Joint Learning of Full-structure Noise in Hierarchical Bayesian Regression Models

We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 43; H. 2; S. 1
Hauptverfasser: Hashemi, Ali, Cai, Chang, Gao, Yijing, Ghosh, Sanjay, Muller, Klaus-Robert, Nagarajan, Srikantan S., Haufe, Stefan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and fullstructured. Our method has applications in many domains beyond biomagnetic inverse problems.
AbstractList We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and fullstructured. Our method has applications in many domains beyond biomagnetic inverse problems.
We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where acrosssensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems.
We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems.
We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems.We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with independent Gaussian scale mixture priors for both the source and noise components. Crucial factors influencing the accuracy of the source estimation are not only the noise level but also its correlation structure, but existing approaches have not addressed the estimation of noise covariance matrices with full structure. To address this shortcoming, we develop hierarchical Bayesian (type-II maximum likelihood) models for observations with latent variables for source and noise, which are estimated jointly from data. As an extension to classical sparse Bayesian learning (SBL), where across-sensor observations are assumed to be independent and identically distributed, we consider Gaussian noise with full covariance structure. Using the majorization-maximization framework and Riemannian geometry, we derive an efficient algorithm for updating the noise covariance along the manifold of positive definite matrices. We demonstrate that our algorithm has guaranteed and fast convergence and validate it in simulations and with real MEG data. Our results demonstrate that the novel framework significantly improves upon state-of-the-art techniques in the real-world scenario where the noise is indeed non-diagonal and full-structured. Our method has applications in many domains beyond biomagnetic inverse problems.
Author Gao, Yijing
Muller, Klaus-Robert
Nagarajan, Srikantan S.
Cai, Chang
Ghosh, Sanjay
Hashemi, Ali
Haufe, Stefan
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-4957-4630
  surname: Hashemi
  fullname: Hashemi, Ali
  organization: Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, Germany
– sequence: 2
  givenname: Chang
  orcidid: 0000-0003-1082-3388
  surname: Cai
  fullname: Cai, Chang
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
– sequence: 3
  givenname: Yijing
  surname: Gao
  fullname: Gao, Yijing
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
– sequence: 4
  givenname: Sanjay
  orcidid: 0000-0002-0474-5072
  surname: Ghosh
  fullname: Ghosh, Sanjay
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
– sequence: 5
  givenname: Klaus-Robert
  orcidid: 0000-0002-3861-7685
  surname: Muller
  fullname: Muller, Klaus-Robert
  organization: Machine Learning Group, Technische Universität Berlin, Germany
– sequence: 6
  givenname: Srikantan S.
  orcidid: 0000-0001-7209-3857
  surname: Nagarajan
  fullname: Nagarajan, Srikantan S.
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
– sequence: 7
  givenname: Stefan
  surname: Haufe
  fullname: Haufe, Stefan
  organization: Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36423312$$D View this record in MEDLINE/PubMed
BookMark eNp9UUFrFDEYDVKx29q7IMiAFy-zJl-SmclJarG2srW0VPAWMtlvtinZpCYzQv-9WXZbtAch8EHy3sv73jsgeyEGJOQNo3PGqPp4c3E-Bwow5wCCdvIFmTEpuxqk-LlHZhTarqa0gX1ykPMdpUxIql6Rfd4I4JzBjFx9iy6M1QJNCi6sqjhUp5P3dR7TZMcpYfU9uoyVC9WZw2SSvXXW-OqzecDsTKiucZUwZxdDdRGX6PNr8nIwPuPRbh6SH6dfbk7O6sXl1_OT40VtBeVjDcgF7wVHyqEXxbUdFO9Vu2wHbkXfsE4ByHLKdYMdDhKGobFtx6ywFDt-SD5tde-nfo1Li2FMxuv75NYmPehonP73JbhbvYq_NWNKtoqxovBhp5DirwnzqNcuW_TeBIxT1tAKKllxu_ns_TPoXZxSKPtpUMBK3pzygnr3t6UnL49xF0CzBdgUc044aOtGM5bwikPnNaN606suvepNr3rXayHSZ8RH7f9Q3m4pDhGf4Eo1XCnG_wBMr6x7
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2025_3557528
crossref_primary_10_3389_fnhum_2025_1386275
crossref_primary_10_1016_j_neucom_2025_130250
crossref_primary_10_1109_TMI_2022_3224085
crossref_primary_10_3389_fnins_2024_1237245
crossref_primary_10_1109_TMI_2024_3483292
crossref_primary_10_1186_s40708_024_00221_2
crossref_primary_10_1109_TNSRE_2024_3383452
Cites_doi 10.1016/j.neuroimage.2020.116525
10.1109/TMI.2019.2932290
10.1137/080731347
10.1109/10.387200
10.1016/j.neuroimage.2020.117411
10.1109/TSP.2007.894265
10.1109/TSP.2004.831016
10.1002/cpa.20124
10.1109/TBME.2002.1001967
10.1109/TSP.2016.2601299
10.1016/j.neuroimage.2011.12.027
10.1016/c2012-0-03334-0
10.1109/TSP.2017.2762279
10.1016/j.neuropsychologia.2020.107500
10.1007/0-387-31077-0
10.1109/TIT.2006.871582
10.1016/S1053-8119(03)00215-5
10.1016/j.neuroimage.2014.12.040
10.1088/0031-9155/51/21/011
10.1109/TSP.2010.2098402
10.1109/TIP.2007.904387
10.1016/0167-8760(84)90014-X
10.1109/TSP.2008.917364
10.1109/LSP.2016.2608845
10.1109/TMI.2022.3224085
10.1109/TMI.2018.2816739
10.3115/1072017.1072026
10.1109/JSTSP.2011.2159773
10.1214/08-STS264
10.1088/0031-9155/57/7/1937
10.1016/j.neuroimage.2022.119369
10.1109/10.623056
10.1109/TSP.2002.1011197
10.1016/0013-4694(95)00107-A
10.1109/MSP.2010.938082
10.1109/ACSSC.2016.7869159
10.1145/1273496.1273523
10.1016/j.neuroimage.2015.05.052
10.1137/120891009
10.1609/aaai.v29i1.9550
10.1016/j.neuroimage.2008.02.059
10.1016/j.neuroimage.2015.12.019
10.1198/0003130042836
10.1523/JNEUROSCI.3001-17.2019
10.1109/TSP.2005.849172
10.1109/TII.2020.2965202
10.1007/s10548-016-0498-y
10.1109/TSP.2005.850882
10.1016/j.neuroimage.2008.04.246
10.3389/fnhum.2020.00105
10.1017/CBO9780511804441
10.1103/RevModPhys.65.413
10.1214/12-IMSCOLL922
10.1007/BF00940467
10.1155/2011/758973
10.1016/j.neuroimage.2021.118309
10.1007/978-3-319-14947-9
10.1515/9781400827787
10.1109/TBME.2004.836515
10.1109/MSP.2015.2481559
10.1016/j.neuroimage.2009.06.083
10.1023/A:1026543900054
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2022.3224085
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1
ExternalDocumentID PMC11957911
36423312
10_1109_TMI_2022_3224085
9963991
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Hubei Provincial Natural Science Foundation of China
  grantid: 2021CFB384
– fundername: National Natural Science Foundation of China
  grantid: 62277023 and 62007013
  funderid: 10.13039/501100001809
– fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2046/1, project-ID: 390685689
  funderid: 10.13039/501100001659
– fundername: University of California MRPI
  grantid: MRP-17?454755
– fundername: U.S. Department of Defense
  grantid: W81XWH-13-1-0494
  funderid: 10.13039/100000005
– fundername: NIH Clinical Center
  grantid: R01DC004855, R01EB022717, R01DC176960; R01AG062196, R01DC013979; R01DC010145, R01NS100440
  funderid: 10.13039/100000098
– fundername: H2020 European Research Council
  grantid: No. 758985
  funderid: 10.13039/100010663
– fundername: Bundesministerium f?r Bildung und Forschung
  grantid: 01IS18025A; 01IS18037A
  funderid: 10.13039/501100002347
– fundername: Korea University of Technology and Education
  grantid: 2019-0-00079
  funderid: 10.13039/501100002519
– fundername: NIDCD NIH HHS
  grantid: R01 DC004855
– fundername: NIDCD NIH HHS
  grantid: R01 DC013979
– fundername: NIA NIH HHS
  grantid: RF1 AG062196
– fundername: NIDCD NIH HHS
  grantid: R01 DC010145
– fundername: NIBIB NIH HHS
  grantid: R01 EB022717
– fundername: NINDS NIH HHS
  grantid: RF1 NS100440
– fundername: NIDCD NIH HHS
  grantid: R01 DC016960
– fundername: NIDCD NIH HHS
  grantid: R01 DC017091
– fundername: NIDCD NIH HHS
  grantid: P50 DC019900
– fundername: European Research Council
  grantid: 758985
GroupedDBID ---
-DZ
-~X
0R~
29I
4.4
5GY
5RE
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
.GJ
53G
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c403t-2e343b43e032b4155cf93b97d7f3c4b6189225225f936e8ef52ff6c781c4c0e83
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001203303400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 17:04:36 EDT 2025
Wed Oct 01 13:08:08 EDT 2025
Mon Jun 30 04:39:09 EDT 2025
Mon Jul 21 05:26:21 EDT 2025
Tue Nov 18 19:58:24 EST 2025
Sat Nov 29 05:14:10 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-2e343b43e032b4155cf93b97d7f3c4b6189225225f936e8ef52ff6c781c4c0e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
hashemi@tu-berlin.de. sri@ucsf.edu. klausrobert.mueller@tu-berlin.de. haufe@tuberlin.de.
ORCID 0000-0002-3861-7685
0000-0003-1082-3388
0000-0003-4957-4630
0000-0002-0474-5072
0000-0001-7209-3857
PMID 36423312
PQID 2921254303
PQPubID 85460
PageCount 1
ParticipantIDs proquest_journals_2921254303
crossref_primary_10_1109_TMI_2022_3224085
ieee_primary_9963991
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11957911
pubmed_primary_36423312
crossref_citationtrail_10_1109_TMI_2022_3224085
proquest_miscellaneous_2740514038
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
Zadeh (ref70)
ref17
ref16
ref19
ref18
Wu (ref61) 2010; 25
De Klerk (ref74) 2006; 65
ref51
ref46
ref45
Bertrand (ref7)
ref48
ref47
ref41
ref44
ref43
ref8
Hashemi (ref68)
ref9
ref4
Massias (ref58)
ref3
Pascual-Marqui (ref49) 2007
ref6
ref5
Dalal (ref42) 2004; 2004
ref35
ref34
ref36
ref31
ref75
ref30
ref77
ref76
Rakitsch (ref1); 1
Petersen (ref37) 2006; 171
ref39
ref38
Rubner (ref40) 2000; 40
ref71
Tipping (ref32) 2001; 1
ref73
ref72
ref24
ref23
ref67
ref26
ref25
ref69
ref20
Mika (ref33) 2001; 13
ref64
ref63
ref22
ref66
ref21
ref65
Dalalyan (ref13)
ref28
ref27
ref29
Pascual-Marqui (ref50) 2002; 24
Shvartsman (ref60)
Cai (ref2)
ref62
References_xml – ident: ref6
  doi: 10.1016/j.neuroimage.2020.116525
– ident: ref47
  doi: 10.1109/TMI.2019.2932290
– ident: ref73
  doi: 10.1137/080731347
– ident: ref48
  doi: 10.1109/10.387200
– ident: ref9
  doi: 10.1016/j.neuroimage.2020.117411
– ident: ref10
  doi: 10.1109/TSP.2007.894265
– ident: ref31
  doi: 10.1109/TSP.2004.831016
– ident: ref15
  doi: 10.1002/cpa.20124
– ident: ref53
  doi: 10.1109/TBME.2002.1001967
– start-page: 2464
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref70
  article-title: Geometric mean metric learning
– ident: ref36
  doi: 10.1109/TSP.2016.2601299
– ident: ref46
  doi: 10.1016/j.neuroimage.2011.12.027
– ident: ref20
  doi: 10.1016/c2012-0-03334-0
– ident: ref66
  doi: 10.1109/TSP.2017.2762279
– ident: ref3
  doi: 10.1016/j.neuropsychologia.2020.107500
– ident: ref71
  doi: 10.1007/0-387-31077-0
– volume: 13
  start-page: 591
  year: 2001
  ident: ref33
  article-title: A mathematical programming approach to the kernel Fisher algorithm
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– ident: ref16
  doi: 10.1109/TIT.2006.871582
– start-page: 998
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref58
  article-title: Generalized concomitant multi-task lasso for sparse multimodal regression
– ident: ref55
  doi: 10.1016/S1053-8119(03)00215-5
– ident: ref52
  doi: 10.1016/j.neuroimage.2014.12.040
– ident: ref57
  doi: 10.1088/0031-9155/51/21/011
– ident: ref18
  doi: 10.1109/TSP.2010.2098402
– start-page: 3959
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref7
  article-title: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso
– volume: 2004
  start-page: 52
  year: 2004
  ident: ref42
  article-title: NUTMEG: A neuromagnetic source reconstruction toolbox
  publication-title: Neurol. Clin. Neurophysiol.
– ident: ref62
  doi: 10.1109/TIP.2007.904387
– ident: ref23
  doi: 10.1016/0167-8760(84)90014-X
– start-page: 379
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Learning heteroscedastic models by convex programming under group sparsity
– ident: ref19
  doi: 10.1109/TSP.2008.917364
– start-page: 4951
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: A Bayesian method for reducing bias in neural representational similarity analysis
– ident: ref67
  doi: 10.1109/LSP.2016.2608845
– year: 2007
  ident: ref49
  article-title: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization
  publication-title: arXiv:0710.3341
– start-page: 1914
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref60
  article-title: Matrix-normal models for fMRI analysis
– ident: ref64
  doi: 10.1109/TMI.2022.3224085
– ident: ref4
  doi: 10.1109/TMI.2018.2816739
– ident: ref41
  doi: 10.3115/1072017.1072026
– volume: 65
  volume-title: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications
  year: 2006
  ident: ref74
– ident: ref11
  doi: 10.1109/JSTSP.2011.2159773
– volume: 25
  start-page: 492
  issue: 4
  year: 2010
  ident: ref61
  article-title: The MM alternative to EM
  publication-title: Stat. Sci.
  doi: 10.1214/08-STS264
– ident: ref26
  doi: 10.1088/0031-9155/57/7/1937
– ident: ref59
  doi: 10.1016/j.neuroimage.2022.119369
– ident: ref51
  doi: 10.1109/10.623056
– ident: ref54
  doi: 10.1109/TSP.2002.1011197
– ident: ref24
  doi: 10.1016/0013-4694(95)00107-A
– ident: ref29
  doi: 10.1109/MSP.2010.938082
– ident: ref65
  doi: 10.1109/ACSSC.2016.7869159
– volume: 1
  start-page: 211
  year: 2001
  ident: ref32
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 171
  volume-title: Riemannian Geometry
  year: 2006
  ident: ref37
– ident: ref72
  doi: 10.1145/1273496.1273523
– ident: ref27
  doi: 10.1016/j.neuroimage.2015.05.052
– ident: ref63
  doi: 10.1137/120891009
– ident: ref14
  doi: 10.1609/aaai.v29i1.9550
– ident: ref28
  doi: 10.1016/j.neuroimage.2008.02.059
– ident: ref39
  doi: 10.1016/j.neuroimage.2015.12.019
– start-page: 24855
  volume-title: Proc. 35th Conf. Neural Inf. Process. Syst.
  ident: ref68
  article-title: Efficient hierarchical Bayesian inference for spatio–temporal regression models in neuroimaging
– ident: ref75
  doi: 10.1198/0003130042836
– ident: ref43
  doi: 10.1523/JNEUROSCI.3001-17.2019
– ident: ref21
  doi: 10.1109/TSP.2005.849172
– ident: ref5
  doi: 10.1109/TII.2020.2965202
– ident: ref38
  doi: 10.1007/s10548-016-0498-y
– ident: ref17
  doi: 10.1109/TSP.2005.850882
– ident: ref25
  doi: 10.1016/j.neuroimage.2008.04.246
– ident: ref44
  doi: 10.3389/fnhum.2020.00105
– ident: ref77
  doi: 10.1017/CBO9780511804441
– ident: ref22
  doi: 10.1103/RevModPhys.65.413
– ident: ref12
  doi: 10.1214/12-IMSCOLL922
– ident: ref76
  doi: 10.1007/BF00940467
– ident: ref45
  doi: 10.1155/2011/758973
– volume: 24
  start-page: 5
  year: 2002
  ident: ref50
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details
  publication-title: Methods Find Exp. Clin. Pharmacol.
– ident: ref8
  doi: 10.1016/j.neuroimage.2021.118309
– ident: ref34
  doi: 10.1007/978-3-319-14947-9
– ident: ref69
  doi: 10.1515/9781400827787
– ident: ref56
  doi: 10.1109/TBME.2004.836515
– volume: 1
  start-page: 1466
  volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Systems
  ident: ref1
  article-title: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals
– ident: ref30
  doi: 10.1109/MSP.2015.2481559
– ident: ref35
  doi: 10.1016/j.neuroimage.2009.06.083
– volume: 40
  start-page: 99
  issue: 2
  year: 2000
  ident: ref40
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1026543900054
SSID ssj0014509
Score 2.49815
Snippet We consider the reconstruction of brain activity from electroencephalography (EEG). This inverse problem can be formulated as a linear regression with...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Bayes methods
Bayes Theorem
Bayesian analysis
Brain modeling
Computer Simulation
Covariance matrices
Covariance matrix
EEG
EEG/MEG Brain Source Imaging
Electroencephalography
Electroencephalography - methods
Gaussian noise
Hierarchical Bayesian Learning
Imaging
Inverse problems
Machine learning
Magnetoencephalography - methods
Majorization Minimization
Manifolds
Mathematical models
Noise levels
Observational learning
Random noise
Regression analysis
Regression models
Sparse Bayesian Learning
Type-II Maximum-Likelihood
Title Joint Learning of Full-structure Noise in Hierarchical Bayesian Regression Models
URI https://ieeexplore.ieee.org/document/9963991
https://www.ncbi.nlm.nih.gov/pubmed/36423312
https://www.proquest.com/docview/2921254303
https://www.proquest.com/docview/2740514038
https://pubmed.ncbi.nlm.nih.gov/PMC11957911
Volume 43
WOSCitedRecordID wos001203303400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddGaV92Ee7tem64sFeBkvPZztx_NiNlW7QYxsd3Fs4O3IXOJLSuxvsv58c50JvlMEgDyF2jGNJSIqknwDeGptLJMZN84rbVM20TGfc-nSc-Swjja95FZtN6MmkmE7N1y14P9TCIGKXfIZn4baL5VetW4VfZSOyzUmfkq_zSOs81moNEQOVxXQOERBjeS7WIUluRtdXn8kRFOJMig7Qaxd2JJndUo7Fhjbq2qs8ZGn-nTB5TwNdPP2_vT-DJ72lyc4jazyHLWz2Ye8e_uA-7Fz1kfUD-PalrZsl6-FWb1jrWfBO04gvu7pDNmnrBbK6YZd1KFrueqjM2YfZbwx1mOw73sSU2oaF_mrzxQv4cfHp-uNl2rdbSJ3icpkKlEpaJZFLYYOd4byR1uhKe-mUzceFIeGnix7nWKDPhPe508XYKcexkC9hu2kbPAJGQq-EcMaidYq0gfVkxglP1iSnNWSVwGh97KXrschDS4x52fkk3JREszLQrOxplsC74Y3biMPxj7kH4fyHef3RJ3CypmzZC-qiFIZ0d6ZIkSfwZhgmEQtxk1mD7YrmaBVQ4rksEjiMjDCsvWakBIoNFhkmBPjuzZGm_tnBeAewPU265vjh7b6CXfooFTPET2CbyI2v4bH7tawXd6ckAtPitBOBP6y2_5c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KlVof_GirxlZdwRfB9PZ2Nx_72Irlqr1D5YS-hdvNbA0cifTuBP97Z7O50JNSEPIQsptlszPDzGRmfgPwTptUIjFunJbcxGqWyXjGjYuHiUsS0vgZL0OziWwyyS8v9dct-NDXwiBim3yGx_62jeWXjV35X2UDss1Jn5Kvcy9RSvBQrdXHDFQSEjqEx4zlqVgHJbkeTMfn5AoKcSxFC-m1CzuSDG8ph2JDH7UNVm6zNf9Nmbyhg84e_9_un8CjztZkJ4E5nsIW1nvw8AYC4R7sjLvY-j58-9xU9ZJ1gKtXrHHM-6dxQJhdXSObNNUCWVWzUeXLltsuKnN2OvuDvhKTfcerkFRbM99hbb44gB9nn6YfR3HXcCG2istlLFAqaZRELoXxloZ1WhqdlZmTVpl0mGsSf7rocYo5ukQ4l9osH1plOebyGWzXTY0vgJHYKyGsNmisIn1gHBlywpE9yWkNWUYwWB97YTs0ct8UY160XgnXBdGs8DQrOppF8L5_41dA4rhj7r4__35ed_QRHK0pW3SiuiiEJu2dKFLlEbzth0nIfORkVmOzojmZ8jjxXOYRPA-M0K-9ZqQI8g0W6Sd4AO_Nkbr62QJ5e7i9jLTNy9u3-wYejKbji-LifPLlEHbpA1XIFz-CbSI9voL79veyWly_bgXhLxMqAgU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Learning+of+Full-structure+Noise+in+Hierarchical+Bayesian+Regression+Models&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hashemi%2C+Ali&rft.au=Cai%2C+Chang&rft.au=Gao%2C+Yijing&rft.au=Ghosh%2C+Sanjay&rft.date=2024-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=43&rft.issue=2&rft.spage=610&rft.epage=624&rft_id=info:doi/10.1109%2FTMI.2022.3224085&rft_id=info%3Apmid%2F36423312&rft.externalDocID=PMC11957911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon