A statistical interpretation of spectral embedding: The generalised random dot product graph

Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the latent position network model known as the random dot product graph, to allow interpretation of those vector representations as latent position es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Jg. 84; H. 4; S. 1446 - 1473
Hauptverfasser: Rubin‐Delanchy, Patrick, Cape, Joshua, Tang, Minh, Priebe, Carey E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Oxford University Press 01.09.2022
Schlagworte:
ISSN:1369-7412, 1467-9868
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the latent position network model known as the random dot product graph, to allow interpretation of those vector representations as latent position estimates. The generalisation is needed to model heterophilic connectivity (e.g. ‘opposites attract’) and to cope with negative eigenvalues more generally. We show that, whether the adjacency or normalised Laplacian matrix is used, spectral embedding produces uniformly consistent latent position estimates with asymptotically Gaussian error (up to identifiability). The standard and mixed membership stochastic block models are special cases in which the latent positions take only K distinct vector values, representing communities, or live in the (K − 1)‐simplex with those vertices respectively. Under the stochastic block model, our theory suggests spectral clustering using a Gaussian mixture model (rather than K‐means) and, under mixed membership, fitting the minimum volume enclosing simplex, existing recommendations previously only supported under non‐negative‐definite assumptions. Empirical improvements in link prediction (over the random dot product graph), and the potential to uncover richer latent structure (than posited under the standard or mixed membership stochastic block models) are demonstrated in a cyber‐security example.
AbstractList Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the latent position network model known as the random dot product graph, to allow interpretation of those vector representations as latent position estimates. The generalisation is needed to model heterophilic connectivity (e.g. ‘opposites attract’) and to cope with negative eigenvalues more generally. We show that, whether the adjacency or normalised Laplacian matrix is used, spectral embedding produces uniformly consistent latent position estimates with asymptotically Gaussian error (up to identifiability). The standard and mixed membership stochastic block models are special cases in which the latent positions take only K distinct vector values, representing communities, or live in the (K − 1)‐simplex with those vertices respectively. Under the stochastic block model, our theory suggests spectral clustering using a Gaussian mixture model (rather than K‐means) and, under mixed membership, fitting the minimum volume enclosing simplex, existing recommendations previously only supported under non‐negative‐definite assumptions. Empirical improvements in link prediction (over the random dot product graph), and the potential to uncover richer latent structure (than posited under the standard or mixed membership stochastic block models) are demonstrated in a cyber‐security example.
Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the latent position network model known as the random dot product graph, to allow interpretation of those vector representations as latent position estimates. The generalisation is needed to model heterophilic connectivity (e.g. ‘opposites attract’) and to cope with negative eigenvalues more generally. We show that, whether the adjacency or normalised Laplacian matrix is used, spectral embedding produces uniformly consistent latent position estimates with asymptotically Gaussian error (up to identifiability). The standard and mixed membership stochastic block models are special cases in which the latent positions take only K distinct vector values, representing communities, or live in the (K − 1)‐simplex with those vertices respectively. Under the stochastic block model, our theory suggests spectral clustering using a Gaussian mixture model (rather than K‐means) and, under mixed membership, fitting the minimum volume enclosing simplex, existing recommendations previously only supported under non‐negative‐definite assumptions. Empirical improvements in link prediction (over the random dot product graph), and the potential to uncover richer latent structure (than posited under the standard or mixed membership stochastic block models) are demonstrated in a cyber‐security example.
Author Rubin‐Delanchy, Patrick
Priebe, Carey E.
Cape, Joshua
Tang, Minh
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0003-0577-0795
  surname: Rubin‐Delanchy
  fullname: Rubin‐Delanchy, Patrick
  email: patrick.rubin-delanchy@bristol.ac.uk
  organization: University of Bristol
– sequence: 2
  givenname: Joshua
  surname: Cape
  fullname: Cape, Joshua
  organization: University of Pittsburgh
– sequence: 3
  givenname: Minh
  surname: Tang
  fullname: Tang, Minh
  organization: North Carolina State University
– sequence: 4
  givenname: Carey E.
  surname: Priebe
  fullname: Priebe, Carey E.
  organization: Johns Hopkins University
BookMark eNp9kF1LBCEUhiUK-rzpFwjdRDClM-6o3W3RFywEfdwF4jjHXZdZnXSW6N_nNl1FdG6U4_MeD88-2vbBA0LHlJzTXBcxpeaclhMit9AeZTUvpKjFdr5XtSw4o-Uu2k9pSXLVvNpDb1OcBj24NDijO-z8ALGPsGkFj4PFqQczxPwEqwba1vn5JX5ZAJ6Dh9x2CVoctW_DCrdhwH0M7doMeB51vzhEO1Z3CY5-zgP0envzcn1fzB7vHq6ns8IwUsmCWW3kxAohGqtFU9LSggTLNeM1h6psxKQ0wEAwKoxsQBPImzDWCG5ry0R1gE7Hufn39zWkQa1cMtB12kNYJ1VmCYRxTmRGT36hy7COPm-nSk5lVREiNtTZSJkYUopgVR_dSsdPRYnaiFYb0epbdIbJL9i40V_25rq_I3SMfLgOPv8Zrp6en6_GzBf_BJQ9
CitedBy_id crossref_primary_10_1016_j_ins_2024_120912
crossref_primary_10_1080_10618600_2024_2432974
crossref_primary_10_1080_01621459_2025_2516201
crossref_primary_10_1140_epjds_s13688_025_00537_x
crossref_primary_10_1080_01621459_2023_2225239
crossref_primary_10_1109_TNSE_2023_3337600
crossref_primary_10_1016_j_csda_2024_108091
crossref_primary_10_1080_01621459_2025_2455202
crossref_primary_10_1016_j_csda_2024_108070
crossref_primary_10_1093_jrsssb_qkae053
crossref_primary_10_1214_25_AOS2520
crossref_primary_10_1080_10618600_2025_2510494
crossref_primary_10_1109_TNSE_2024_3374102
crossref_primary_10_1007_s41109_023_00607_x
crossref_primary_10_1214_25_AOS2506
crossref_primary_10_1080_10618600_2025_2542381
crossref_primary_10_1007_s13278_025_01419_w
crossref_primary_10_1007_s41109_023_00598_9
crossref_primary_10_1080_10618600_2024_2336147
crossref_primary_10_1109_TIT_2025_3588786
crossref_primary_10_1109_TNSE_2022_3177708
crossref_primary_10_1007_s11222_025_10679_7
crossref_primary_10_1093_biomet_asac032
crossref_primary_10_1109_TPAMI_2023_3327631
crossref_primary_10_1007_s41109_022_00528_1
crossref_primary_10_1093_jrsssb_qkad032
crossref_primary_10_1093_biomet_asad061
crossref_primary_10_1109_TIT_2022_3159085
crossref_primary_10_1080_01621459_2025_2479242
crossref_primary_10_1016_j_jspi_2025_106313
crossref_primary_10_1109_TSIPN_2022_3149098
crossref_primary_10_1002_wics_1651
crossref_primary_10_30812_matrik_v24i3_4727
crossref_primary_10_1080_10618600_2025_2540356
crossref_primary_10_1109_TIT_2024_3471953
Cites_doi 10.1147/rd.175.0420
10.1214/18-AOS1752
10.1109/34.868688
10.1109/TIT.1982.1056489
10.1109/TSP.2015.2508778
10.1093/oso/9780198805090.001.0001
10.1016/0378-8733(83)90021-7
10.1073/pnas.1814462116
10.1007/s13171-015-0071-x
10.1016/j.csda.2005.09.010
10.37236/3576
10.1007/s003579900058
10.1016/0047-259X(81)90099-3
10.21136/CMJ.1973.101168
10.1162/artl_a_00001
10.1016/S0378-8733(99)00019-2
10.1214/20-AOS1976
10.1007/s11222-007-9033-z
10.1214/11-AOS887
10.1198/016214502388618906
10.1214/17-AOS1623
10.1214/20-STS787
10.1080/01621459.2020.1751645
10.1080/01621459.2012.699795
10.1093/biomet/asv008
10.1007/978-1-4612-0653-8
10.1142/9781786340757_0002
10.1145/3344548
10.1214/14-AOS1285
10.1198/016214502760047131
10.1109/TNSE.2016.2634322
10.1214/14-AOS1274
10.1109/ISI.2016.7745478
10.1080/00401706.2013.822830
10.1093/biomet/asy070
10.1103/PhysRevE.83.016107
10.1214/14-EJS978
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Statistical Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Statistical Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12509
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 1473
ExternalDocumentID 10_1111_rssb_12509
RSSB12509
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
24P
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAPXW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABPVW
ABWST
ABXSQ
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AHQJS
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABEJV
ABPQP
AJNCP
AMVHM
CITATION
O8X
OJZSN
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c4039-4fac95f888bfa8b212fe9ef7a4767e32b852ce4e8418c9bea0eedd44b87f6f483
IEDL.DBID 24P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805335000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:09:38 EDT 2025
Sat Nov 08 17:35:58 EST 2025
Tue Nov 18 21:55:54 EST 2025
Sat Nov 29 05:52:12 EST 2025
Wed Jan 22 16:23:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4039-4fac95f888bfa8b212fe9ef7a4767e32b852ce4e8418c9bea0eedd44b87f6f483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0577-0795
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12509
PQID 2719330089
PQPubID 39359
PageCount 28
ParticipantIDs proquest_miscellaneous_2986047709
proquest_journals_2719330089
crossref_primary_10_1111_rssb_12509
crossref_citationtrail_10_1111_rssb_12509
wiley_primary_10_1111_rssb_12509_RSSB12509
PublicationCentury 2000
PublicationDate September 2022
2022-09-01
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2010; 16
2013a; 55
2017; 4
2016b
2002; 97
2016a
2019; 52
2015; 102
1973; 17
2013; 20
1983; 5
2008; 9
1979
2016; 78
2018; 46
2021; 36
1982; 28
2000
1999; 16
2021; 116
2019b; 47
2015; 43
2019; 116
2014; 8
2007; 17
2021; 49
2006; 51
2012
2000; 21
2000; 22
2013; 41
2011; 83
1997
2008
2007
2006
2013b
2011; 39
2012; 107
2018; 19
2019a; 106
2022
2021
2020
1973; 23
2016; 64
2018
2017
2016
2017; 18
2015
2014
2013
1956; 1
1981; 11
Lin (2023030906301643100_) 2016; 64
Tang (2023030906301643100_) 2018; 46
Tang (2023030906301643100_) 2017
Neil (2023030906301643100_) 2013
Lei (2023030906301643100_) 2015; 43
Rubin-Delanchy (2023030906301643100_) 2016
Fiedler (2023030906301643100_) 1973; 23
Rubin-Delanchy (2023030906301643100_) 2017
Abbe (2023030906301643100_) 2017; 18
Bhatia (2023030906301643100_) 1997
Von Luxburg (2023030906301643100_) 2007; 17
Whiteley (2023030906301643100_) 2021
Young (2023030906301643100_) 2007
Agterberg (2023030906301643100_) 2020
Karrer (2023030906301643100_) 2011; 83
Mao (2023030906301643100_) 2021; 116
Lyzinski (2023030906301643100_) 2014; 8
Neil (2023030906301643100_) 2013; 55
Donath (2023030906301643100_) 1973; 17
Newman (2023030906301643100_) 2018
Rohe (2023030906301643100_) 2011; 39
Passino (2023030906301643100_) 2022
Fraley (2023030906301643100_) 2002; 97
Athreya (2023030906301643100_) 2017; 18
Steinhaus (2023030906301643100_) 1956; 1
Lu (2023030906301643100_) 2013; 20
Lyzinski (2023030906301643100_) 2017; 4
Lovász (2023030906301643100_) 2012
Holland (2023030906301643100_) 1983; 5
Aldous (2023030906301643100_) 1981; 11
Borgatti (2023030906301643100_) 2000; 21
Lloyd (2023030906301643100_) 1982; 28
Mara (2023030906301643100_) 2020
Shi (2023030906301643100_) 2000; 22
Fraley (2023030906301643100_) 1999; 16
Lei (2023030906301643100_) 2021; 49
Maaten (2023030906301643100_) 2008; 9
Yu (2023030906301643100_) 2015; 102
Sussman (2023030906301643100_) 2012; 107
Khor (2023030906301643100_) 2010; 16
Cape (2023030906301643100_) 2019; 47
Hoff (2023030906301643100_) 2008
Hewlett Packard Enterprise research study (2023030906301643100_) 2015
Zhu (2023030906301643100_) 2006; 51
Erd˝s (2023030906301643100_) 2013; 41
Kent (2023030906301643100_) 2016
Rohe (2023030906301643100_) 2018; 19
Qin (2023030906301643100_) 2013
Sarkar (2023030906301643100_) 2015; 43
Nickel (2023030906301643100_) 2006
Rubin-Delanchy (2023030906301643100_) 2020
Evans (2023030906301643100_) 2014
Airoldi (2023030906301643100_) 2008; 9
Gallier (2023030906301643100_) 2000
Cape (2023030906301643100_) 2019; 106
Hoover (2023030906301643100_) 1979
Athreya (2023030906301643100_) 2021; 36
Li (2023030906301643100_) 2014
Trosset (2023030906301643100_) 2020
Labatut (2023030906301643100_) 2019; 52
Athreya (2023030906301643100_) 2016; 78
Priebe (2023030906301643100_) 2019; 116
Heard (2023030906301643100_) 2016
Hoff (2023030906301643100_) 2002; 97
References_xml – volume: 106
  start-page: 243
  issue: 1
  year: 2019a
  end-page: 250
  article-title: Signal‐plus‐noise matrix models: eigenvector deviations and fluctuations
  publication-title: Biometrika
– year: 2016b
– volume: 21
  start-page: 375
  issue: 4
  year: 2000
  end-page: 395
  article-title: Models of core/periphery structures
  publication-title: Social Networks
– volume: 97
  start-page: 1090
  issue: 460
  year: 2002
  end-page: 1098
  article-title: Latent space approaches to social network analysis
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 581
  issue: 4
  year: 1981
  end-page: 598
  article-title: Representations for partially exchangeable arrays of random variables
  publication-title: Journal of Multivariate Analysis
– volume: 1
  start-page: 801
  issue: 804
  year: 1956
  article-title: Sur la division des corp matériels en parties
  publication-title: Bulletin L'Académie Polonaise des Sciences
– volume: 4
  start-page: 13
  issue: 1
  year: 2017
  end-page: 26
  article-title: Community detection and classification in hierarchical stochastic blockmodels
  publication-title: IEEE Transactions on Network Science and Engineering
– year: 2021
– volume: 49
  start-page: 745
  issue: 2
  year: 2021
  end-page: 768
  article-title: Network representation using graph root distributions
  publication-title: The Annals of Statistics
– volume: 51
  start-page: 918
  issue: 2
  year: 2006
  end-page: 930
  article-title: Automatic dimensionality selection from the scree plot via the use of profile likelihood
  publication-title: Computational Statistics & Data Analysis
– start-page: 11687
  year: 2020
  end-page: 11699
– volume: 52
  start-page: 1
  issue: 5
  year: 2019
  end-page: 40
  article-title: Extraction and analysis of fictional character networks: a survey
  publication-title: ACM Computing Surveys (CSUR)
– volume: 83
  start-page: 16107
  issue: 1
  year: 2011
  article-title: Stochastic blockmodels and community structure in networks
  publication-title: Physical Review E
– year: 1979
– year: 2018
– year: 2014
– volume: 46
  start-page: 2360
  issue: 5
  year: 2018
  end-page: 2415
  article-title: Limit theorems for eigenvectors of the normalized Laplacian for random graphs
  publication-title: The Annals of Statistics
– volume: 16
  start-page: 225
  issue: 3
  year: 2010
  end-page: 232
  article-title: Concurrency and network disassortativity
  publication-title: Artificial Life
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  end-page: 2605
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– volume: 18
  start-page: 8393
  issue: 1
  year: 2017
  end-page: 8484
  article-title: Statistical inference on random dot product graphs: a survey
  publication-title: Journal of Machine Learning Research
– volume: 20
  issue: 4
  year: 2013
  end-page: 27 45
  article-title: Spectra of edge‐independent random graphs
  publication-title: Electronic Journal of Combinatorics
– volume: 116
  start-page: 5995
  issue: 13
  year: 2019
  end-page: 6000
  article-title: On a two‐truths phenomenon in spectral graph clustering
  publication-title: Proceedings of the National Academy of Sciences
– volume: 47
  start-page: 2405
  issue: 5
  year: 2019b
  end-page: 2439
  article-title: The two‐to‐infinity norm and singular subspace geometry with applications to high‐dimensional statistics
  publication-title: The Annals of Statistics
– volume: 18
  start-page: 6446
  issue: 1
  year: 2017
  end-page: 6531
  article-title: Community detection and stochastic block models: recent developments
  publication-title: Journal of Machine Learning Research
– year: 2008
– year: 1997
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– start-page: 1
  year: 2022
  end-page: 12
  article-title: Spectral clustering on spherical coordinates under the degree‐corrected stochastic blockmodel
  publication-title: Technometrics
– volume: 43
  start-page: 215
  issue: 1
  year: 2015
  end-page: 237
  article-title: Consistency of spectral clustering in stochastic block models
  publication-title: The Annals of Statistics
– volume: 102
  start-page: 315
  issue: 2
  year: 2015
  end-page: 323
  article-title: A useful variant of the Davis‐Kahan theorem for statisticians
  publication-title: Biometrika
– year: 2015
– volume: 16
  start-page: 297
  issue: 2
  year: 1999
  end-page: 306
  article-title: MCLUST: software for model‐based cluster analysis
  publication-title: Journal of Classification
– volume: 41
  start-page: 2279
  year: 2013
  end-page: 2375
  article-title: Spectral statistics of Erd˝s‐Rényi' graphs I: local semicircle law
  publication-title: The Annals of Probability
– volume: 116
  start-page: 1928
  issue: 536
  year: 2021
  end-page: 1940
  article-title: Estimating mixed memberships with sharp eigenvector deviations
  publication-title: Journal of the American Statistical Association
– volume: 39
  start-page: 1878
  issue: 4
  year: 2011
  end-page: 1915
  article-title: Spectral clustering and the high‐dimensional stochastic blockmodel
  publication-title: The Annals of Statistics
– volume: 107
  start-page: 1119
  issue: 499
  year: 2012
  end-page: 1128
  article-title: A consistent adjacency spectral embedding for stochastic blockmodel graphs
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 68
  issue: 1
  year: 2021
  end-page: 88
  article-title: On estimation and inference in latent structure random graphs
  publication-title: Statistical Science
– year: 2007
– start-page: 37
  year: 2016a
  end-page: 65
– volume: 9
  start-page: 1981
  issue: Sep
  year: 2008
  end-page: 2014
  article-title: Mixed membership stochastic blockmodels
  publication-title: Journal of Machine Learning Research
– year: 2000
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2016
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  end-page: 631
  article-title: Model‐based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American Statistical Association
– volume: 5
  start-page: 109
  issue: 2
  year: 1983
  end-page: 137
  article-title: Stochastic blockmodels: first steps
  publication-title: Social Networks
– volume: 64
  start-page: 1946
  issue: 8
  year: 2016
  end-page: 1961
  article-title: A fast hyperplane‐based minimumvolume enclosing simplex algorithm for blind hyperspectral unmixing
  publication-title: IEEE Transactions on Signal Processing
– year: 2012
– year: 2013b
– volume: 43
  start-page: 962
  issue: 3
  year: 2015
  end-page: 990
  article-title: Role of normalization in spectral clustering for stochastic blockmodels
  publication-title: The Annals of Statistics
– volume: 17
  start-page: 420
  issue: 5
  year: 1973
  end-page: 425
  article-title: Lower bounds for the partitioning of graphs
  publication-title: IBM Journal of Research and Development
– volume: 8
  start-page: 2905
  issue: 2
  year: 2014
  end-page: 2922
  article-title: Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding
  publication-title: Electronic Journal of Statistics
– volume: 19
  start-page: 3040
  issue: 1
  year: 2018
  end-page: 3052
  article-title: A note on quickly sampling a sparse matrix with low rank expectation
  publication-title: Journal of Machine Learning Research
– year: 2006
– year: 2020
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  end-page: 137
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
– volume: 23
  start-page: 298
  issue: 2
  year: 1973
  end-page: 305
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslovak Mathematical Journal
– year: 2017
– volume: 78
  start-page: 1
  issue: 1
  year: 2016
  end-page: 18
  article-title: A limit theorem for scaled eigenvectors of random dot product graphs
  publication-title: Sankhya A
– volume: 55
  start-page: 403
  issue: 4
  year: 2013a
  end-page: 414
  article-title: Scan statistics for the online detection of locally anomalous subgraphs
  publication-title: Technometrics
– year: 2013
– volume: 17
  start-page: 420
  issue: 5
  year: 1973
  ident: 2023030906301643100_
  article-title: Lower bounds for the partitioning of graphs
  publication-title: IBM Journal of Research and Development
  doi: 10.1147/rd.175.0420
– volume: 47
  start-page: 2405
  issue: 5
  year: 2019
  ident: 2023030906301643100_
  article-title: The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics
  publication-title: The Annals of Statistics
  doi: 10.1214/18-AOS1752
– volume: 18
  start-page: 6446
  issue: 1
  year: 2017
  ident: 2023030906301643100_
  article-title: Community detection and stochastic block models: recent developments
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 2023030906301643100_
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– volume-title: Matrix factorisation and the interpretation of geodesic distance
  year: 2021
  ident: 2023030906301643100_
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 2023030906301643100_
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 64
  start-page: 1946
  issue: 8
  year: 2016
  ident: 2023030906301643100_
  article-title: A fast hyperplane-based minimumvolume enclosing simplex algorithm for blind hyperspectral unmixing
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2508778
– volume-title: Learning 1-dimensional submanifolds for subsequent inference on random dot product graphs
  year: 2020
  ident: 2023030906301643100_
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 2023030906301643100_
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume-title: Internet of things: research study
  year: 2015
  ident: 2023030906301643100_
– volume-title: Networks: an introduction
  year: 2018
  ident: 2023030906301643100_
  doi: 10.1093/oso/9780198805090.001.0001
– start-page: 11687
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: 2023030906301643100_
– volume: 5
  start-page: 109
  issue: 2
  year: 1983
  ident: 2023030906301643100_
  article-title: Stochastic blockmodels: first steps
  publication-title: Social Networks
  doi: 10.1016/0378-8733(83)90021-7
– volume: 18
  start-page: 8393
  issue: 1
  year: 2017
  ident: 2023030906301643100_
  article-title: Statistical inference on random dot product graphs: a survey
  publication-title: Journal of Machine Learning Research
– volume: 116
  start-page: 5995
  issue: 13
  year: 2019
  ident: 2023030906301643100_
  article-title: On a two-truths phenomenon in spectral graph clustering
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1814462116
– volume: 78
  start-page: 1
  issue: 1
  year: 2016
  ident: 2023030906301643100_
  article-title: A limit theorem for scaled eigenvectors of random dot product graphs
  publication-title: Sankhya A
  doi: 10.1007/s13171-015-0071-x
– volume-title: Disassortivity of computer networks
  year: 2016
  ident: 2023030906301643100_
– volume-title: CSNE: conditional signed network embedding
  year: 2020
  ident: 2023030906301643100_
– volume-title: Cybersecurity data sources for dynamic network research
  year: 2016
  ident: 2023030906301643100_
– volume: 51
  start-page: 918
  issue: 2
  year: 2006
  ident: 2023030906301643100_
  article-title: Automatic dimensionality selection from the scree plot via the use of profile likelihood
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2005.09.010
– volume-title: On two distinct sources of nonidentifiability in latent position random graph models
  year: 2020
  ident: 2023030906301643100_
– volume-title: Curves and surfaces in geometric modeling: theory and algorithms
  year: 2000
  ident: 2023030906301643100_
– volume-title: International workshop on algorithms and models for the web-graph
  year: 2007
  ident: 2023030906301643100_
– volume: 20
  issue: 4
  year: 2013
  ident: 2023030906301643100_
  article-title: Spectra of edge-independent random graphs
  publication-title: Electronic Journal of Combinatorics
  doi: 10.37236/3576
– volume: 1
  start-page: 801
  issue: 804
  year: 1956
  ident: 2023030906301643100_
  article-title: Sur la division des corp matériels en parties
  publication-title: Bulletin L'Académie Polonaise des Sciences
– volume: 16
  start-page: 297
  issue: 2
  year: 1999
  ident: 2023030906301643100_
  article-title: MCLUST: software for model-based cluster analysis
  publication-title: Journal of Classification
  doi: 10.1007/s003579900058
– volume-title: Large networks and graph limits. American Mathematical Society Colloquium Publications
  year: 2012
  ident: 2023030906301643100_
– volume-title: Consistency of adjacency spectral embedding for the mixed membership stochastic blockmodel
  year: 2017
  ident: 2023030906301643100_
– volume: 11
  start-page: 581
  issue: 4
  year: 1981
  ident: 2023030906301643100_
  article-title: Representations for partially exchangeable arrays of random variables
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/0047-259X(81)90099-3
– volume-title: Identifying top sellers in underground economy using deep learningbased sentiment analysis
  year: 2014
  ident: 2023030906301643100_
– volume: 23
  start-page: 298
  issue: 2
  year: 1973
  ident: 2023030906301643100_
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslovak Mathematical Journal
  doi: 10.21136/CMJ.1973.101168
– volume: 16
  start-page: 225
  issue: 3
  year: 2010
  ident: 2023030906301643100_
  article-title: Concurrency and network disassortativity
  publication-title: Artificial Life
  doi: 10.1162/artl_a_00001
– volume: 21
  start-page: 375
  issue: 4
  year: 2000
  ident: 2023030906301643100_
  article-title: Models of core/periphery structures
  publication-title: Social Networks
  doi: 10.1016/S0378-8733(99)00019-2
– volume: 49
  start-page: 745
  issue: 2
  year: 2021
  ident: 2023030906301643100_
  article-title: Network representation using graph root distributions
  publication-title: The Annals of Statistics
  doi: 10.1214/20-AOS1976
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 2023030906301643100_
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 39
  start-page: 1878
  issue: 4
  year: 2011
  ident: 2023030906301643100_
  article-title: Spectral clustering and the high-dimensional stochastic blockmodel
  publication-title: The Annals of Statistics
  doi: 10.1214/11-AOS887
– volume-title: PhD thesis, Johns Hopkins University
  year: 2006
  ident: 2023030906301643100_
– volume-title: Asymptotically efficient estimators for stochastic blockmodels: the naive MLE, the rank-constrained MLE, and the spectral
  year: 2017
  ident: 2023030906301643100_
– volume: 97
  start-page: 1090
  issue: 460
  year: 2002
  ident: 2023030906301643100_
  article-title: Latent space approaches to social network analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502388618906
– volume: 46
  start-page: 2360
  issue: 5
  year: 2018
  ident: 2023030906301643100_
  article-title: Limit theorems for eigenvectors of the normalized Laplacian for random graphs
  publication-title: The Annals of Statistics
  doi: 10.1214/17-AOS1623
– volume: 36
  start-page: 68
  issue: 1
  year: 2021
  ident: 2023030906301643100_
  article-title: On estimation and inference in latent structure random graphs
  publication-title: Statistical Science
  doi: 10.1214/20-STS787
– volume: 116
  start-page: 1928
  issue: 536
  year: 2021
  ident: 2023030906301643100_
  article-title: Estimating mixed memberships with sharp eigenvector deviations
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2020.1751645
– volume: 107
  start-page: 1119
  issue: 499
  year: 2012
  ident: 2023030906301643100_
  article-title: A consistent adjacency spectral embedding for stochastic blockmodel graphs
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.699795
– volume: 102
  start-page: 315
  issue: 2
  year: 2015
  ident: 2023030906301643100_
  article-title: A useful variant of the Davis-Kahan theorem for statisticians
  publication-title: Biometrika
  doi: 10.1093/biomet/asv008
– volume-title: Matrix analysis
  year: 1997
  ident: 2023030906301643100_
  doi: 10.1007/978-1-4612-0653-8
– start-page: 37
  volume-title: Dynamic networks and cyber-security
  year: 2016
  ident: 2023030906301643100_
  doi: 10.1142/9781786340757_0002
– volume-title: Potterverse
  year: 2014
  ident: 2023030906301643100_
– volume: 41
  start-page: 2279
  year: 2013
  ident: 2023030906301643100_
  article-title: Spectral statistics of Erd˝s-Rényi' graphs I: local semicircle law
  publication-title: The Annals of Probability
– volume: 52
  start-page: 1
  issue: 5
  year: 2019
  ident: 2023030906301643100_
  article-title: Extraction and analysis of fictional character networks: a survey
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3344548
– volume-title: Towards improved detection of attackers in computer networks: new edges, fast updating, and host agents
  year: 2013
  ident: 2023030906301643100_
– volume: 43
  start-page: 962
  issue: 3
  year: 2015
  ident: 2023030906301643100_
  article-title: Role of normalization in spectral clustering for stochastic blockmodels
  publication-title: The Annals of Statistics
  doi: 10.1214/14-AOS1285
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  ident: 2023030906301643100_
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502760047131
– volume: 4
  start-page: 13
  issue: 1
  year: 2017
  ident: 2023030906301643100_
  article-title: Community detection and classification in hierarchical stochastic blockmodels
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2016.2634322
– volume: 43
  start-page: 215
  issue: 1
  year: 2015
  ident: 2023030906301643100_
  article-title: Consistency of spectral clustering in stochastic block models
  publication-title: The Annals of Statistics
  doi: 10.1214/14-AOS1274
– volume-title: Princeton, NJ: Institute for Advanced Study, Preprint
  year: 1979
  ident: 2023030906301643100_
– volume-title: Network-wide anomaly detection via the Dirichlet process
  year: 2016
  ident: 2023030906301643100_
  doi: 10.1109/ISI.2016.7745478
– volume: 55
  start-page: 403
  issue: 4
  year: 2013
  ident: 2023030906301643100_
  article-title: Scan statistics for the online detection of locally anomalous subgraphs
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.822830
– volume: 9
  start-page: 1981
  issue: Sep
  year: 2008
  ident: 2023030906301643100_
  article-title: Mixed membership stochastic blockmodels
  publication-title: Journal of Machine Learning Research
– volume: 106
  start-page: 243
  issue: 1
  year: 2019
  ident: 2023030906301643100_
  article-title: Signal-plus-noise matrix models: eigenvector deviations and fluctuations
  publication-title: Biometrika
  doi: 10.1093/biomet/asy070
– volume: 83
  start-page: 16107
  issue: 1
  year: 2011
  ident: 2023030906301643100_
  article-title: Stochastic blockmodels and community structure in networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.83.016107
– volume-title: Advances in neural information processing systems
  year: 2013
  ident: 2023030906301643100_
– volume-title: Advances in neural information processing systems
  year: 2008
  ident: 2023030906301643100_
– start-page: 1
  year: 2022
  ident: 2023030906301643100_
  article-title: Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel
  publication-title: Technometrics
– volume: 8
  start-page: 2905
  issue: 2
  year: 2014
  ident: 2023030906301643100_
  article-title: Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/14-EJS978
– volume: 19
  start-page: 3040
  issue: 1
  year: 2018
  ident: 2023030906301643100_
  article-title: A note on quickly sampling a sparse matrix with low rank expectation
  publication-title: Journal of Machine Learning Research
SSID ssj0000673
Score 2.641503
Snippet Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1446
SubjectTerms Apexes
Clustering
computer security
Eigenvalues
Embedding
Estimates
graph embedding
Internet
Membership
networks
prediction
Probabilistic models
Regression analysis
Representations
spectral clustering
Statistical methods
Statistics
stochastic block model
Stochastic models
Title A statistical interpretation of spectral embedding: The generalised random dot product graph
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12509
https://www.proquest.com/docview/2719330089
https://www.proquest.com/docview/2986047709
Volume 84
WOSCitedRecordID wos000805335000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6l9dCLb7FaS0QvCiu7m7TJipf6KB5KKa2VHoRlk02kYB90rb_fSXa3DxBBvO2S2QeZmXwzSeYLQpeSeB6hdepA_iMcSplwhK4LU_oE8b0nhW9PiXhts06HD4dBt4Du8lqYlB9iOeFmPMOO18bBI5GsOfk8ScQNwLOp3ivBB5mxaZ9218dhklZdBQ7gpp-Rk5p9PKtnN-FoFWOuR6oWalo7__vJXbSdhZi4mdrEHiqoyT4qm6gyJWU-QG9NnOS3IDna2HiIpxrb-ss5NKmxULGBt1sMBoXfU5LqUaJiDCAXT8cYslo8S2ljsWW_PkSD1tPLw7OTHbPgSGrXgXUkg7qGVFjoiAvAMq0CpVlEWYMp4gte96WiilOPy0CoyAVcjSkVnOmGppwcoeJkOlHHCJPYkyR2AyWESyURoGyzzuNFPlFUB24FXeW9HcqMg9wchfER5rmI6bDQdlgFXSxlZynzxo9S1VxpYeZ9Segzz8zTuByaz5fN4DdmMSSaqOkCZALecClj5hXXVoW_fCXs9fv39urkL8KnqOybagm7Ja2Kip_zhTpDW_ILFDyvWWutodJjrzVofwPo9PA4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA7SCvriLVarRvRFYWV3kzZZ3-pRKtYiPaQPwrLJJlKwB13r73eS3V4ggvi2S2YPMpl8M8nMF4QuJPE8QkvUgfhHOJQy4QhdEqb0Cfx7TwrfnhLxWmeNBu92g5csN8fUwqT8ELMFN2MZdr42Bm4WpBesfJwk4hrw2ZTv5WmZMJ5D-ftmtVNfnIpJWngVOACdfsZPalJ55k8vI9LczVx0Vi3aVDf_-Z9baCNzM3ElHRfbaEUNdtC68SxTYuZd9FbByfQWJHtLyYd4qLGtwRxDk-oLFRuIu8EwqPB7SlTdS1SMAejiYR9DZItHKXUstgzYe6hTfWjf1ZzsqAVHUrsXrCMZlDSEw0JHXACeaRUozSLKykwRX_CSLxVVnHpcBkJFLmBrTKngTJc15WQf5QbDgTpAmMSeJLEbKCFcKokAhZu9Hi_yiaI6cAvoctrdocx4yM1xGB_hNB4xHRbaDiug85nsKGXf-FGqONVamFlgEvrMM2s1Lofms1kz2I7ZEIkGajgBmYCXXcqYecWV1eEvXwmbrdatvTr8i_ApWqu1n-th_bHxdITWfVM9YVPUiij3OZ6oY7Qqv0DZ45Ns8H4DAeL0Fw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfbitzg_I_qiUGmbdEl882sojjGmkz0IpUkTGeg2WvXv95J2cwMRxLeWXD_I5fK7S-5-QehYkSAgNKIexD_So5RJT5pI2tIn8O8DJUN3SsRTk7VavNcT7TI3x9bCFPwQkwU3axluvrYGrkepmbLyLM_lGeCzLd-bp5GIaAXNX3ca3eb0VEyKwivhAXSGJT-pTeX5fnoWkb7dzGln1aFNY_mf_7mClko3E18U42IVzenBGqpaz7IgZl5Hzxc4H9-CZH8m-RAPDXY1mBk06TepUwtx5xgGFX4piKr7uU4xAF06fMMQ2eJRQR2LHQP2Buo2bh6vbr3yqAVPUbcXbBIlIgPhsDQJl4BnRgttWEJZnWkSSh6FSlPNacCVkDrxAVtTSiVnpm4oJ5uoMhgO9BbCJA0USX2hpfSpIhIUbvd6giQkmhrh19DJuLtjVfKQ2-MwXuNxPGI7LHYdVkNHE9lRwb7xo9TuWGtxaYF5HLLArtX4HJoPJ81gO3ZDJBno4QfICF73KWP2FadOh798Je48PFy6q-2_CB-gxfZ1I27ete53UDW0xRMuQ20XVd6zD72HFtQn6DrbL8fuF59E85I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+interpretation+of+spectral+embedding%3A+The+generalised+random+dot+product+graph&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Rubin%E2%80%90Delanchy%2C+Patrick&rft.au=Cape%2C+Joshua&rft.au=Tang%2C+Minh&rft.au=Priebe%2C+Carey+E.&rft.date=2022-09-01&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=84&rft.issue=4&rft.spage=1446&rft.epage=1473&rft_id=info:doi/10.1111%2Frssb.12509&rft.externalDBID=10.1111%252Frssb.12509&rft.externalDocID=RSSB12509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon