Online Optimal Control of Robotic Systems with Single Critic NN-Based Reinforcement Learning

This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)-based reinforcement learning (RL) method. To this end, we rewrite the robotic system model as a state-space form, which will facilitate the realization of optimal t...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) Vol. 2021; no. 1
Main Authors: Long, Xiaoyi, He, Zheng, Wang, Zhongyuan
Format: Journal Article
Language:English
Published: Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects:
ISSN:1076-2787, 1099-0526
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)-based reinforcement learning (RL) method. To this end, we rewrite the robotic system model as a state-space form, which will facilitate the realization of optimal tracking control synthesis. To maintain the tracking response, a steady-state control is designed, and then an adaptive optimal tracking control is used to ensure that the tracking error can achieve convergence in an optimal sense. To solve the obtained optimal control via the framework of adaptive dynamic programming (ADP), the command trajectory to be tracked and the modified tracking Hamilton-Jacobi-Bellman (HJB) are all formulated. An online RL algorithm is the developed to address the HJB equation using a critic NN with online learning algorithm. Simulation results are given to verify the effectiveness of the proposed method.
AbstractList This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)-based reinforcement learning (RL) method. To this end, we rewrite the robotic system model as a state-space form, which will facilitate the realization of optimal tracking control synthesis. To maintain the tracking response, a steady-state control is designed, and then an adaptive optimal tracking control is used to ensure that the tracking error can achieve convergence in an optimal sense. To solve the obtained optimal control via the framework of adaptive dynamic programming (ADP), the command trajectory to be tracked and the modified tracking Hamilton-Jacobi-Bellman (HJB) are all formulated. An online RL algorithm is the developed to address the HJB equation using a critic NN with online learning algorithm. Simulation results are given to verify the effectiveness of the proposed method.
Author Long, Xiaoyi
He, Zheng
Wang, Zhongyuan
Author_xml – sequence: 1
  givenname: Xiaoyi
  orcidid: 0000-0001-7810-2697
  surname: Long
  fullname: Long, Xiaoyi
  organization: School of Computer ScienceWuhan UniversityWuhan 430072Chinawhu.edu.cn
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0002-7700-0901
  surname: He
  fullname: He, Zheng
  organization: School of Computer ScienceWuhan UniversityWuhan 430072Chinawhu.edu.cn
– sequence: 3
  givenname: Zhongyuan
  orcidid: 0000-0002-9796-488X
  surname: Wang
  fullname: Wang, Zhongyuan
  organization: School of Computer ScienceWuhan UniversityWuhan 430072Chinawhu.edu.cn
BookMark eNp9kU1P3DAQhq0KpALl1h9gqUcI-CNx4mNZtRRpxUp83CpZE2cMXmXtxTZC_HuSLuJQqT15ZD_zvuN5D8leiAEJ-crZGedNcy6Y4OddJ7XU_BM54EzrijVC7c11qyrRdu1ncpjzmjGmlWwPyO9VGH1AutoWv4GRLmIoKY40OnoT-1i8pbevueAm0xdfHumtDw8j0kXy89P1dXUBGQd6gz64mCxuMBS6REhhAr-QfQdjxuP384jc__xxt_hVLVeXV4vvy8rWTJaKC9eAqxvNOwAtO1ujawYB0LUMpWQMhOgl56hd50By1Vul0fagtUKpB3lErna6Q4S12abpJ-nVRPDmz0VMDwbSNO-Ixirnhh4nG2hrx1TfcMChdnJgSgkpJq1vO61tik_PmItZx-cUpvGNqDVvay14N1GnO8qmmHNC9-HKmZmzMHMW5j2LCRd_4dYXKH5eNvjxX00nu6ZHHwZ48f-3eAPbbJqF
CitedBy_id crossref_primary_10_3389_fphy_2023_1253642
crossref_primary_10_3390_drones6090251
crossref_primary_10_1109_TASE_2025_3596555
crossref_primary_10_1155_2021_9943170
crossref_primary_10_3390_aerospace12010030
crossref_primary_10_1109_TCYB_2023_3277558
crossref_primary_10_1007_s42835_025_02351_x
Cites_doi 10.1002/rnc.3247
10.1080/00207721.2014.906681
10.1109/TNNLS.2016.2582849
10.1002/rnc.3018
10.1109/tase.2013.2296206
10.1109/37.980247
10.1080/00207179.2015.1060362
10.1016/j.jfranklin.2019.07.022
10.1016/j.automatica.2014.05.011
10.1016/j.isatra.2019.08.025
10.1016/j.automatica.2012.06.008
10.1016/j.neucom.2020.02.025
10.1109/JAS.2014.7004668
10.1016/j.automatica.2012.09.019
10.1049/iet-cta.2015.0590
10.1016/j.automatica.2012.06.096
10.1109/TSMC.2018.2861826
10.1016/j.automatica.2004.11.034
10.1109/87.553662
10.1007/978-981-13-1712-5_12
10.1002/9780470182963
10.1016/j.neunet.2009.03.008
10.1109/CDC40024.2019.9030116
10.1109/tac.2014.2317301
10.1016/j.automatica.2013.09.043
ContentType Journal Article
Copyright Copyright © 2021 Xiaoyi Long et al.
Copyright © 2021 Xiaoyi Long et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Xiaoyi Long et al.
– notice: Copyright © 2021 Xiaoyi Long et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/8839391
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Download PDF from ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
View article at DOAJ
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Na, Jing
Editor_xml – sequence: 1
  givenname: Jing
  surname: Na
  fullname: Na, Jing
ExternalDocumentID oai_doaj_org_article_c6ffdbea93a74f06b51aed4f3d066232
10_1155_2021_8839391
GrantInformation_xml – fundername: Hubei Province Technological Innovation Major Project
  grantid: 2019AAA049
– fundername: National Key Research and Development Project
  grantid: 2016YFE0202300
– fundername: National Natural Science Foundation of China
  grantid: U1903214; 62071339; 61671332; U1736206
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAMMB
AANHP
AAYXX
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7XB
8FK
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c403t-12f5af45918aa938c4ef5d2aa870e3300a22b311e9f8fa316bc69ecba996e39d3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621846900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-2787
IngestDate Fri Oct 03 12:52:52 EDT 2025
Fri Jul 25 21:01:48 EDT 2025
Sat Nov 29 03:19:30 EST 2025
Tue Nov 18 21:30:05 EST 2025
Sun Jun 02 19:16:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-12f5af45918aa938c4ef5d2aa870e3300a22b311e9f8fa316bc69ecba996e39d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7810-2697
0000-0002-7700-0901
0000-0002-9796-488X
OpenAccessLink https://doaj.org/article/c6ffdbea93a74f06b51aed4f3d066232
PQID 2491749218
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_c6ffdbea93a74f06b51aed4f3d066232
proquest_journals_2491749218
crossref_primary_10_1155_2021_8839391
crossref_citationtrail_10_1155_2021_8839391
hindawi_primary_10_1155_2021_8839391
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
Zhang H. (e_1_2_9_4_2) 2012
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
Sutton R. S. (e_1_2_9_1_2) 1998
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_3_2
Piltan F. (e_1_2_9_22_2) 2011; 5
Lewis F. L. (e_1_2_9_2_2) 2013
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – ident: e_1_2_9_29_2
  doi: 10.1002/rnc.3247
– ident: e_1_2_9_25_2
  doi: 10.1080/00207721.2014.906681
– ident: e_1_2_9_13_2
  doi: 10.1109/TNNLS.2016.2582849
– ident: e_1_2_9_11_2
  doi: 10.1002/rnc.3018
– ident: e_1_2_9_26_2
  doi: 10.1109/tase.2013.2296206
– ident: e_1_2_9_23_2
  doi: 10.1109/37.980247
– ident: e_1_2_9_6_2
  doi: 10.1080/00207179.2015.1060362
– ident: e_1_2_9_21_2
  doi: 10.1016/j.jfranklin.2019.07.022
– volume-title: Adaptive Dynamic Programming for Control: Algorithms and Stability
  year: 2012
  ident: e_1_2_9_4_2
– ident: e_1_2_9_16_2
  doi: 10.1016/j.automatica.2014.05.011
– ident: e_1_2_9_17_2
  doi: 10.1016/j.isatra.2019.08.025
– ident: e_1_2_9_8_2
  doi: 10.1016/j.automatica.2012.06.008
– ident: e_1_2_9_28_2
  doi: 10.1016/j.neucom.2020.02.025
– volume: 5
  start-page: 399
  year: 2011
  ident: e_1_2_9_22_2
  article-title: Novel robot manipulator adaptive artificial control: design a novel siso adaptive fuzzy sliding algorithm inverse dynamic like method
  publication-title: International Journal of Engineering
– volume-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
  year: 2013
  ident: e_1_2_9_2_2
– ident: e_1_2_9_18_2
  doi: 10.1109/JAS.2014.7004668
– ident: e_1_2_9_5_2
  doi: 10.1016/j.automatica.2012.09.019
– ident: e_1_2_9_19_2
  doi: 10.1049/iet-cta.2015.0590
– volume-title: Reinforcement Learning: An Introduction
  year: 1998
  ident: e_1_2_9_1_2
– ident: e_1_2_9_12_2
  doi: 10.1016/j.automatica.2012.06.096
– ident: e_1_2_9_27_2
  doi: 10.1109/TSMC.2018.2861826
– ident: e_1_2_9_9_2
  doi: 10.1016/j.automatica.2004.11.034
– ident: e_1_2_9_24_2
  doi: 10.1109/87.553662
– ident: e_1_2_9_14_2
  doi: 10.1007/978-981-13-1712-5_12
– ident: e_1_2_9_3_2
  doi: 10.1002/9780470182963
– ident: e_1_2_9_10_2
  doi: 10.1016/j.neunet.2009.03.008
– ident: e_1_2_9_7_2
  doi: 10.1109/CDC40024.2019.9030116
– ident: e_1_2_9_20_2
  doi: 10.1109/tac.2014.2317301
– ident: e_1_2_9_15_2
  doi: 10.1016/j.automatica.2013.09.043
SSID ssj0009637
Score 2.2823386
Snippet This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)-based reinforcement...
This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)‐based reinforcement...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adaptive control
Algorithms
Design
Distance learning
Dynamic programming
Machine learning
Neural networks
Optimal control
Robot control
Robotics
Tracking control
Tracking errors
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8QwEICDigc9iE9cX-SgoEiwSZpuelRRvLjKqrAHoeSpgu6KXfXvO0mzKyqix4YkpTOZzkyafoPQNrPaMGk50bLwJNdOEPDzjkS2VUYtBB1NsYl2pyN7vfIyQZLqn5_wwduF9JweSHDkPPylPilFOLnVPet9snWLiMaERKYgDBbg6Hz7t7FfPE8E9EPMex8y3_eHH2_i6F5O59FcigvxYaPIBTTh-oto9nwMVa0X0UKywxrvJlj03hK6bVih-AJM_wkmOG6OnuOBx92BHsBInKDkOGy54itwVY8ONxUOcKdDjsCNWdx1kaBq4mYhTtDVu2V0c3pyfXxGUsUEYvKMDwllXiifi5JKpUouTe68sEwpsErHeZYpxjSn1JVeesVpoU1ROqMVZD2Ol5avoKn-oO9WEebQ2BaeZcZnucpKLR1TnhWScs3b3LbQ_kialUk48VDV4rGKaYUQVZB9lWTfQjvj3s8NRuOXfkdBMeM-AX4dG2BBVMmWKlN4b7WDB1Tt3GeFFlQ5m3tuA86esxbaTmr9414bI51XyXDrCrJRyNFKCHzW_jfLOpoJl82uzAaaGr68uk00bd6GD_XLVlyoHyI83u4
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Download PDF from ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBH0HKAA9ACYqEgH4oEQlZjO87aJ8RWrbgQqgWkHpAiP0ulsimbBf4-Y8e7FULAgavjOIlmPK9Y3wDsc28dV15Qq5pIaxskRT8faGZbVcxj0DE2m5i2rTo91Sel4DaUY5Vrm5gNte9dqpEfYJqAwbNGj_Tq8itNXaPS39XSQuM6bCdSGer59uyoPZlfYXebTM3EHKehHHVzffRdypT1swOF8YHQ7BenlNn9GA5_Tknxj_PfjHT2PMd3_ved78LtEnOS16OS7MC1sNiFW283wNZhF3bKHh_I8wKifnEPPo0cUvIOzcoXXOBwPNZO-kjmve3xTlKA5ySVc8l7dIMXgYzdE0jb0hm6SE_mIdNZXS5EkgJ0PbsPH4-PPhy-oaUbA3V1JVaU8ShNrKVmyhgtlKtDlJ4bgzs-CFFVhnMrGAs6qmgEa6xrdHDWYEYVhPbiAWwt-kV4CETg4FRGXrlY1abSVgVuIm8UE1ZMhZ_Ay7U4OldQ5aljxkWXUxYpuyS8rghvAs82sy9HRMcf5s2SZDdzElg7D_TLs67s0841MXob8APNtI5VYyUzwddR-ITKF3wC-0Uv_vGsvbVGdMUoDN2VOjz6--XHcDMtNlZ69mBrtfwWnsAN9311PiyfFh3_CYDfAR4
  priority: 102
  providerName: ProQuest
Title Online Optimal Control of Robotic Systems with Single Critic NN-Based Reinforcement Learning
URI https://dx.doi.org/10.1155/2021/8839391
https://www.proquest.com/docview/2491749218
https://doaj.org/article/c6ffdbea93a74f06b51aed4f3d066232
Volume 2021
WOSCitedRecordID wos000621846900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: M2O
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3daxQxEMCDVB_0QWxVPK0lDxUUCc3HZjd59EpLQbo9ToVDhCWfWqh30jv133fysYci0hdf5iFkN2EyycyE8BuEDrm3jisviFVtJI0NkoCfDySzrSjzEHSUYhNd36vFQs9-K_WV3oQVPHBR3JFrY_Q2GC1M10TaWslM8E0UPrHLRT59aafHZGrE7baZlgm5TUs42OT45F3KlO2zIwVxgdDsD2eUmf0QBn9JyfDPy78O5-xxTh-g-zVUxG_KFHfRrbDcQ_fOt5zV9R7arVtzjV9WfvSrh-hTwYfiCzgNvsIPjstrdLyKeL6yK_gSV045Trew-B14r6uAS9ED3PdkCp7N43nIUFWX7w9x5bB-foQ-nJ68Pz4jtYgCcQ0VG8J4lCY2UjNlQInKNSFKz42BjRqEoNRwbgVjQUcVjWCtda0OzhpIhILQXjxGO8vVMjxBWEBjJyOnLtLGUG1V4CbyVjFhRSf8BL0etTm4ShhPhS6uhpxpSDkk3Q9V9xP0Ytv7WyFr_KPfNC3Mtk_iYecGsJKhWslwk5VM0GFd1hvG2h_XfKh7eT1Aggppm4ZY6On_mMozdDcNWa5x9tHO5vp7eI7uuB-by_X1Abo9Peln84NsziDfdgTkOb8AOZMfQc7PFr8AZjj4Nw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9UwGA5zCuqFuql4dGouNlAkrEmaNr0QcdOxcbYqc8IuhJrPOZin8_To8E_5G32TpmeIqFe78DZNU9I8eb-aPg9Cq8xqw6TlRMvCk1w7QcDPOxK5rTJqIejoxSbKupaHh9XbBfRj-BcmHKscbGI01LY1oUa-DmkCBM8VeKQXp19IUI0KX1cHCY0eFmP3_QxStu75zitY3zXGtl4fbG6TpCpATJ7xGaHMC-VzUVGpVMWlyZ0XlikFyHWQ3WeKMc0pdZWXXnFaaFNUzmgFmYHjleUw7iV0OeeyCDtqXJJzkt8icnRCRlUQBjthOGgvRKgx0HUJ0Qiv6C8uMCoFQPD9KaTgZ8e_uYTo57Zu_m9v6Ba6kSJq_LLfAktowU2W0fW9OR1tt4yWkgXr8JNEs_30NvrQs6ziN2A0P8MAm_2hfdx6vN_qFu7Eic4dh2I1fgdO_sThXhsC1zXZgADA4n0XuWdNLLPiRFd7dAe9v5A530WLk3bi7iHMobEUnmXGZ7nKKi0dU54VknLNS25H6Nmw_I1JROxBD-SkiQmZEE0AS5PAMkJr896nPQHJH_ptBCTN-wTa8NjQTo-aZIUaU3hvtYMJqjL3WaEFVc7mntsgBMDZCK0mHP7jWSsDAptk8rrmHH73_375Mbq6fbC32-zu1OMH6FoYuK9praDF2fSre4iumG-z4276KO4ujD5eNFh_AgOJXTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Optimal+Control+of+Robotic+Systems+with+Single+Critic+NN-Based+Reinforcement+Learning&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Xiaoyi+Long&rft.au=Zheng+He&rft.au=Zhongyuan+Wang&rft.date=2021&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8839391&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c6ffdbea93a74f06b51aed4f3d066232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon