A multiobjective discrete combination optimization method for dynamics design of engineering structures

This paper presents a new multiobjective discrete optimization method for the engineering design of dynamic problems. A discrete combinatorial optimization problem is solved using a particle swarm optimization algorithm coupled with a stair‐form interpolation model. To address multiobjective optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical system dynamics Jg. 2; H. 1; S. 108 - 116
Hauptverfasser: Ding, Wenjie, Ji, Yanchen, Liao, Haitao, Fang, Daining
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Nanjing John Wiley & Sons, Inc 01.03.2022
Wiley
Schlagworte:
ISSN:2767-1402, 2767-1399, 2767-1402
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new multiobjective discrete optimization method for the engineering design of dynamic problems. A discrete combinatorial optimization problem is solved using a particle swarm optimization algorithm coupled with a stair‐form interpolation model. To address multiobjective optimization issues, a weighted average approach is implemented to convert the multiobjective optimization problem into an equivalent single‐objective optimization problem. Design constraints are taken into consideration by using the penalty function strategy. The proposed method is first verified with a 10‐bar truss structure design problem, where the cross‐sectional area of each bar is optimized to minimize both volume and node displacement. Second, the dynamic issue for hybrid composite laminates is investigated by maximizing the fundamental frequency and minimizing the cost. The results reveal that the optimized results generated by the proposed method agree well with those from other approaches.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2767-1402
2767-1399
2767-1402
DOI:10.1002/msd2.12038