A Graph Neural Network Node Classification Application Model with Enhanced Node Association

This study combines the present stage of the node classification problem with the fact that there is frequent noise in the graph structure of the graph convolution calculation, which can lead to the omission of some of the actual edge relations between nodes and the appearance of numerous isolated n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 13; číslo 12; s. 7150
Hlavní autori: Zhang, Yuhang, Xu, Yaoqun, Zhang, Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.06.2023
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study combines the present stage of the node classification problem with the fact that there is frequent noise in the graph structure of the graph convolution calculation, which can lead to the omission of some of the actual edge relations between nodes and the appearance of numerous isolated nodes. In this paper, we propose the graph neural network model ENode-GAT for improving the accuracy of small sample node classification using the method of external referencing of similar word nodes, combined with Graph Convolutional Neural Network (GCN), Graph Attention Network (GAT), and the early stop algorithm. In order to demonstrate the applicability of the model, this paper employs two distinct types of node datasets for its investigations. The first is the Cora dataset, which is widely used in node classification at this time, and the second is a small-sample Stock dataset created by Eastern Fortune’s stock prospectus of the Science and Technology Board (STB). The experimental results demonstrate that the ENode-GAT model proposed in this paper obtains 85.1% classification accuracy on the Cora dataset and 85.3% classification accuracy on the Stock dataset, with certain classification advantages. It also verifies the future applicability of the model to the fields of stock classification, tender document classification, news classification, and government announcement classification, among others.
AbstractList This study combines the present stage of the node classification problem with the fact that there is frequent noise in the graph structure of the graph convolution calculation, which can lead to the omission of some of the actual edge relations between nodes and the appearance of numerous isolated nodes. In this paper, we propose the graph neural network model ENode-GAT for improving the accuracy of small sample node classification using the method of external referencing of similar word nodes, combined with Graph Convolutional Neural Network (GCN), Graph Attention Network (GAT), and the early stop algorithm. In order to demonstrate the applicability of the model, this paper employs two distinct types of node datasets for its investigations. The first is the Cora dataset, which is widely used in node classification at this time, and the second is a small-sample Stock dataset created by Eastern Fortune's stock prospectus of the Science and Technology Board (STB). The experimental results demonstrate that the ENode-GAT model proposed in this paper obtains 85.1% classification accuracy on the Cora dataset and 85.3% classification accuracy on the Stock dataset, with certain classification advantages. It also verifies the future applicability of the model to the fields of stock classification, tender document classification, news classification, and government announcement classification, among others.
Audience Academic
Author Zhang, Yuhang
Zhang, Yu
Xu, Yaoqun
Author_xml – sequence: 1
  givenname: Yuhang
  orcidid: 0000-0002-4751-2674
  surname: Zhang
  fullname: Zhang, Yuhang
– sequence: 2
  givenname: Yaoqun
  orcidid: 0000-0002-5047-9350
  surname: Xu
  fullname: Xu, Yaoqun
– sequence: 3
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
BookMark eNptkU1rGzEQhkVJoWnqU_7AQo_FiT6t1XExbhpwnEt7ykGMtJItd7PaSmtC_n0VbwwhRDrMMPM-LxrNV3TWx94hdEnwFWMKX8MwEEaoJAJ_QucUy8WccSLP3uRf0CznPS5HEVYTfI4emuomwbCrNu6QoCthfIrpb7WJrauWHeQcfLAwhthXzTB0p_yu9LvqKYy7atXvoLeunZgm52jDUfQNffbQZTd7jRfoz8_V7-Wv-fr-5nbZrOeWYzbOqSOq4KZminIvQAIFawBLwYUiRIH33lEhKXNMKrcQzhrDfb1wYExtW3aBbiffNsJeDyk8QnrWEYI-FmLaakhjsJ3TXAgD3mDb1oYr7kEyA6aV1gKTtKbF6_vkNaT47-DyqPfxkPryfF3aSmLJFy-qq0m1hWIaeh_HBLbc1j0GW9biQ6k3ZQIlmRSiAGQCbIo5J-e1DePxkwoYOk2wftmhfrPDwvx4x5xG-0j9H1JrnyE
CitedBy_id crossref_primary_10_1007_s11042_024_19525_w
crossref_primary_10_1007_s13042_025_02545_9
crossref_primary_10_1186_s12864_024_10499_5
crossref_primary_10_4236_jcc_2025_137007
Cites_doi 10.1016/j.physa.2020.124289
10.1109/ACCESS.2023.3246525
10.2139/ssrn.4424703
10.1109/LGRS.2018.2869563
10.1016/j.jocs.2022.101695
10.24963/ijcai.2019/630
10.1109/TNNLS.2020.2978386
10.1109/ICCE-Taiwan55306.2022.9868975
10.3390/app13074614
10.1609/aaai.v32i1.11604
10.1109/TNN.2008.2005605
10.3390/app12147246
10.1016/j.knosys.2022.108538
10.1109/ACCESS.2023.3275085
10.1088/1742-6596/1994/1/012004
10.1109/CVPR.2019.00943
10.24963/ijcai.2019/369
10.1609/icwsm.v3i1.13979
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app13127150
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_455bafb0cd8b494fa73babd7cca37282
A754973755
10_3390_app13127150
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-2e19cedb83924f5a7a2acba075459119afffe25723e379e65ecbb4f86eabb8cd3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016917000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:08:08 EDT 2025
Mon Jun 30 11:09:43 EDT 2025
Tue Nov 04 17:43:48 EST 2025
Tue Nov 18 21:57:43 EST 2025
Sat Nov 29 07:15:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-2e19cedb83924f5a7a2acba075459119afffe25723e379e65ecbb4f86eabb8cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4751-2674
0000-0002-5047-9350
OpenAccessLink https://doaj.org/article/455bafb0cd8b494fa73babd7cca37282
PQID 2829707462
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_455bafb0cd8b494fa73babd7cca37282
proquest_journals_2829707462
gale_infotracacademiconefile_A754973755
crossref_citationtrail_10_3390_app13127150
crossref_primary_10_3390_app13127150
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Maurya (ref_6) 2022; 62
Xu (ref_31) 2023; 11
Zhang (ref_15) 2019; 97
Bai (ref_16) 2020; 50
Ma (ref_17) 2022; 59
Huang (ref_29) 2022; 2022
Scarselli (ref_13) 2009; 20
ref_14
ref_12
Gao (ref_10) 2021; 1994
ref_11
ref_33
ref_32
ref_30
Hong (ref_2) 2021; 8
Qin (ref_8) 2018; 16
Sen (ref_36) 2008; 29
Kumar (ref_1) 2020; 553
Guo (ref_23) 2023; 7
Zhao (ref_19) 2022; 33
Wu (ref_5) 2020; 32
ref_25
ref_24
ref_21
ref_20
ref_3
Wang (ref_18) 2021; 47
Wu (ref_34) 2021; 42
Huang (ref_9) 2022; 244
Xu (ref_37) 2023; 11
ref_28
ref_27
ref_26
Xue (ref_35) 2021; 42
Zeng (ref_22) 2023; 57
ref_4
ref_7
References_xml – ident: ref_7
– volume: 553
  start-page: 124289
  year: 2020
  ident: ref_1
  article-title: Link prediction techniques, applications, and performance: A survey
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2020.124289
– ident: ref_30
– volume: 11
  start-page: 17956
  year: 2023
  ident: ref_37
  article-title: Enhancement Economic System Based-Graph Neural Network in Stock Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3246525
– ident: ref_32
  doi: 10.2139/ssrn.4424703
– ident: ref_3
– volume: 57
  start-page: 219
  year: 2023
  ident: ref_22
  article-title: A node-embedding enhancement model for graph neural networks oriented to node classification
  publication-title: J. Zhejiang Univ. Eng. Ed.
– ident: ref_26
– volume: 42
  start-page: 1066
  year: 2021
  ident: ref_34
  article-title: Center-guided relation-aware network for cross-domain object detection
  publication-title: J. Chin. Comput. Syst.
– ident: ref_11
– volume: 7
  start-page: 29
  year: 2023
  ident: ref_23
  article-title: An integrated graph neural network model for imbalanced node classification
  publication-title: Mod. Inf. Technol.
– volume: 16
  start-page: 241
  year: 2018
  ident: ref_8
  article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2869563
– volume: 59
  start-page: 47
  year: 2022
  ident: ref_17
  article-title: Overview of graph neural networks
  publication-title: Comput. Res. Dev.
– ident: ref_14
– volume: 33
  start-page: 150
  year: 2022
  ident: ref_19
  article-title: A Review of Large-Scale Graph Neural Network Systems
  publication-title: J. Softw.
– volume: 62
  start-page: 101695
  year: 2022
  ident: ref_6
  article-title: Simplifying approach to Node Classification in Graph Neural Networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101695
– volume: 42
  start-page: 1022
  year: 2021
  ident: ref_35
  article-title: Method for recognizing indoor scene classification based on fusion deep neural network with attention mechanism
  publication-title: J. Chin. Comput. Syst.
– ident: ref_21
  doi: 10.24963/ijcai.2019/630
– volume: 32
  start-page: 4
  year: 2020
  ident: ref_5
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref_28
  doi: 10.1109/ICCE-Taiwan55306.2022.9868975
– ident: ref_24
  doi: 10.3390/app13074614
– ident: ref_12
– volume: 47
  start-page: 1
  year: 2021
  ident: ref_18
  article-title: A review of graph neural networks
  publication-title: Comput. Eng.
– ident: ref_20
  doi: 10.1609/aaai.v32i1.11604
– volume: 20
  start-page: 61
  year: 2009
  ident: ref_13
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 50
  start-page: 367
  year: 2020
  ident: ref_16
  article-title: Graph Neural Networks
  publication-title: Sci. China Math.
– ident: ref_4
  doi: 10.3390/app12147246
– volume: 244
  start-page: 108538
  year: 2022
  ident: ref_9
  article-title: A graph neural network-based node classification model on class-imbalanced graph data
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108538
– volume: 11
  start-page: 49289
  year: 2023
  ident: ref_31
  article-title: Promoting Financial Market Development—Financial Stock Classification Using Graph Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3275085
– volume: 8
  start-page: 12
  year: 2021
  ident: ref_2
  article-title: Variational Gridded Graph Convolution Network for Node Classification
  publication-title: J. Autom. Engl. Ed.
– volume: 1994
  start-page: 012004
  year: 2021
  ident: ref_10
  article-title: Graph Neural Network and its applications
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1994/1/012004
– ident: ref_25
  doi: 10.1109/CVPR.2019.00943
– volume: 97
  start-page: 7364
  year: 2019
  ident: ref_15
  article-title: Circuit-GNN: Graph Neural Networks for Distributed Circuit Design
  publication-title: PMLR
– ident: ref_27
  doi: 10.24963/ijcai.2019/369
– ident: ref_33
  doi: 10.1609/icwsm.v3i1.13979
– volume: 29
  start-page: 93
  year: 2008
  ident: ref_36
  article-title: Collective classification in network data
  publication-title: AI Mag.
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_29
  article-title: A classification model for academic papers based on an improved graph neural network
  publication-title: Data Anal. Knowl. Discov.
SSID ssj0000913810
Score 2.2964578
Snippet This study combines the present stage of the node classification problem with the fact that there is frequent noise in the graph structure of the graph...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7150
SubjectTerms Algorithms
Classification
Computational linguistics
Datasets
Deep learning
graph attention network (GAT)
graph convolutional neural network (GCN)
graph neural network (GNN)
Language processing
Natural language interfaces
Neural networks
node classification
Social networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOQAsVSwvyoRIPKWLjR-ycqi3awgFFFQJUiYPlxxgqVbtld-H340m82z0AF66JEzmZh8cz4-8DOOYJYwzSVVJ4Xckmx3Aeo6lEGzxm28KmT118-aC7zlxctOcl4bYsbZVrn9g76jgPlCN_QxU_TeQY_OT6R0WsUVRdLRQat2GXkMqynu-eTrvzj5ssC6Femno8HMwTeX9PdeFa1FzXdNJ-aynqEfv_5pf7xebswf9O8yHcL2Emmwx6sQe3cLYP97bAB_dhr5j1kr0s2NOvHsHXCXtHENaMQDvyC7qhS5x184isJ9Ck1qJemmxyU_tmRKl2xSipy6az731XwfDMlvgfw-ez6ae376vCv1AFORarimPd5uGeYiiZlNOOu-BdDjKkyj6ydSklzCbPBQrdYqMweC-TadB5b0IUB7Azm8_wCTDuuFS1QRxrT4A1beLKNZijE8OjMnoEr9eisKGAkxNHxpXNmxSSm92S2wiON4OvB0yOPw87JZluhhCQdn9hvvhmi11aqZR3yY9DNF62MjktvPNRZ8UWOk9uBC9IIyyZe55QcOXUQv4sAs6yk_wzWi20UiM4WmuELX5gaW_U4em_bx_CXSKyH5rQjmBntfiJz-BO-LW6XC6eF7X-DXxzApw
  priority: 102
  providerName: ProQuest
Title A Graph Neural Network Node Classification Application Model with Enhanced Node Association
URI https://www.proquest.com/docview/2829707462
https://doaj.org/article/455bafb0cd8b494fa73babd7cca37282
Volume 13
WOSCitedRecordID wos001016917000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hwgEOFS0gFkrlQyUeUsTGjzg-btEWkCBaIUBFHCzbGQukaou6W34_M05acgBx4Zhokjjz8ow9_gbgSGbs-6RDpVW0lW4ohovYt5VyKSLZFjZl6eLzO9t17empW01afXFN2AAPPDDupTYmhhznqW-jdjoHq2KIvaUvK0v5AnvfuXWTZKr4YFczdNVwIE9RXs_7wbWqpa35hP1kCipI_X_zx2WSObkLu2N0KBbDqPbgBq734c4EM3Af9kZr3IhnI2T083vwdSFeM_K0YKwNekE3FHeL7rxHUfpeckVQEYJY_N6yFtwJ7UzwWqxYrr-VYoDhmYnU7sOnk-XHV2-qsW1ClfRcbSuJtSPyyKGPzibYIEOKgWIDbci1uZBzRrJUqVBZh43BFKPObYMhxjb16gHsrM_X-BCEDFKbukWc28g4My5LExqkoKKVvWntDF5ccdKnEVOcW1ucecotmO1-wvYZHF0T_xigNP5MdswiuSZh_Otyg7TCj1rh_6UVM3jKAvVspTSgFMbDBvRbjHflF8QMZ5U1ZgYHVzL3o_luPG8vW-7EIh_9j9E8htvcpX6oMDuAne3FJT6BW-nn9vvm4hBuHi-71YfDosF0tXr7fvXlF1rc9_E
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlALRQsVDAhyIeUkTiR5wcEFqgpatuoz0UVMTB-BVAqnbL7gLiT_Eb8STOdg_ArQeuiWM59ueZ8cz4G4BdWnvnLNcJZ0YmPA82nPGuSFhpjQ97y-eN6-LdSFZVcXJSjtfgV3cXBtMqO5nYCGo3tegjf4YRP4nFMeiLs68JVo3C6GpXQqOFxaH_-SMc2ebPh6_D-j6kdH_v-NVBEqsKJJanbJFQn5XWO4OWAa-Flppqa3RQnVyEnV_quq59ADJlnsnS58JbY3hd5F4bU1jHQr-XYJ0j2HuwPh4ejd8vvTrIsllkaXsRkLEyxTh0xjIqM7zZv6L6mgoBf9MDjXLbv_6_TcsNuBbNaDJocb8Ja36yBVdXyBW3YDOKrTl5HLm1n9yEDwPyBim6CZKShA6qNgueVFPnSVMgFFOnGrSSwXlsn2DJuFOCTmuyN_ncZE2036zA-xa8vZBf3obeZDrxt4FQTbnICu9TaZCQp6yp0LkP1ldBnShkH552S69sJF_HGiCnKhzCECdqBSd92F02Pms5R_7c7CViaNkEicKbB9PZJxXljuJCGF2b1LrC8JLXWjKjjZNh4zIZBteHR4hAheIsDMjqeCsj_BYSg6lBmIxSMilEH3Y6BKoo5-bqHH53_v36AVw5OD4aqdGwOrwLGzSYim3C3Q70FrNv_h5ctt8XX-az-3FLEfh40XD9DbcbYto
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlALRQsVDAhyIeUtTEduLkgNBCu7BqifYAqBUH4ycgVbtldwHx1_h1eBJnuwfg1gPXxLFs5_PMeGb8DcAu9c5aw1XCmRYJL4INp50tE1YZ7cLeckXjunh_JOq6PD6uxmvwq7sLg2mVnUxsBLWdGvSR72HET2BxDLrnY1rEeH_4_OxrghWkMNLaldNoIXLofv4Ix7f5s9F--NcPKR0evH35OokVBhLDU7ZIqMsq46xGK4H7XAlFldEqqFGeBylQKe-9C6CmzDFRuSJ3Rmvuy8IprUtjWej3EqwHk5zTHqyPR2_GJ0sPDzJullnaXgpkrEoxJp2xjIoMb_mvqMGmWsDfdEKj6IbX_-clugHXonlNBu1-2IQ1N9mCqyuki1uwGcXZnDyOnNtPbsKHAXmF1N0EyUpCB3WbHU_qqXWkKRyKKVUNisngPOZPsJTcKUFnNjmYfG6yKdpvVmB_C95dyJS3oTeZTtxtIFRRnmelc6nQSNRTeZqrwgWrrKQ2L0UfnnYwkCaSsmNtkFMZDmeIGbmCmT7sLhuftVwkf272AvG0bIIE4s2D6eyTjPJI8jzXyuvU2FLzinslmFbairChmQiD68MjRKNEMRcGZFS8rRGmhYRhchAWoxJM5Hkfdjo0yij_5vIcinf-_foBXAkYlUej-vAubNBgQbZ5eDvQW8y-uXtw2XxffJnP7sfdReDjRaP1NxB9a5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Graph+Neural+Network+Node+Classification+Application+Model+with+Enhanced+Node+Association&rft.jtitle=Applied+sciences&rft.au=Yuhang+Zhang&rft.au=Yaoqun+Xu&rft.au=Yu+Zhang&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft.spage=7150&rft_id=info:doi/10.3390%2Fapp13127150&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_455bafb0cd8b494fa73babd7cca37282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon