.1017/CBO9780511804441 10.1103/RevModPhys.65.413 10.1214/12-IMSCOLL922 10.1007/BF00940467 10.1155/2011/758973 10.1016/j.neuroimage.2021.118309 10.1007/978-3-319-14947-9 10.1515/9781400827787 10.1109/TBME.2004.836515 10.1109/MSP.2015.2481559 10.1016/j.neuroimage.2009.06.083 10.1023/A:1026543900054 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1109/TMI.2022.3224085 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 1 |
| ExternalDocumentID | PMC11957911 36423312 10_1109_TMI_2022_3224085 9963991 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Hubei Provincial Natural Science Foundation of China grantid: 2021CFB384 – fundername: National Natural Science Foundation of China grantid: 62277023 and 62007013 funderid: 10.13039/501100001809 – fundername: Deutsche Forschungsgemeinschaft grantid: EXC 2046/1, project-ID: 390685689 funderid: 10.13039/501100001659 – fundername: University of California MRPI grantid: MRP-17?454755 – fundername: U.S. Department of Defense grantid: W81XWH-13-1-0494 funderid: 10.13039/100000005 – fundername: NIH Clinical Center grantid: R01DC004855, R01EB022717, R01DC176960; R01AG062196, R01DC013979; R01DC010145, R01NS100440 funderid: 10.13039/100000098 – fundername: H2020 European Research Council grantid: No. 758985 funderid: 10.13039/100010663 – fundername: Bundesministerium f?r Bildung und Forschung grantid: 01IS18025A; 01IS18037A funderid: 10.13039/501100002347 – fundername: Korea University of Technology and Education grantid: 2019-0-00079 funderid: 10.13039/501100002519 – fundername: NIDCD NIH HHS grantid: R01 DC004855 – fundername: NIDCD NIH HHS grantid: R01 DC013979 – fundername: NIA NIH HHS grantid: RF1 AG062196 – fundername: NIDCD NIH HHS grantid: R01 DC010145 – fundername: NIBIB NIH HHS grantid: R01 EB022717 – fundername: NINDS NIH HHS grantid: RF1 NS100440 – fundername: NIDCD NIH HHS grantid: R01 DC016960 – fundername: NIDCD NIH HHS grantid: R01 DC017091 – fundername: NIDCD NIH HHS grantid: P50 DC019900 – fundername: European Research Council grantid: 758985 |
| GroupedDBID | --- -DZ -~X 0R~ 29I 4.4 5GY 5RE 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 .GJ 53G 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c403t-2e343b43e032b4155cf93b97d7f3c4b6189225225f936e8ef52ff6c781c4c0e83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001203303400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Sep 30 17:04:36 EDT 2025 Wed Oct 01 13:08:08 EDT 2025 Mon Jun 30 04:39:09 EDT 2025 Mon Jul 21 05:26:21 EDT 2025 Tue Nov 18 19:58:24 EST 2025 Sat Nov 29 05:14:10 EST 2025 Wed Aug 27 02:29:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-2e343b43e032b4155cf93b97d7f3c4b6189225225f936e8ef52ff6c781c4c0e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 hashemi@tu-berlin.de. sri@ucsf.edu. klausrobert.mueller@tu-berlin.de. haufe@tuberlin.de. |
| ORCID | 0000-0002-3861-7685 0000-0003-1082-3388 0000-0003-4957-4630 0000-0002-0474-5072 0000-0001-7209-3857 |
| PMID | 36423312 |
| PQID | 2921254303 |
| PQPubID | 85460 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2921254303 crossref_primary_10_1109_TMI_2022_3224085 ieee_primary_9963991 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11957911 pubmed_primary_36423312 crossref_citationtrail_10_1109_TMI_2022_3224085 proquest_miscellaneous_2740514038 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 Zadeh (ref70) ref17 ref16 ref19 ref18 Wu (ref61) 2010; 25 De Klerk (ref74) 2006; 65 ref51 ref46 ref45 Bertrand (ref7) ref48 ref47 ref41 ref44 ref43 ref8 Hashemi (ref68) ref9 ref4 Massias (ref58) ref3 Pascual-Marqui (ref49) 2007 ref6 ref5 Dalal (ref42) 2004; 2004 ref35 ref34 ref36 ref31 ref75 ref30 ref77 ref76 Rakitsch (ref1); 1 Petersen (ref37) 2006; 171 ref39 ref38 Rubner (ref40) 2000; 40 ref71 Tipping (ref32) 2001; 1 ref73 ref72 ref24 ref23 ref67 ref26 ref25 ref69 ref20 Mika (ref33) 2001; 13 ref64 ref63 ref22 ref66 ref21 ref65 Dalalyan (ref13) ref28 ref27 ref29 Pascual-Marqui (ref50) 2002; 24 Shvartsman (ref60) Cai (ref2) ref62 |
| References_xml | – ident: ref6 doi: 10.1016/j.neuroimage.2020.116525 – ident: ref47 doi: 10.1109/TMI.2019.2932290 – ident: ref73 doi: 10.1137/080731347 – ident: ref48 doi: 10.1109/10.387200 – ident: ref9 doi: 10.1016/j.neuroimage.2020.117411 – ident: ref10 doi: 10.1109/TSP.2007.894265 – ident: ref31 doi: 10.1109/TSP.2004.831016 – ident: ref15 doi: 10.1002/cpa.20124 – ident: ref53 doi: 10.1109/TBME.2002.1001967 – start-page: 2464 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref70 article-title: Geometric mean metric learning – ident: ref36 doi: 10.1109/TSP.2016.2601299 – ident: ref46 doi: 10.1016/j.neuroimage.2011.12.027 – ident: ref20 doi: 10.1016/c2012-0-03334-0 – ident: ref66 doi: 10.1109/TSP.2017.2762279 – ident: ref3 doi: 10.1016/j.neuropsychologia.2020.107500 – ident: ref71 doi: 10.1007/0-387-31077-0 – volume: 13 start-page: 591 year: 2001 ident: ref33 article-title: A mathematical programming approach to the kernel Fisher algorithm publication-title: Proc. Adv. Neural Inf. Process. Syst. – ident: ref16 doi: 10.1109/TIT.2006.871582 – start-page: 998 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref58 article-title: Generalized concomitant multi-task lasso for sparse multimodal regression – ident: ref55 doi: 10.1016/S1053-8119(03)00215-5 – ident: ref52 doi: 10.1016/j.neuroimage.2014.12.040 – ident: ref57 doi: 10.1088/0031-9155/51/21/011 – ident: ref18 doi: 10.1109/TSP.2010.2098402 – start-page: 3959 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref7 article-title: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso – volume: 2004 start-page: 52 year: 2004 ident: ref42 article-title: NUTMEG: A neuromagnetic source reconstruction toolbox publication-title: Neurol. Clin. Neurophysiol. – ident: ref62 doi: 10.1109/TIP.2007.904387 – ident: ref23 doi: 10.1016/0167-8760(84)90014-X – start-page: 379 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref13 article-title: Learning heteroscedastic models by convex programming under group sparsity – ident: ref19 doi: 10.1109/TSP.2008.917364 – start-page: 4951 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: A Bayesian method for reducing bias in neural representational similarity analysis – ident: ref67 doi: 10.1109/LSP.2016.2608845 – year: 2007 ident: ref49 article-title: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization publication-title: arXiv:0710.3341 – start-page: 1914 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref60 article-title: Matrix-normal models for fMRI analysis – ident: ref64 doi: 10.1109/TMI.2022.3224085 – ident: ref4 doi: 10.1109/TMI.2018.2816739 – ident: ref41 doi: 10.3115/1072017.1072026 – volume: 65 volume-title: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications year: 2006 ident: ref74 – ident: ref11 doi: 10.1109/JSTSP.2011.2159773 – volume: 25 start-page: 492 issue: 4 year: 2010 ident: ref61 article-title: The MM alternative to EM publication-title: Stat. Sci. doi: 10.1214/08-STS264 – ident: ref26 doi: 10.1088/0031-9155/57/7/1937 – ident: ref59 doi: 10.1016/j.neuroimage.2022.119369 – ident: ref51 doi: 10.1109/10.623056 – ident: ref54 doi: 10.1109/TSP.2002.1011197 – ident: ref24 doi: 10.1016/0013-4694(95)00107-A – ident: ref29 doi: 10.1109/MSP.2010.938082 – ident: ref65 doi: 10.1109/ACSSC.2016.7869159 – volume: 1 start-page: 211 year: 2001 ident: ref32 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 171 volume-title: Riemannian Geometry year: 2006 ident: ref37 – ident: ref72 doi: 10.1145/1273496.1273523 – ident: ref27 doi: 10.1016/j.neuroimage.2015.05.052 – ident: ref63 doi: 10.1137/120891009 – ident: ref14 doi: 10.1609/aaai.v29i1.9550 – ident: ref28 doi: 10.1016/j.neuroimage.2008.02.059 – ident: ref39 doi: 10.1016/j.neuroimage.2015.12.019 – start-page: 24855 volume-title: Proc. 35th Conf. Neural Inf. Process. Syst. ident: ref68 article-title: Efficient hierarchical Bayesian inference for spatio–temporal regression models in neuroimaging – ident: ref75 doi: 10.1198/0003130042836 – ident: ref43 doi: 10.1523/JNEUROSCI.3001-17.2019 – ident: ref21 doi: 10.1109/TSP.2005.849172 – ident: ref5 doi: 10.1109/TII.2020.2965202 – ident: ref38 doi: 10.1007/s10548-016-0498-y – ident: ref17 doi: 10.1109/TSP.2005.850882 – ident: ref25 doi: 10.1016/j.neuroimage.2008.04.246 – ident: ref44 doi: 10.3389/fnhum.2020.00105 – ident: ref77 doi: 10.1017/CBO9780511804441 – ident: ref22 doi: 10.1103/RevModPhys.65.413 – ident: ref12 doi: 10.1214/12-IMSCOLL922 – ident: ref76 doi: 10.1007/BF00940467 – ident: ref45 doi: 10.1155/2011/758973 – volume: 24 start-page: 5 year: 2002 ident: ref50 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details publication-title: Methods Find Exp. Clin. Pharmacol. – ident: ref8 doi: 10.1016/j.neuroimage.2021.118309 – ident: ref34 doi: 10.1007/978-3-319-14947-9 – ident: ref69 doi: 10.1515/9781400827787 – ident: ref56 doi: 10.1109/TBME.2004.836515 – volume: 1 start-page: 1466 volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Systems ident: ref1 article-title: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals – ident: ref30 doi: 10.1109/MSP.2015.2481559 – ident: ref35 doi: 10.1016/j.neuroimage.2009.06.083 – volume: 40 start-page: 99 issue: 2 year: 2000 ident: ref40 article-title: The earth mover’s distance as a metric for image retrieval publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1026543900054 |
| SSID | ssj0014509 |
| Score | 2.49815 |
| Snippet | We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Bayes methods Bayes Theorem Bayesian analysis Brain modeling Computer Simulation Covariance matrices Covariance matrix EEG EEG/MEG Brain Source Imaging Electroencephalography Electroencephalography - methods Gaussian noise Hierarchical Bayesian Learning Imaging Inverse problems Machine learning Magnetoencephalography - methods Majorization Minimization Manifolds Mathematical models Noise levels Observational learning Random noise Regression analysis Regression models Sparse Bayesian Learning Type-II Maximum-Likelihood |
| Title | Joint Learning of Full-structure Noise in Hierarchical Bayesian Regression Models |
| URI | https://ieeexplore.ieee.org/document/9963991 https://www.ncbi.nlm.nih.gov/pubmed/36423312 https://www.proquest.com/docview/2921254303 https://www.proquest.com/docview/2740514038 https://pubmed.ncbi.nlm.nih.gov/PMC11957911 |
| Volume | 43 |
| WOSCitedRecordID | wos001203303400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddGaV92Ee7tem64sFeBkvPZztx_NiNlW7QYxsd3Fs4O3IXOJLSuxvsv58c50JvlMEgDyF2jGNJSIqknwDeGptLJMZN84rbVM20TGfc-nSc-Swjja95FZtN6MmkmE7N1y14P9TCIGKXfIZn4baL5VetW4VfZSOyzUmfkq_zSOs81moNEQOVxXQOERBjeS7WIUluRtdXn8kRFOJMig7Qaxd2JJndUo7Fhjbq2qs8ZGn-nTB5TwNdPP2_vT-DJ72lyc4jazyHLWz2Ye8e_uA-7Fz1kfUD-PalrZsl6-FWb1jrWfBO04gvu7pDNmnrBbK6YZd1KFrueqjM2YfZbwx1mOw73sSU2oaF_mrzxQv4cfHp-uNl2rdbSJ3icpkKlEpaJZFLYYOd4byR1uhKe-mUzceFIeGnix7nWKDPhPe508XYKcexkC9hu2kbPAJGQq-EcMaidYq0gfVkxglP1iSnNWSVwGh97KXrschDS4x52fkk3JREszLQrOxplsC74Y3biMPxj7kH4fyHef3RJ3CypmzZC-qiFIZ0d6ZIkSfwZhgmEQtxk1mD7YrmaBVQ4rksEjiMjDCsvWakBIoNFhkmBPjuzZGm_tnBeAewPU265vjh7b6CXfooFTPET2CbyI2v4bH7tawXd6ckAtPitBOBP6y2_5c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KlVof_GirxlZdwRfB9PZ2Nx_72Irlqr1D5YS-hdvNbA0cifTuBP97Z7O50JNSEPIQsptlszPDzGRmfgPwTptUIjFunJbcxGqWyXjGjYuHiUsS0vgZL0OziWwyyS8v9dct-NDXwiBim3yGx_62jeWXjV35X2UDss1Jn5Kvcy9RSvBQrdXHDFQSEjqEx4zlqVgHJbkeTMfn5AoKcSxFC-m1CzuSDG8ph2JDH7UNVm6zNf9Nmbyhg84e_9_un8CjztZkJ4E5nsIW1nvw8AYC4R7sjLvY-j58-9xU9ZJ1gKtXrHHM-6dxQJhdXSObNNUCWVWzUeXLltsuKnN2OvuDvhKTfcerkFRbM99hbb44gB9nn6YfR3HXcCG2istlLFAqaZRELoXxloZ1WhqdlZmTVpl0mGsSf7rocYo5ukQ4l9osH1plOebyGWzXTY0vgJHYKyGsNmisIn1gHBlywpE9yWkNWUYwWB97YTs0ct8UY160XgnXBdGs8DQrOppF8L5_41dA4rhj7r4__35ed_QRHK0pW3SiuiiEJu2dKFLlEbzth0nIfORkVmOzojmZ8jjxXOYRPA-M0K-9ZqQI8g0W6Sd4AO_Nkbr62QJ5e7i9jLTNy9u3-wYejKbji-LifPLlEHbpA1XIFz-CbSI9voL79veyWly_bgXhLxMqAgU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Learning+of+Full-structure+Noise+in+Hierarchical+Bayesian+Regression+Models&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hashemi%2C+Ali&rft.au=Cai%2C+Chang&rft.au=Gao%2C+Yijing&rft.au=Ghosh%2C+Sanjay&rft.date=2024-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=43&rft.issue=2&rft.spage=610&rft.epage=624&rft_id=info:doi/10.1109%2FTMI.2022.3224085&rft_id=info%3Apmid%2F36423312&rft.externalDocID=PMC11957911 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |