Advancements in Gas Turbine Fault Detection: A Machine Learning Approach Based on the Temporal Convolutional Network–Autoencoder Model
To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced Temporal Convolutional Network (TCN)–Autoencoder model was presented to detect anomalies in vibration data. By synergizing TCN capabilities an...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 14; H. 11; S. 4551 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2024
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced Temporal Convolutional Network (TCN)–Autoencoder model was presented to detect anomalies in vibration data. By synergizing TCN capabilities and Multi-Head Attention (MHA) mechanisms, this model introduces a new approach that performs anomaly detection with high accuracy. To train and test the proposed model, a bespoke dataset of CA 202 accelerometers installed in the Kirkuk power plant was used. The proposed model not only outperforms traditional GRU–Autoencoder, LSTM–Autoencoder, and VAE models in terms of anomaly detection accuracy, but also shows the Mean Squared Error (MSE = 1.447), Root Mean Squared Error (RMSE = 1.193), and Mean Absolute Error (MAE = 0.712). These results confirm the effectiveness of the TCN–Autoencoder model in increasing predictive maintenance and operational efficiency in power plants. |
|---|---|
| AbstractList | To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced Temporal Convolutional Network (TCN)–Autoencoder model was presented to detect anomalies in vibration data. By synergizing TCN capabilities and Multi-Head Attention (MHA) mechanisms, this model introduces a new approach that performs anomaly detection with high accuracy. To train and test the proposed model, a bespoke dataset of CA 202 accelerometers installed in the Kirkuk power plant was used. The proposed model not only outperforms traditional GRU–Autoencoder, LSTM–Autoencoder, and VAE models in terms of anomaly detection accuracy, but also shows the Mean Squared Error (MSE = 1.447), Root Mean Squared Error (RMSE = 1.193), and Mean Absolute Error (MAE = 0.712). These results confirm the effectiveness of the TCN–Autoencoder model in increasing predictive maintenance and operational efficiency in power plants. |
| Audience | Academic |
| Author | Fahmi, Al-Tekreeti Watban Khalid Ghorbani, Siamak Reza Kashyzadeh, Kazem |
| Author_xml | – sequence: 1 givenname: Al-Tekreeti Watban Khalid orcidid: 0000-0002-2752-5750 surname: Fahmi fullname: Fahmi, Al-Tekreeti Watban Khalid – sequence: 2 givenname: Kazem orcidid: 0000-0003-0552-9950 surname: Reza Kashyzadeh fullname: Reza Kashyzadeh, Kazem – sequence: 3 givenname: Siamak orcidid: 0000-0003-0251-3144 surname: Ghorbani fullname: Ghorbani, Siamak |
| BookMark | eNptUcFu1DAQjVCRKKUnfsASR7TFTryxzS1saam0hctytib2ZOslawfbKeLGkTt_yJfgZUGqED7YM8_vPWnmPa1OfPBYVc8ZvWgaRV_BNDHOGF8u2aPqtKaiXTSciZMH9ZPqPKUdLUexRjJ6Wn3v7D14g3v0ORHnyTUksplj7zySK5jHTC4xo8ku-NekI7dg7g5fa4Tond-SbppiKCB5AwktCZ7kOyQb3E8hwkhWwd-HcT7IS_ce85cQP_389qObc0BvgsVIbss9PqseDzAmPP_znlUfr95uVu8W6w_XN6tuvTCcNnlRW0ktqFo1ZQa0fQ09N5TBACiWaC1S2ZeutQC2AclpzZU1githhbUDb86qm6OvDbDTU3R7iF91AKd_AyFuNcTszIi6by2CMmCkEJzVUlqGy7aWqleM131bvF4cvcoKPs-Yst6FOZZBk25oKxqlpFgW1sWRtYVi6vwQcoTiChb3zpQMB1fwTighlSwBFgE7CkwMKUUctHEZDissQjdqRvUhcP0g8KJ5-Y_m72j_Y_8Cz9OwEw |
| CitedBy_id | crossref_primary_10_2139_ssrn_5346270 crossref_primary_10_3390_app15063337 |
| Cites_doi | 10.1115/GT2015-42139 10.1016/j.engfailanal.2023.107107 10.1115/1.4026126 10.1016/j.pecs.2017.09.001 10.1109/CyberneticsCom55287.2022.9865487 10.1016/j.triboint.2017.01.015 10.1214/009053604000000201 10.1038/s41558-019-0457-1 10.3390/app14083354 10.1016/j.energy.2023.128423 10.1016/j.measurement.2019.01.022 10.1115/1.1772406 10.1016/j.energy.2020.117467 10.1115/GT2009-59239 10.1088/1742-6596/1187/4/042111 10.1109/LSP.2020.3016837 10.1002/we.2621 10.3390/ma16093303 10.1108/ILT-04-2022-0151 10.3390/aerospace6070083 10.1016/j.fuel.2005.01.018 10.1016/j.engfailanal.2023.107128 10.1016/j.engfailanal.2024.108213 10.1007/s40747-023-01268-0 10.3389/fbuil.2017.00054 10.1016/j.engfailanal.2022.106094 10.3390/s19030711 10.1016/j.rser.2004.05.009 10.3390/buildings12040438 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app14114551 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_b6dea9cac87741288d1e56289b9142b6 A797898411 10_3390_app14114551 |
| GeographicLocations | Iraq |
| GeographicLocations_xml | – name: Iraq |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c403t-2d80da9293009edb2ab4c01afae75edde08b1af6daad3a840249dc7497d7ddf43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:44:53 EDT 2025 Sun Nov 09 08:32:05 EST 2025 Tue Nov 04 18:22:29 EST 2025 Tue Nov 18 20:41:48 EST 2025 Sat Nov 29 07:19:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-2d80da9293009edb2ab4c01afae75edde08b1af6daad3a840249dc7497d7ddf43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0251-3144 0000-0003-0552-9950 0000-0002-2752-5750 |
| OpenAccessLink | https://doaj.org/article/b6dea9cac87741288d1e56289b9142b6 |
| PQID | 3067399875 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b6dea9cac87741288d1e56289b9142b6 proquest_journals_3067399875 gale_infotracacademiconefile_A797898411 crossref_citationtrail_10_3390_app14114551 crossref_primary_10_3390_app14114551 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Qi (ref_41) 2020; 27 Tanaka (ref_2) 2019; 9 ref_35 ref_12 ref_10 ref_32 ref_31 Zhou (ref_23) 2020; 200 ref_19 Lim (ref_28) 2005; 127 ref_18 ref_39 Riley (ref_16) 1983; Volume 65 Arrigone (ref_29) 2005; 84 Fahmi (ref_34) 2024; 160 Babu (ref_26) 2016; 6 Poullikkas (ref_1) 2005; 9 Matthaiou (ref_14) 2017; 3 Zhong (ref_22) 2019; 137 Fahmi (ref_9) 2022; 134 Santoso (ref_30) 2022; 15 Zhu (ref_17) 2017; 109 ref_24 Mourad (ref_7) 2023; 146 Mylonas (ref_38) 2021; 24 ref_21 ref_20 Liu (ref_33) 2019; 1187 Das (ref_37) 2004; 32 Sun (ref_11) 2023; 75 Kashyzadeh (ref_40) 2023; 146 Volponi (ref_13) 2014; 136 ref_27 Ortega (ref_36) 2007; 2007 ref_8 Abram (ref_15) 2018; 64 ref_5 Tang (ref_25) 2024; 10 ref_4 Assareh (ref_3) 2023; 282 ref_6 |
| References_xml | – volume: Volume 65 start-page: 627 year: 1983 ident: ref_16 article-title: Non-Destructive Evaluation of Ceramic Gas Turbine Components by X-Rays and Other Methods publication-title: Progress in Nitrogen Ceramics – ident: ref_18 doi: 10.1115/GT2015-42139 – volume: 146 start-page: 107107 year: 2023 ident: ref_7 article-title: Failure analysis of gas and wind turbine blades: A review publication-title: Eng. Fail. Ana doi: 10.1016/j.engfailanal.2023.107107 – volume: 136 start-page: 051201 year: 2014 ident: ref_13 article-title: Gas turbine engine health management: Past, present, and future trends publication-title: J. Eng. Gas. Turb Power doi: 10.1115/1.4026126 – volume: 2007 start-page: 1 year: 2007 ident: ref_36 article-title: Moving average and Savitzki-Golay smoothing filters using Mathcad publication-title: Pap. ICEE – volume: 6 start-page: 35 year: 2016 ident: ref_26 article-title: Framework for development of comprehensive diagnostic tool for fault detection and diagnosis of gas turbine engines publication-title: J. Aerosp. Qual. Reliab. (Spec. Issue) – volume: 64 start-page: 93 year: 2018 ident: ref_15 article-title: Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles publication-title: Prog. Energ. Combust. doi: 10.1016/j.pecs.2017.09.001 – ident: ref_32 doi: 10.1109/CyberneticsCom55287.2022.9865487 – volume: 109 start-page: 473 year: 2017 ident: ref_17 article-title: Lubricating oil conditioning sensors for online machine health monitoring–A review publication-title: Tribol. Int. doi: 10.1016/j.triboint.2017.01.015 – volume: 32 start-page: 818 year: 2004 ident: ref_37 article-title: Mean squared error of empirical predictor publication-title: Ann. Stat. doi: 10.1214/009053604000000201 – volume: 9 start-page: 389 year: 2019 ident: ref_2 article-title: Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-019-0457-1 – ident: ref_24 doi: 10.3390/app14083354 – volume: 15 start-page: 363 year: 2022 ident: ref_30 article-title: RNN-Autoencoder approach for anomaly detection in power plant predictive maintenance systems publication-title: Int. J. Intell. Eng. Syst. – ident: ref_35 – ident: ref_21 – volume: 282 start-page: 128423 year: 2023 ident: ref_3 article-title: A transient study on a solar-assisted combined gas power cycle for sustainable multi-generation in hot and cold climates: Case studies of Dubai and Toronto publication-title: Energy doi: 10.1016/j.energy.2023.128423 – volume: 137 start-page: 435 year: 2019 ident: ref_22 article-title: A novel gas turbine fault diagnosis method based on transfer learning with CNN publication-title: Measurement doi: 10.1016/j.measurement.2019.01.022 – volume: 127 start-page: 314 year: 2005 ident: ref_28 article-title: Diagnosis for loose blades in gas turbines using wavelet analysis publication-title: J. Eng. Gas. Turbines Power doi: 10.1115/1.1772406 – volume: 200 start-page: 117467 year: 2020 ident: ref_23 article-title: Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks publication-title: Energy doi: 10.1016/j.energy.2020.117467 – ident: ref_6 – ident: ref_5 doi: 10.1115/GT2009-59239 – ident: ref_4 – ident: ref_31 – volume: 1187 start-page: 042111 year: 2019 ident: ref_33 article-title: April. Anomaly detection for time series using temporal convolutional networks and Gaussian mixture model publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1187/4/042111 – ident: ref_27 – volume: 27 start-page: 1485 year: 2020 ident: ref_41 article-title: On mean absolute error for deep neural network based vector-to-vector regression publication-title: IEEE Signal Proc. Let. doi: 10.1109/LSP.2020.3016837 – ident: ref_10 – volume: 24 start-page: 1122 year: 2021 ident: ref_38 article-title: Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data publication-title: Wind. Energy doi: 10.1002/we.2621 – ident: ref_8 doi: 10.3390/ma16093303 – volume: 75 start-page: 36 year: 2023 ident: ref_11 article-title: Wear failure analysis of ball bearings based on lubricating oil for gas turbine publication-title: Ind. Lubr. Tribol. doi: 10.1108/ILT-04-2022-0151 – ident: ref_12 doi: 10.3390/aerospace6070083 – volume: 84 start-page: 1052 year: 2005 ident: ref_29 article-title: Theory and practice in using Fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines publication-title: Fuel doi: 10.1016/j.fuel.2005.01.018 – volume: 146 start-page: 107128 year: 2023 ident: ref_40 article-title: New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107128 – volume: 160 start-page: 108213 year: 2024 ident: ref_34 article-title: Fault detection in the gas turbine of the Kirkuk power plant: An anomaly detection approach using DLSTM-Autoencoder publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2024.108213 – volume: 10 start-page: 2233 year: 2024 ident: ref_25 article-title: Failure mode and effects analysis using an improved pignistic probability transformation function and grey relational projection method publication-title: Complex. Intell. Syst. doi: 10.1007/s40747-023-01268-0 – volume: 3 start-page: 54 year: 2017 ident: ref_14 article-title: Vibration monitoring of gas turbine engines: Machine-learning approaches and their challenges publication-title: Front. Built Environ. doi: 10.3389/fbuil.2017.00054 – volume: 134 start-page: 106094 year: 2022 ident: ref_9 article-title: A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants publication-title: Eng. Fail. Anal doi: 10.1016/j.engfailanal.2022.106094 – ident: ref_19 doi: 10.3390/s19030711 – ident: ref_20 – volume: 9 start-page: 409 year: 2005 ident: ref_1 article-title: An overview of current and future sustainable gas turbine technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2004.05.009 – ident: ref_39 doi: 10.3390/buildings12040438 |
| SSID | ssj0000913810 |
| Score | 2.2994194 |
| Snippet | To tackle the complex challenges inherent in gas turbine fault diagnosis, this study uses powerful machine learning (ML) tools. For this purpose, an advanced... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4551 |
| SubjectTerms | Accuracy Algorithms Alternative energy sources Capital costs Deep learning Efficiency Electric power-plants Electricity Electricity distribution Emission standards Emissions Energy consumption Energy resources Fault diagnosis gas turbine Gas-turbines Industrial plant emissions Lubricants & lubrication Machine learning Methods Natural gas Neural networks Operations management power plant Power plants predictive maintenance Renewable resources Sensors TCN–Autoencoder Turbines Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOlBYqthQ0h0o8pIi8una4VNnShQurCi1Sb5ZfqSqtkpJke-bYO_-wv6Rjx7sUCbhwdDJSHHs8M589_gbggAZe8ji1kcoqAiiHRRZJxUzkb4GSQxjHSvliE2w242dnxWnYcOtCWuXKJnpDbRrt9sjfu9CWnCmF10eX3yNXNcqdroYSGvdh0zGVkZ5vTk5mp1_XuyyO9ZIn8XAxLyN8786Fkzxx9NzJb67IM_b_zS57ZzPd-t9uPoHHIczEctCLbbhn6x14dId8cAe2w7Lu8E3gnn77FK7LISfAX3zDixo_yQ7ny5bws8WpXC56_Gh7n75Vf8ASv_hcTIuBpvUcy8BRjhNyjwabGinCxPlAgLXA46a-CspOrdmQg37z42e57BtHqWlsi6482-IZfJuezI8_R6FYQ6TzOOuj1PDYSAq2Mhp0a1QqVa7jRFbSskNLRjTmilpjI6XJJMFKwn1Gs7xghhlT5dkubNRNbZ8DEkrSnFVZbCk2rawsqpw5ZFRpk9qkUCN4t5o3oQOTuSuosRCEaNwkizuTPIKDtfDlQODxZ7GJU4C1iGPd9g-a9lyERSzU2FBvtKTeUSCWcm4SS_EjL1SR5Kkaj-C1Ux_hbAN1iASHKw70W45lS5SMMHvB6ZMj2F-pjwhGoxO_dGfv369fwMOUxm_IWNuHjb5d2pfwQF_1F137KqyBW6swE3Q priority: 102 providerName: ProQuest |
| Title | Advancements in Gas Turbine Fault Detection: A Machine Learning Approach Based on the Temporal Convolutional Network–Autoencoder Model |
| URI | https://www.proquest.com/docview/3067399875 https://doaj.org/article/b6dea9cac87741288d1e56289b9142b6 |
| Volume | 14 |
| WOSCitedRecordID | wos001245603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6C5pAcRI2S9UUdhCTC4LzcnvY2q26Sg8sSNmBOTfd0jwjLrOzOevbo3X_oL7H6oWxA8eKxh4bpqaquqo-p-gpgnwQvizg1kcpqAihHPIukYjpyXaAUELqxUm7YBBsMiosLPlwY9WVrwjw9sBfcoepqI3klq4ISFXKmhU4MxeyCK57kqXJk2zHjC2DK-WCeWOoq35CXEa63_4OTPLG03Ml_Icgx9b_mj12Q6a_CSsgOsfSnWoMPplmHzwucgeuwFm7jDL8HyugfX-Cu9L_yXb8aXjX4U85wNJ8S7DXYl_Nxi6emdVVXzTGWeO5KKA0GdtVLLAO1OPYoqmmcNEiJIY48b9UYTybNTbBRWg186fjD7X05byeWCVObKdqpauMN-Ns_G538isKMhajK46yNUl3EWlKOlJHMjFapVHkVJ7KWhh0Z8n1xoWjV1VLqTBIaJLimK5ZzppnWdZ5twlIzacxXQAI3pKQ6iw1pqial1TmzgKaudGoSrjpw8CR2UQUCcjsHYywIiFgdiQUddWD_efO15914eVvP6u95iyXLdg_IhEQwIfGWCXXgm9W-sFeaDkQbfWcCfZYlxxIlI6jNC3plB3aeDESEuz4TFnRRmkfAb-s9TrMNn1KSsi9H24Gldjo3u_CxummvZtM9WO6dDYZ_9py502r4-3z47xF5TwcK |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIlyAFpADRTYQxEfkoW_mt1FQshtCY3aRDkEqZyWXe-6qhTZxXaKuHHkzv_gR_FLmLXXoUjArQeOTtbJev125o098wZgGxdeMj80nooyDFB2eORJRbXXVIGiQxj4SjXNJuhkwo6P-XQFvne1MDatsrOJjaHWRWqfkb-w1BadKdLr12cfPds1yr5d7VpotLA4NJ8_YchWvRrt4_19HIbDN7O9A891FfDS2I9qL9TM1xJZQYT0wmgVShWnfiAzaeiOwd3uM4VHAy2ljiTGPxig6JTGnGqqdRZH-LtXYDW2YO_B6nQ0nr5fPtWxKpss8NtCwCjivn0PHcSBlQMPfnN9TYeAv_mBxrkNb_5vy3ILbjgaTZIW9-uwYvINuH5BXHED1p3ZqshTp6397DZ8Tdqch6awj5zm5K2syGxRKjyPDOViXpN9UzfpaflLkpBxk2tqiJOhPSGJ02Anu-j-NSlyggyazFqBrznZK_Jzt5nxaNLm2P_48i1Z1IWVDNWmJLb93PwOvLuU9bkLvbzIzSYQjAJTRrPIN8i9MyN5FlMb-WWpDk3AVR-edzgRqVNqtw1D5gIjNgsqcQFUfdheDj5rBUr-PGzXAm45xKqKNx8U5YlwRkqogcbZpBJnh0QzZEwHBvkx44oHcagGfXhi4Sqs7cMJ4cC2hAMvy6qIiYRyyjjDv-zDVgdX4YxiJX5h9d6_v34E1w5m4yNxNJoc3oe1ENeyzc7bgl5dLswDuJqe16dV-dDtPwIfLhvbPwHMmnP3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFKFyAFpADRTYQxEfklV77ca7SAi5DYGoNMohSO1p2fWuq0qRXWyniBtH7vwbfg6_hFl7HYoE3Hrg6GSdrNdvZ97YM28AtnHhJfOp8VSYYYCyy0NPqlh7TRUoOoSBr1TTbCKeTNjREZ-uwPeuFsamVXY2sTHUukjtM_IdS23RmSK93slcWsR0OHp19tGzHaTsm9aunUYLkQPz-ROGb9XL8RDv9WNKR69n-28912HASyM_rD2qma8lMoQQqYbRikoVpX4gM2niXYM732cKjwZaSh1KjIUwWNFpHPFYx1pnUYi_ewVWkZJHtAer0_Hh9Hj5hMcqbrLAb4sCw5D79p10EAVWGjz4zQ023QL-5hMaRze6-T8v0S244eg1Sdr9sA4rJt-A6xdEFzdg3Zmzijx1mtvPbsPXpM2FaAr-yGlO3siKzBalwvPISC7mNRmauklby1-QhBw2OaiGOHnaE5I4bXayh7RAkyInyKzJrBX-mpP9Ij93mxyPJm3u_Y8v35JFXVgpUW1KYtvSze_A-0tZn7vQy4vcbALB6DBlcRb6Bjl5ZiTPothGhFmqqQm46sPzDjMidQrutpHIXGAkZwEmLgCsD9vLwWetcMmfh-1Z8C2HWLXx5oOiPBHOeAk10DibVOLskIBSxnRgkDczrngQUTXowxMLXWFtIk4IB7alHXhZVl1MJDGPGWf4l33Y6qArnLGsxC_c3vv314_gGgJavBtPDu7DGsWlbJP2tqBXlwvzAK6m5_VpVT50W5HAh8uG9k-Zbny3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+Gas+Turbine+Fault+Detection%3A+A+Machine+Learning+Approach+Based+on+the+Temporal+Convolutional+Network%E2%80%93Autoencoder+Model&rft.jtitle=Applied+sciences&rft.au=Fahmi%2C+Al-Tekreeti+Watban+Khalid&rft.au=Reza+Kashyzadeh%2C+Kazem&rft.au=Ghorbani%2C+Siamak&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fapp14114551&rft.externalDocID=A797898411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |