Development of Visual Servoing-Based Autonomous Docking Capabilities in a Heterogeneous Swarm of Marine Robots
This paper describes the design, development, and testing of both hardware and software for a visual servoing-based system that enables agents within a heterogeneous marine robotic swarm to share energy. The goal of this system is prolonging the active operational time of the swarm as a whole, allow...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 10; číslo 20; s. 7124 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.10.2020
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper describes the design, development, and testing of both hardware and software for a visual servoing-based system that enables agents within a heterogeneous marine robotic swarm to share energy. The goal of this system is prolonging the active operational time of the swarm as a whole, allowing it to perform long-term environmental monitoring and data collection missions. The implementation presented in the paper features an over-actuated autonomous surface platform docking up to four floating sensor nodes at a time and replenishing their batteries using wireless inductive charging. Mechanical solutions for each robot segment related to the docking procedure are presented, along with pertinent high-level and low-level control structures. A node featuring an extended Kalman filter and additional heuristics is used to fuse measurements from a neural network trained for object detection and a hue thresholding image processing algorithm, in order to track the docking target and achieve visual servoing. Finally, experimental results in both a controlled environment and challenging conditions on-site are presented. Once deployed, the developed system successfully enables the approach and docking of the designated target, showing its feasibility in different real-life conditions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app10207124 |