Advancements in Gas Turbine Fault Detection: A Machine Learning Approach Based on the Temporal Convolutional Network–Autoencoder Model

To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced Temporal Convolutional Network (TCN)–Autoencoder model was presented to detect anomalies in vibration data. By synergizing TCN capabilities an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 14; H. 11; S. 4551
Hauptverfasser: Fahmi, Al-Tekreeti Watban Khalid, Reza Kashyzadeh, Kazem, Ghorbani, Siamak
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2024
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced Temporal Convolutional Network (TCN)–Autoencoder model was presented to detect anomalies in vibration data. By synergizing TCN capabilities and Multi-Head Attention (MHA) mechanisms, this model introduces a new approach that performs anomaly detection with high accuracy. To train and test the proposed model, a bespoke dataset of CA 202 accelerometers installed in the Kirkuk power plant was used. The proposed model not only outperforms traditional GRU–Autoencoder, LSTM–Autoencoder, and VAE models in terms of anomaly detection accuracy, but also shows the Mean Squared Error (MSE = 1.447), Root Mean Squared Error (RMSE = 1.193), and Mean Absolute Error (MAE = 0.712). These results confirm the effectiveness of the TCN–Autoencoder model in increasing predictive maintenance and operational efficiency in power plants.
AbstractList To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced Temporal Convolutional Network (TCN)–Autoencoder model was presented to detect anomalies in vibration data. By synergizing TCN capabilities and Multi-Head Attention (MHA) mechanisms, this model introduces a new approach that performs anomaly detection with high accuracy. To train and test the proposed model, a bespoke dataset of CA 202 accelerometers installed in the Kirkuk power plant was used. The proposed model not only outperforms traditional GRU–Autoencoder, LSTM–Autoencoder, and VAE models in terms of anomaly detection accuracy, but also shows the Mean Squared Error (MSE = 1.447), Root Mean Squared Error (RMSE = 1.193), and Mean Absolute Error (MAE = 0.712). These results confirm the effectiveness of the TCN–Autoencoder model in increasing predictive maintenance and operational efficiency in power plants.
Audience Academic
Author Fahmi, Al-Tekreeti Watban Khalid
Ghorbani, Siamak
Reza Kashyzadeh, Kazem
Author_xml – sequence: 1
  givenname: Al-Tekreeti Watban Khalid
  orcidid: 0000-0002-2752-5750
  surname: Fahmi
  fullname: Fahmi, Al-Tekreeti Watban Khalid
– sequence: 2
  givenname: Kazem
  orcidid: 0000-0003-0552-9950
  surname: Reza Kashyzadeh
  fullname: Reza Kashyzadeh, Kazem
– sequence: 3
  givenname: Siamak
  orcidid: 0000-0003-0251-3144
  surname: Ghorbani
  fullname: Ghorbani, Siamak
BookMark eNptUcFu1DAQjVCRKKUnfsASR7TFTryxzS1saam0hctytib2ZOslawfbKeLGkTt_yJfgZUGqED7YM8_vPWnmPa1OfPBYVc8ZvWgaRV_BNDHOGF8u2aPqtKaiXTSciZMH9ZPqPKUdLUexRjJ6Wn3v7D14g3v0ORHnyTUksplj7zySK5jHTC4xo8ku-NekI7dg7g5fa4Tond-SbppiKCB5AwktCZ7kOyQb3E8hwkhWwd-HcT7IS_ce85cQP_389qObc0BvgsVIbss9PqseDzAmPP_znlUfr95uVu8W6w_XN6tuvTCcNnlRW0ktqFo1ZQa0fQ09N5TBACiWaC1S2ZeutQC2AclpzZU1githhbUDb86qm6OvDbDTU3R7iF91AKd_AyFuNcTszIi6by2CMmCkEJzVUlqGy7aWqleM131bvF4cvcoKPs-Yst6FOZZBk25oKxqlpFgW1sWRtYVi6vwQcoTiChb3zpQMB1fwTighlSwBFgE7CkwMKUUctHEZDissQjdqRvUhcP0g8KJ5-Y_m72j_Y_8Cz9OwEw
CitedBy_id crossref_primary_10_2139_ssrn_5346270
crossref_primary_10_3390_app15063337
Cites_doi 10.1115/GT2015-42139
10.1016/j.engfailanal.2023.107107
10.1115/1.4026126
10.1016/j.pecs.2017.09.001
10.1109/CyberneticsCom55287.2022.9865487
10.1016/j.triboint.2017.01.015
10.1214/009053604000000201
10.1038/s41558-019-0457-1
10.3390/app14083354
10.1016/j.energy.2023.128423
10.1016/j.measurement.2019.01.022
10.1115/1.1772406
10.1016/j.energy.2020.117467
10.1115/GT2009-59239
10.1088/1742-6596/1187/4/042111
10.1109/LSP.2020.3016837
10.1002/we.2621
10.3390/ma16093303
10.1108/ILT-04-2022-0151
10.3390/aerospace6070083
10.1016/j.fuel.2005.01.018
10.1016/j.engfailanal.2023.107128
10.1016/j.engfailanal.2024.108213
10.1007/s40747-023-01268-0
10.3389/fbuil.2017.00054
10.1016/j.engfailanal.2022.106094
10.3390/s19030711
10.1016/j.rser.2004.05.009
10.3390/buildings12040438
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14114551
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_b6dea9cac87741288d1e56289b9142b6
A797898411
10_3390_app14114551
GeographicLocations Iraq
GeographicLocations_xml – name: Iraq
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-2d80da9293009edb2ab4c01afae75edde08b1af6daad3a840249dc7497d7ddf43
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:44:53 EDT 2025
Sun Nov 09 08:32:05 EST 2025
Tue Nov 04 18:22:29 EST 2025
Tue Nov 18 20:41:48 EST 2025
Sat Nov 29 07:19:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-2d80da9293009edb2ab4c01afae75edde08b1af6daad3a840249dc7497d7ddf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0251-3144
0000-0003-0552-9950
0000-0002-2752-5750
OpenAccessLink https://doaj.org/article/b6dea9cac87741288d1e56289b9142b6
PQID 3067399875
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_b6dea9cac87741288d1e56289b9142b6
proquest_journals_3067399875
gale_infotracacademiconefile_A797898411
crossref_citationtrail_10_3390_app14114551
crossref_primary_10_3390_app14114551
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Qi (ref_41) 2020; 27
Tanaka (ref_2) 2019; 9
ref_35
ref_12
ref_10
ref_32
ref_31
Zhou (ref_23) 2020; 200
ref_19
Lim (ref_28) 2005; 127
ref_18
ref_39
Riley (ref_16) 1983; Volume 65
Arrigone (ref_29) 2005; 84
Fahmi (ref_34) 2024; 160
Babu (ref_26) 2016; 6
Poullikkas (ref_1) 2005; 9
Matthaiou (ref_14) 2017; 3
Zhong (ref_22) 2019; 137
Fahmi (ref_9) 2022; 134
Santoso (ref_30) 2022; 15
Zhu (ref_17) 2017; 109
ref_24
Mourad (ref_7) 2023; 146
Mylonas (ref_38) 2021; 24
ref_21
ref_20
Liu (ref_33) 2019; 1187
Das (ref_37) 2004; 32
Sun (ref_11) 2023; 75
Kashyzadeh (ref_40) 2023; 146
Volponi (ref_13) 2014; 136
ref_27
Ortega (ref_36) 2007; 2007
ref_8
Abram (ref_15) 2018; 64
ref_5
Tang (ref_25) 2024; 10
ref_4
Assareh (ref_3) 2023; 282
ref_6
References_xml – volume: Volume 65
  start-page: 627
  year: 1983
  ident: ref_16
  article-title: Non-Destructive Evaluation of Ceramic Gas Turbine Components by X-Rays and Other Methods
  publication-title: Progress in Nitrogen Ceramics
– ident: ref_18
  doi: 10.1115/GT2015-42139
– volume: 146
  start-page: 107107
  year: 2023
  ident: ref_7
  article-title: Failure analysis of gas and wind turbine blades: A review
  publication-title: Eng. Fail. Ana
  doi: 10.1016/j.engfailanal.2023.107107
– volume: 136
  start-page: 051201
  year: 2014
  ident: ref_13
  article-title: Gas turbine engine health management: Past, present, and future trends
  publication-title: J. Eng. Gas. Turb Power
  doi: 10.1115/1.4026126
– volume: 2007
  start-page: 1
  year: 2007
  ident: ref_36
  article-title: Moving average and Savitzki-Golay smoothing filters using Mathcad
  publication-title: Pap. ICEE
– volume: 6
  start-page: 35
  year: 2016
  ident: ref_26
  article-title: Framework for development of comprehensive diagnostic tool for fault detection and diagnosis of gas turbine engines
  publication-title: J. Aerosp. Qual. Reliab. (Spec. Issue)
– volume: 64
  start-page: 93
  year: 2018
  ident: ref_15
  article-title: Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles
  publication-title: Prog. Energ. Combust.
  doi: 10.1016/j.pecs.2017.09.001
– ident: ref_32
  doi: 10.1109/CyberneticsCom55287.2022.9865487
– volume: 109
  start-page: 473
  year: 2017
  ident: ref_17
  article-title: Lubricating oil conditioning sensors for online machine health monitoring–A review
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2017.01.015
– volume: 32
  start-page: 818
  year: 2004
  ident: ref_37
  article-title: Mean squared error of empirical predictor
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000201
– volume: 9
  start-page: 389
  year: 2019
  ident: ref_2
  article-title: Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-019-0457-1
– ident: ref_24
  doi: 10.3390/app14083354
– volume: 15
  start-page: 363
  year: 2022
  ident: ref_30
  article-title: RNN-Autoencoder approach for anomaly detection in power plant predictive maintenance systems
  publication-title: Int. J. Intell. Eng. Syst.
– ident: ref_35
– ident: ref_21
– volume: 282
  start-page: 128423
  year: 2023
  ident: ref_3
  article-title: A transient study on a solar-assisted combined gas power cycle for sustainable multi-generation in hot and cold climates: Case studies of Dubai and Toronto
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128423
– volume: 137
  start-page: 435
  year: 2019
  ident: ref_22
  article-title: A novel gas turbine fault diagnosis method based on transfer learning with CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.022
– volume: 127
  start-page: 314
  year: 2005
  ident: ref_28
  article-title: Diagnosis for loose blades in gas turbines using wavelet analysis
  publication-title: J. Eng. Gas. Turbines Power
  doi: 10.1115/1.1772406
– volume: 200
  start-page: 117467
  year: 2020
  ident: ref_23
  article-title: Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117467
– ident: ref_6
– ident: ref_5
  doi: 10.1115/GT2009-59239
– ident: ref_4
– ident: ref_31
– volume: 1187
  start-page: 042111
  year: 2019
  ident: ref_33
  article-title: April. Anomaly detection for time series using temporal convolutional networks and Gaussian mixture model
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1187/4/042111
– ident: ref_27
– volume: 27
  start-page: 1485
  year: 2020
  ident: ref_41
  article-title: On mean absolute error for deep neural network based vector-to-vector regression
  publication-title: IEEE Signal Proc. Let.
  doi: 10.1109/LSP.2020.3016837
– ident: ref_10
– volume: 24
  start-page: 1122
  year: 2021
  ident: ref_38
  article-title: Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data
  publication-title: Wind. Energy
  doi: 10.1002/we.2621
– ident: ref_8
  doi: 10.3390/ma16093303
– volume: 75
  start-page: 36
  year: 2023
  ident: ref_11
  article-title: Wear failure analysis of ball bearings based on lubricating oil for gas turbine
  publication-title: Ind. Lubr. Tribol.
  doi: 10.1108/ILT-04-2022-0151
– ident: ref_12
  doi: 10.3390/aerospace6070083
– volume: 84
  start-page: 1052
  year: 2005
  ident: ref_29
  article-title: Theory and practice in using Fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.01.018
– volume: 146
  start-page: 107128
  year: 2023
  ident: ref_40
  article-title: New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107128
– volume: 160
  start-page: 108213
  year: 2024
  ident: ref_34
  article-title: Fault detection in the gas turbine of the Kirkuk power plant: An anomaly detection approach using DLSTM-Autoencoder
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2024.108213
– volume: 10
  start-page: 2233
  year: 2024
  ident: ref_25
  article-title: Failure mode and effects analysis using an improved pignistic probability transformation function and grey relational projection method
  publication-title: Complex. Intell. Syst.
  doi: 10.1007/s40747-023-01268-0
– volume: 3
  start-page: 54
  year: 2017
  ident: ref_14
  article-title: Vibration monitoring of gas turbine engines: Machine-learning approaches and their challenges
  publication-title: Front. Built Environ.
  doi: 10.3389/fbuil.2017.00054
– volume: 134
  start-page: 106094
  year: 2022
  ident: ref_9
  article-title: A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants
  publication-title: Eng. Fail. Anal
  doi: 10.1016/j.engfailanal.2022.106094
– ident: ref_19
  doi: 10.3390/s19030711
– ident: ref_20
– volume: 9
  start-page: 409
  year: 2005
  ident: ref_1
  article-title: An overview of current and future sustainable gas turbine technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2004.05.009
– ident: ref_39
  doi: 10.3390/buildings12040438
SSID ssj0000913810
Score 2.2994194
Snippet To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4551
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Capital costs
Deep learning
Efficiency
Electric power-plants
Electricity
Electricity distribution
Emission standards
Emissions
Energy consumption
Energy resources
Fault diagnosis
gas turbine
Gas-turbines
Industrial plant emissions
Lubricants & lubrication
Machine learning
Methods
Natural gas
Neural networks
Operations management
power plant
Power plants
predictive maintenance
Renewable resources
Sensors
TCN–Autoencoder
Turbines
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOlBYqthQ0h0o8pIi8una4VNnShQurCi1Sb5ZfqSqtkpJke-bYO_-wv6Rjx7sUCbhwdDJSHHs8M589_gbggAZe8ji1kcoqAiiHRRZJxUzkb4GSQxjHSvliE2w242dnxWnYcOtCWuXKJnpDbRrt9sjfu9CWnCmF10eX3yNXNcqdroYSGvdh0zGVkZ5vTk5mp1_XuyyO9ZIn8XAxLyN8786Fkzxx9NzJb67IM_b_zS57ZzPd-t9uPoHHIczEctCLbbhn6x14dId8cAe2w7Lu8E3gnn77FK7LISfAX3zDixo_yQ7ny5bws8WpXC56_Gh7n75Vf8ASv_hcTIuBpvUcy8BRjhNyjwabGinCxPlAgLXA46a-CspOrdmQg37z42e57BtHqWlsi6482-IZfJuezI8_R6FYQ6TzOOuj1PDYSAq2Mhp0a1QqVa7jRFbSskNLRjTmilpjI6XJJMFKwn1Gs7xghhlT5dkubNRNbZ8DEkrSnFVZbCk2rawsqpw5ZFRpk9qkUCN4t5o3oQOTuSuosRCEaNwkizuTPIKDtfDlQODxZ7GJU4C1iGPd9g-a9lyERSzU2FBvtKTeUSCWcm4SS_EjL1SR5Kkaj-C1Ux_hbAN1iASHKw70W45lS5SMMHvB6ZMj2F-pjwhGoxO_dGfv369fwMOUxm_IWNuHjb5d2pfwQF_1F137KqyBW6swE3Q
  priority: 102
  providerName: ProQuest
Title Advancements in Gas Turbine Fault Detection: A Machine Learning Approach Based on the Temporal Convolutional Network–Autoencoder Model
URI https://www.proquest.com/docview/3067399875
https://doaj.org/article/b6dea9cac87741288d1e56289b9142b6
Volume 14
WOSCitedRecordID wos001245603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6C5pAcRI2S9UUdhCTC4LzcnvY2q26Sg8sSNmBOTfd0jwjLrOzOevbo3X_oL7H6oWxA8eKxh4bpqaquqo-p-gpgnwQvizg1kcpqAihHPIukYjpyXaAUELqxUm7YBBsMiosLPlwY9WVrwjw9sBfcoepqI3klq4ISFXKmhU4MxeyCK57kqXJk2zHjC2DK-WCeWOoq35CXEa63_4OTPLG03Ml_Icgx9b_mj12Q6a_CSsgOsfSnWoMPplmHzwucgeuwFm7jDL8HyugfX-Cu9L_yXb8aXjX4U85wNJ8S7DXYl_Nxi6emdVVXzTGWeO5KKA0GdtVLLAO1OPYoqmmcNEiJIY48b9UYTybNTbBRWg186fjD7X05byeWCVObKdqpauMN-Ns_G538isKMhajK46yNUl3EWlKOlJHMjFapVHkVJ7KWhh0Z8n1xoWjV1VLqTBIaJLimK5ZzppnWdZ5twlIzacxXQAI3pKQ6iw1pqial1TmzgKaudGoSrjpw8CR2UQUCcjsHYywIiFgdiQUddWD_efO15914eVvP6u95iyXLdg_IhEQwIfGWCXXgm9W-sFeaDkQbfWcCfZYlxxIlI6jNC3plB3aeDESEuz4TFnRRmkfAb-s9TrMNn1KSsi9H24Gldjo3u_CxummvZtM9WO6dDYZ_9py502r4-3z47xF5TwcK
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIlyAFpADRTYQxEfkoW_mt1FQshtCY3aRDkEqZyWXe-6qhTZxXaKuHHkzv_gR_FLmLXXoUjArQeOTtbJev125o098wZgGxdeMj80nooyDFB2eORJRbXXVIGiQxj4SjXNJuhkwo6P-XQFvne1MDatsrOJjaHWRWqfkb-w1BadKdLr12cfPds1yr5d7VpotLA4NJ8_YchWvRrt4_19HIbDN7O9A891FfDS2I9qL9TM1xJZQYT0wmgVShWnfiAzaeiOwd3uM4VHAy2ljiTGPxig6JTGnGqqdRZH-LtXYDW2YO_B6nQ0nr5fPtWxKpss8NtCwCjivn0PHcSBlQMPfnN9TYeAv_mBxrkNb_5vy3ILbjgaTZIW9-uwYvINuH5BXHED1p3ZqshTp6397DZ8Tdqch6awj5zm5K2syGxRKjyPDOViXpN9UzfpaflLkpBxk2tqiJOhPSGJ02Anu-j-NSlyggyazFqBrznZK_Jzt5nxaNLm2P_48i1Z1IWVDNWmJLb93PwOvLuU9bkLvbzIzSYQjAJTRrPIN8i9MyN5FlMb-WWpDk3AVR-edzgRqVNqtw1D5gIjNgsqcQFUfdheDj5rBUr-PGzXAm45xKqKNx8U5YlwRkqogcbZpBJnh0QzZEwHBvkx44oHcagGfXhi4Sqs7cMJ4cC2hAMvy6qIiYRyyjjDv-zDVgdX4YxiJX5h9d6_v34E1w5m4yNxNJoc3oe1ENeyzc7bgl5dLswDuJqe16dV-dDtPwIfLhvbPwHMmnP3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFKFyAFpADRTYQxEfklV77ca7SAi5DYGoNMohSO1p2fWuq0qRXWyniBtH7vwbfg6_hFl7HYoE3Hrg6GSdrNdvZ97YM28AtnHhJfOp8VSYYYCyy0NPqlh7TRUoOoSBr1TTbCKeTNjREZ-uwPeuFsamVXY2sTHUukjtM_IdS23RmSK93slcWsR0OHp19tGzHaTsm9aunUYLkQPz-ROGb9XL8RDv9WNKR69n-28912HASyM_rD2qma8lMoQQqYbRikoVpX4gM2niXYM732cKjwZaSh1KjIUwWNFpHPFYx1pnUYi_ewVWkZJHtAer0_Hh9Hj5hMcqbrLAb4sCw5D79p10EAVWGjz4zQ023QL-5hMaRze6-T8v0S244eg1Sdr9sA4rJt-A6xdEFzdg3Zmzijx1mtvPbsPXpM2FaAr-yGlO3siKzBalwvPISC7mNRmauklby1-QhBw2OaiGOHnaE5I4bXayh7RAkyInyKzJrBX-mpP9Ij93mxyPJm3u_Y8v35JFXVgpUW1KYtvSze_A-0tZn7vQy4vcbALB6DBlcRb6Bjl5ZiTPothGhFmqqQm46sPzDjMidQrutpHIXGAkZwEmLgCsD9vLwWetcMmfh-1Z8C2HWLXx5oOiPBHOeAk10DibVOLskIBSxnRgkDczrngQUTXowxMLXWFtIk4IB7alHXhZVl1MJDGPGWf4l33Y6qArnLGsxC_c3vv314_gGgJavBtPDu7DGsWlbJP2tqBXlwvzAK6m5_VpVT50W5HAh8uG9k-Zbny3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+Gas+Turbine+Fault+Detection%3A+A+Machine+Learning+Approach+Based+on+the+Temporal+Convolutional+Network%E2%80%93Autoencoder+Model&rft.jtitle=Applied+sciences&rft.au=Fahmi%2C+Al-Tekreeti+Watban+Khalid&rft.au=Reza+Kashyzadeh%2C+Kazem&rft.au=Ghorbani%2C+Siamak&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fapp14114551&rft.externalDocID=A797898411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon