Exponential asymptotics of woodpile chain nanoptera using numerical analytic continuation

Traveling waves in woodpile chains are typically nanoptera, which are composed of a central solitary wave and exponentially small oscillations. These oscillations have been studied using exponential asymptotic methods, which typically require an explicit form for the leading‐order behavior. For many...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Studies in applied mathematics (Cambridge) Ročník 150; číslo 2; s. 520 - 557
Hlavní autori: Deng, Guo, Lustri, Christopher J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge Blackwell Publishing Ltd 01.02.2023
Predmet:
ISSN:0022-2526, 1467-9590
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traveling waves in woodpile chains are typically nanoptera, which are composed of a central solitary wave and exponentially small oscillations. These oscillations have been studied using exponential asymptotic methods, which typically require an explicit form for the leading‐order behavior. For many nonlinear systems, such as granular woodpile chains, it is not possible to calculate the leading‐order solution explicitly. We show that accurate asymptotic approximations can be obtained using numerical approximation in place of the exact leading‐order behavior. We calculate the oscillation behavior for Toda woodpile chains, and compare the results to exponential asymptotics based on previous methods from the literature: long‐wave approximation and tanh‐fitting. We then use numerical analytic continuation methods based on Padé approximants and the adaptive Antoulas–Anderson (AAA) method. These methods are shown to produce accurate predictions of the amplitude of the oscillations and the mass ratios for which the oscillations vanish. Exponential asymptotics using an AAA approximation for the leading‐order behavior is then applied to study granular woodpile chains, including chains with Hertzian interactions—this method is able to calculate behavior that could not be accurately approximated in previous studies.
AbstractList Traveling waves in woodpile chains are typically nanoptera, which are composed of a central solitary wave and exponentially small oscillations. These oscillations have been studied using exponential asymptotic methods, which typically require an explicit form for the leading‐order behavior. For many nonlinear systems, such as granular woodpile chains, it is not possible to calculate the leading‐order solution explicitly. We show that accurate asymptotic approximations can be obtained using numerical approximation in place of the exact leading‐order behavior. We calculate the oscillation behavior for Toda woodpile chains, and compare the results to exponential asymptotics based on previous methods from the literature: long‐wave approximation and tanh‐fitting. We then use numerical analytic continuation methods based on Padé approximants and the adaptive Antoulas–Anderson (AAA) method. These methods are shown to produce accurate predictions of the amplitude of the oscillations and the mass ratios for which the oscillations vanish. Exponential asymptotics using an AAA approximation for the leading‐order behavior is then applied to study granular woodpile chains, including chains with Hertzian interactions—this method is able to calculate behavior that could not be accurately approximated in previous studies.
Traveling waves in woodpile chains are typically nanoptera, which are composed of a central solitary wave and exponentially small oscillations. These oscillations have been studied using exponential asymptotic methods, which typically require an explicit form for the leading‐order behavior. For many nonlinear systems, such as granular woodpile chains, it is not possible to calculate the leading‐order solution explicitly. We show that accurate asymptotic approximations can be obtained using numerical approximation in place of the exact leading‐order behavior. We calculate the oscillation behavior for Toda woodpile chains, and compare the results to exponential asymptotics based on previous methods from the literature: long‐wave approximation and tanh‐fitting. We then use numerical analytic continuation methods based on Padé approximants and the adaptive Antoulas–Anderson (AAA) method. These methods are shown to produce accurate predictions of the amplitude of the oscillations and the mass ratios for which the oscillations vanish. Exponential asymptotics using an AAA approximation for the leading‐order behavior is then applied to study granular woodpile chains, including chains with Hertzian interactions—this method is able to calculate behavior that could not be accurately approximated in previous studies.
Author Lustri, Christopher J.
Deng, Guo
Author_xml – sequence: 1
  givenname: Guo
  surname: Deng
  fullname: Deng, Guo
  organization: Macquarie University
– sequence: 2
  givenname: Christopher J.
  orcidid: 0000-0001-9504-277X
  surname: Lustri
  fullname: Lustri, Christopher J.
  email: christopher.lustri@mq.edu.au
  organization: Macquarie University
BookMark eNp9kM9LwzAYhoNMcJte_AsK3oTOL2naNMcx5g-YKKgHTyWmqWa0SU1SZv97u9WTiN_luzzPy8s7QxNjjULoHMMCD3flRdssMElpfoSmmGYs5imHCZoCEBKTlGQnaOb9FgAwS2GKXtdf7RBhghZ1JHzftMEGLX1kq2hnbdnqWkXyQ2gTGWFsG5QTUee1eY9M1yin5d4zou4HK5J2CDKdCNqaU3Rcidqrs58_Ry_X6-fVbbx5uLlbLTexpJDkcQlYcCVSlUCpMPAqSbkklOWUJKTKAXhGlZScZ0wSQqsSJFNvleJUAlNZnszRxZjbOvvZKR-Kre3c0MgXhDHKMUuydKBgpKSz3jtVFVKHQ8_ghK4LDMV-wGI_YHEYcFAufymt041w_d8wHuHdMFj_D1k8LR_vR-cbTo6FAg
CitedBy_id crossref_primary_10_1017_S1446181124000038
crossref_primary_10_1111_sapm_70008
crossref_primary_10_1007_s13160_023_00599_2
crossref_primary_10_1007_s00220_025_05381_8
crossref_primary_10_1137_23M1570508
crossref_primary_10_1111_sapm_12660
Cites_doi 10.1002/sapm1991852129
10.1007/s40315-020-00325-w
10.1016/j.physd.2019.132239
10.1016/j.physd.2021.133053
10.1137/S003613990038116X
10.1098/rspa.1998.0278
10.1007/s002200050732
10.1137/16M108639X
10.1103/PhysRevE.79.046607
10.1137/21M1398410
10.1103/PhysRevB.9.1921
10.1088/1751-8113/48/19/195204
10.1016/j.physrep.2007.10.007
10.1063/1.5121427
10.1017/S0022112006002394
10.1098/rspa.1989.0018
10.1143/JPSJ.34.18
10.1007/978-1-4757-0435-8_25
10.1137/S0036139994261769
10.1103/PhysRevE.84.046610
10.1002/cpa.3160440823
10.1137/060666123
10.1103/PhysRevE.91.042207
10.1143/PTPS.45.174
10.1111/sapm.12057
10.1103/PhysRevE.56.6104
10.1007/s00332-011-9119-9
10.1016/j.physd.2008.10.005
10.1143/JPSJ.22.431
10.1093/imamci/3.2-3.61
10.1143/JPSJ.23.501
10.1137/18M1220868
10.1007/BF00905892
10.1103/PhysRevE.66.016616
10.1137/S0036141095288847
10.1137/0151080
10.1007/978-1-4757-0435-8_1
10.1137/120872012
10.1103/PhysRevLett.94.178002
10.1143/PTP.51.703
10.1103/PhysRev.159.98
10.1017/jfm.2013.425
10.1007/BF02099784
10.1103/PhysRevE.64.056605
10.1093/imanum/draa098
10.1140/epjp/s13360-020-00587-2
10.1098/rspa.1990.0111
10.1103/PhysRevE.73.026610
10.1103/PhysRevLett.114.118002
10.1007/BF02698550
10.1109/61.772353
10.1007/978-1-4757-3524-6
10.1007/s00211-019-01023-z
10.1002/(SICI)1097-0312(199601)49:1<35::AID-CPA2>3.0.CO;2-8
10.1103/PhysRevLett.51.1111
10.1098/rspa.1999.0447
10.1017/S0956792514000217
10.1137/17M1132409
10.1023/A:1006145903624
10.1016/S0076-5392(08)62672-7
10.1016/j.physa.2004.04.092
10.1137/19M125947X
10.1088/1742‐5468/aa9a62
10.1137/140998081
10.1137/15M1025426
10.1007/BF00910379
10.1088/0305-4470/33/8/304
10.1103/PhysRevB.9.1924
10.1016/j.camwa.2019.07.025
10.1137/0151081
10.1137/16M1106122
10.1007/978-3-642-96585-2
10.1088/0264-9381/21/6/021
10.1007/s00211-020-01168-2
10.1103/PhysRevE.89.053202
ContentType Journal Article
Copyright 2022 The Authors. Studies in Applied Mathematics published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Studies in Applied Mathematics published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOI 10.1111/sapm.12548
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1467-9590
EndPage 557
ExternalDocumentID 10_1111_sapm_12548
SAPM12548
Genre article
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29Q
31~
33P
3R3
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHQJS
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EJD
EMI
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IHE
IX1
J0M
K1G
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UAO
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XJT
XOL
XSW
YNT
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
JQ2
ID FETCH-LOGICAL-c4038-d01a9ea5e30de109f359c24784232f800964ecc9967c224fd0c7ebfe94c07e683
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898169900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2526
IngestDate Sat Sep 06 14:33:21 EDT 2025
Tue Nov 18 20:49:25 EST 2025
Sat Nov 29 01:40:12 EST 2025
Wed Jan 22 16:24:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4038-d01a9ea5e30de109f359c24784232f800964ecc9967c224fd0c7ebfe94c07e683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9504-277X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsapm.12548
PQID 2774917365
PQPubID 45220
PageCount 38
ParticipantIDs proquest_journals_2774917365
crossref_citationtrail_10_1111_sapm_12548
crossref_primary_10_1111_sapm_12548
wiley_primary_10_1111_sapm_12548_SAPM12548
PublicationCentury 2000
PublicationDate February 2023
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Studies in applied mathematics (Cambridge)
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 36
2021; 20
1984; 163
2006; 73
2020; 20
1974; 51
1967; 22
1967; 23
2019; 57
1991; 51
2020; 402
1983; 51
2014; 25
1967; 159
1973
2018; 40
1970
2008; 30
2014; 133
2008; 462
1974; 9
1985; 26
1999; 207
2009; 238
2015; 48
2001
1989; 422
2017; 39
1991; 44
1991; 85
1986; 3
1997; 56
1999; 14
1987
1999; 56
1999; 455
1981
2020; 135
2015; 91
2006; 567
2012; 22
1983; 24
2004; 342
2017; 2017
1973; 34
2021; 147
2020; 80
1995; 55
2011; 84
1997; 28
2022; 42
1991
1998; 454
2014; 89
2001; 64
2019; 142
2018; 17
2009; 79
2020; 30
2002; 62
2015; 114
2013; 732
2013; 73
2000; 33
1994; 161
2002; 66
1970; 45
1988; 68
2022; 429
2014
2005; 94
1996; 49
1990; 430
2003; 21
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
Maslov VP. (e_1_2_9_2_1) 1984; 163
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Allen MP (e_1_2_9_82_1) 1987
e_1_2_9_70_1
Dingle RB (e_1_2_9_76_1) 1973
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
Driscoll TA (e_1_2_9_80_1) 2014
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 51
  start-page: 1585
  issue: 6
  year: 1991
  end-page: 1601
  article-title: On exponential asymptotics for nonseparable wave equations I: complex geometrical optics and connection
  publication-title: SIAM J Appl Math
– volume: 161
  start-page: 391
  issue: 2
  year: 1994
  end-page: 418
  article-title: Existence theorem for solitary waves on lattices
  publication-title: Commun Math Phys
– year: 1981
– volume: 73
  start-page: 232
  year: 2013
  end-page: 253
  article-title: Exponential asymptotics for thin film rupture
  publication-title: SIAM J Appl Math
– volume: 66
  year: 2002
  article-title: Secondary solitary wave formation in systems with generalized Hertz interactions
  publication-title: Phys Rev E
– volume: 238
  start-page: 319
  issue: 3
  year: 2009
  end-page: 354
  article-title: Exponential asymptotics of localised patterns and snaking bifurcation diagrams
  publication-title: Physica D
– volume: 49
  start-page: 35
  issue: 1
  year: 1996
  end-page: 83
  article-title: The Toda rarefaction problem
  publication-title: Commun Pure Appl Math
– year: 2001
– volume: 79
  year: 2009
  article-title: How solitary waves collide in discrete granular alignments
  publication-title: Phys Rev E
– volume: 20
  start-page: 2412
  issue: 4
  year: 2021
  end-page: 2449
  article-title: Nanoptera in weakly nonlinear woodpile chains and diatomic granular chains
  publication-title: SIAM J Appl Dyn Syst
– volume: 30
  issue: 4
  year: 2020
  article-title: Interactions of solitary waves in integrable and nonintegrable lattices
  publication-title: Chaos
– volume: 14
  start-page: 1052
  issue: 3
  year: 1999
  end-page: 1061
  article-title: Rational approximation of frequency domain responses by vector fitting
  publication-title: IEEE Trans Power Delivery
– volume: 422
  start-page: 7
  issue: 1862
  year: 1989
  end-page: 21
  article-title: Uniform asymptotic smoothing of Stokes's discontinuities
  publication-title: Proc R Soc Lond A
– volume: 64
  year: 2001
  article-title: Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion
  publication-title: Phys Rev E
– volume: 40
  start-page: 1494
  year: 2018
  end-page: 1522
  article-title: The AAA algorithm for rational approximation
  publication-title: SIAM J Sci Comput
– volume: 342
  start-page: 336
  issue: 1
  year: 2004
  end-page: 343
  article-title: The quasi‐equilibrium phase in nonlinear 1D systems
  publication-title: Physica A
– volume: 55
  start-page: 1469
  issue: 6
  year: 1995
  end-page: 1483
  article-title: Stokes phenomenon and matched asymptotic expansions
  publication-title: SIAM J Appl Math
– volume: 207
  start-page: 439
  year: 1999
  end-page: 465
  article-title: Semiclassical dynamics with exponentially small error estimates
  publication-title: Commun Math Phys
– year: 2014
– volume: 73
  year: 2006
  article-title: Tunability of solitary wave properties in one‐dimensional strongly nonlinear phononic crystals
  publication-title: Phys Rev E
– volume: 42
  start-page: 1087
  issue: 2
  year: 2022
  end-page: 1115
  article-title: Automatic rational approximation and linearization of nonlinear eigenvalue problems
  publication-title: IMA J Numer Anal
– volume: 429
  year: 2022
  article-title: Nanoptera in nonlinear woodpile chains with zero precompression
  publication-title: Physica D
– volume: 51
  start-page: 1602
  issue: 6
  year: 1991
  end-page: 1615
  article-title: On exponential asymptotics for nonseparable wave equations II: EBK quantization
  publication-title: SIAM J Appl Math
– volume: 51
  start-page: 1111
  year: 1983
  end-page: 1114
  article-title: Geometrical approach to moving‐interface dynamics
  publication-title: Phys Rev Lett
– volume: 40
  start-page: A2427
  issue: 4
  year: 2018
  end-page: A2455
  article-title: Rational minimax approximation via adaptive barycentric representations
  publication-title: SIAM J Sci Comput
– volume: 402
  year: 2020
  article-title: Nanoptera and Stokes curves in the 2‐periodic Fermi–Pasta–Ulam–Tsingou equation
  publication-title: Physica D
– volume: 22
  start-page: 327
  year: 2012
  end-page: 349
  article-title: On the existence of solitary traveling waves for generalized Hertzian chains
  publication-title: J Nonlinear Sci
– volume: 3
  start-page: 61
  issue: 2‐3
  year: 1986
  end-page: 88
  article-title: On the scalar rational interpolation problem
  publication-title: IMA J Math Control Inf
– volume: 45
  start-page: 174
  year: 1970
  end-page: 200
  article-title: Waves in Nonlinear Lattice
  publication-title: Prog Theor Phys Supp
– volume: 89
  year: 2014
  article-title: Granular chain between asymmetric boundaries and the quasiequilibrium state
  publication-title: Phys Rev E
– volume: 455
  start-page: 3201
  year: 1999
  end-page: 3220
  article-title: The fragmentation of a line of balls by an impact
  publication-title: Proc R Soc A
– volume: 163
  start-page: 150
  year: 1984
  end-page: 180
  article-title: Global exponential asymptotics of solutions of the tunnel equations and problems of large deviations
  publication-title: Proc. Steklov Inst. Math
– volume: 28
  start-page: 669
  issue: 3
  year: 1997
  end-page: 703
  article-title: Exponential asymptotics in a singular limit for ‐level scattering systems
  publication-title: SIAM J Math Anal
– volume: 135
  start-page: 598
  year: 2020
  article-title: On the generation and propagation of solitary waves in integrable and nonintegrable nonlinear lattices
  publication-title: Eur Phys J Plus
– volume: 33
  start-page: 1543
  issue: 8
  year: 2000
  end-page: 1580
  article-title: Topological expansion and exponential asymptotics in 1D quantum mechanics
  publication-title: J Phys A Math Gen
– volume: 48
  issue: 19
  year: 2015
  article-title: Traveling waves and their tails in locally resonant granular systems
  publication-title: J Phys A Math Theor
– volume: 85
  start-page: 129
  issue: 2
  year: 1991
  end-page: 181
  article-title: Asymptotics beyond all orders in a model of crystal growth
  publication-title: Stud Appl Math
– volume: 24
  start-page: 733
  year: 1983
  end-page: 743
  article-title: Propagation of nonlinear compression pulses in granular media
  publication-title: J Appl Mech Tech Phy
– volume: 26
  start-page: 405
  year: 1985
  end-page: 408
  article-title: Observation of a new type of solitary waves in a one‐dimensional granular medium
  publication-title: J Appl Mech Tech Phy
– volume: 20
  start-page: 369
  year: 2020
  end-page: 387
  article-title: Numerical conformal mapping with rational functions
  publication-title: Comput Methods Funct Theory
– volume: 57
  start-page: 2074
  issue: 5
  year: 2019
  end-page: 2094
  article-title: Solving Laplace problems with corner singularities via rational functions
  publication-title: SIAM J Numer Anal
– volume: 23
  start-page: 501
  issue: 3
  year: 1967
  end-page: 506
  article-title: Wave propagation in anharmonic lattices
  publication-title: J Phys Soc Jpn
– volume: 44
  start-page: 1171
  issue: 8‐9
  year: 1991
  end-page: 1242
  article-title: The Toda shock problem
  publication-title: Commun Pure Appl Math
– volume: 21
  start-page: 1623
  year: 2003
  end-page: 1642
  article-title: The asymptotic quasinormal mode spectrum of non‐rotating black holes
  publication-title: Class Quantum Gravity
– volume: 84
  year: 2011
  article-title: Sustained strong fluctuations in a nonlinear chain at acoustic vacuum: beyond equilibrium
  publication-title: Phys Rev E
– year: 1987
– volume: 68
  start-page: 211
  year: 1988
  end-page: 221
  article-title: Stokes' phenomenon; smoothing a Victorian discontinuity
  publication-title: Pub Math de L'IHÉS
– volume: 34
  start-page: 18
  issue: 1
  year: 1973
  end-page: 25
  article-title: A soliton and two solitons in an exponential lattice and related equations
  publication-title: J Phys Soc Jpn
– volume: 142
  start-page: 359
  year: 2019
  end-page: 382
  article-title: Representation of conformal maps by rational functions
  publication-title: Numer Math
– year: 1973
– start-page: 1
  year: 1970
  end-page: 39
– volume: 147
  start-page: 227
  year: 2021
  end-page: 254
  article-title: Exponential node clustering at singularities for rational approximation, quadrature, and PDEs
  publication-title: Numer Math
– volume: 17
  start-page: 1182
  issue: 2
  year: 2018
  end-page: 1212
  article-title: Nanoptera in a period‐2 Toda chain
  publication-title: SIAM J Appl Dyn Syst
– volume: 56
  start-page: 1
  issue: 1
  year: 1999
  end-page: 98
  article-title: The Devil's invention: Asymptotic, superasymptotic and hyperasymptotic series
  publication-title: Acta Appl Math
– volume: 56
  start-page: 6104
  year: 1997
  end-page: 6117
  article-title: Solitary waves in a chain of beads under Hertz contact
  publication-title: Phys Rev E
– volume: 430
  start-page: 653
  issue: 1880
  year: 1990
  end-page: 668
  article-title: Hyperasymptotics
  publication-title: Proc R Soc Lond A
– volume: 25
  start-page: 655
  issue: 5
  year: 2014
  end-page: 680
  article-title: Unsteady flow over a submerged source with low Froude number
  publication-title: Eur J Appl Math
– volume: 22
  start-page: 431
  issue: 2
  year: 1967
  end-page: 436
  article-title: Vibration of a chain with nonlinear interaction
  publication-title: J Phys Soc Jpn
– volume: 30
  start-page: 609
  year: 2008
  end-page: 638
  article-title: model reduction for large‐scale linear dynamical systems
  publication-title: SIAM J Matrix Anal Appl
– volume: 732
  start-page: 660
  year: 2013
  end-page: 686
  article-title: Steady gravity waves due to a submerged source
  publication-title: J Fluid Mech
– volume: 567
  start-page: 299
  year: 2006
  end-page: 326
  article-title: Exponential asymptotics and gravity waves
  publication-title: J Fluid Mech
– volume: 114
  issue: 11
  year: 2015
  article-title: Highly nonlinear wave propagation in elastic woodpile periodic structures
  publication-title: Phys Rev Lett
– volume: 80
  start-page: 332
  issue: 2
  year: 2020
  end-page: 350
  article-title: A unified view of some numerical methods for fractional diffusion
  publication-title: Comput Math Appl
– start-page: 1
  year: 1991
  end-page: 14
– volume: 462
  start-page: 21
  issue: 2
  year: 2008
  end-page: 66
  article-title: Solitary waves in the granular chain
  publication-title: Phys Rep
– volume: 94
  year: 2005
  article-title: How Hertzian solitary waves interact with boundaries in a 1D granular medium
  publication-title: Phys Rev Lett
– volume: 2017
  issue: 12
  year: 2017
  article-title: The equilibrium phase in heterogeneous Hertzian chains
  publication-title: J Stat Mech
– volume: 133
  start-page: 373
  year: 2014
  end-page: 397
  article-title: Exponential asymptotics for solitons in PT‐symmetric periodic potentials
  publication-title: Stud Appl Math
– volume: 62
  start-page: 1872
  issue: 6
  year: 2002
  end-page: 1898
  article-title: Exponential asymptotics and capillary waves
  publication-title: SIAM J Appl Math
– volume: 9
  start-page: 1921
  year: 1974
  end-page: 1923
  article-title: Integrals of the Toda lattice
  publication-title: Phys Rev B
– volume: 51
  start-page: 703
  issue: 3
  year: 1974
  end-page: 716
  article-title: On the Toda lattice. II: inverse‐scattering solution
  publication-title: Prog Theor Phys
– volume: 91
  year: 2015
  article-title: Granular chains with soft boundaries: slowing the transition to quasiequilibrium
  publication-title: Phys Rev E
– volume: 36
  start-page: 894
  issue: 2
  year: 2015
  end-page: 916
  article-title: Generalized rational Krylov decompositions with an application to rational approximation
  publication-title: SIAM J Matrix Anal Appl
– volume: 9
  start-page: 1924
  year: 1974
  end-page: 1925
  article-title: The Toda lattice. II. Existence of integrals
  publication-title: Phys Rev B
– volume: 80
  start-page: 289
  year: 2020
  end-page: 311
  article-title: Selection of a Hele‐Shaw bubble via exponential asymptotics
  publication-title: SIAM J Appl Math
– volume: 159
  start-page: 98
  year: 1967
  end-page: 103
  article-title: Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard‐Jones molecules
  publication-title: Phys Rev
– volume: 39
  start-page: A2049
  issue: 5
  year: 2017
  end-page: A2071
  article-title: The RKFIT algorithm for nonlinear rational approximation
  publication-title: SIAM J Sci Comput
– volume: 454
  start-page: 2733
  issue: 1978
  year: 1998
  end-page: 2755
  article-title: Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations
  publication-title: Proc R Soc Lond A
– ident: e_1_2_9_13_1
  doi: 10.1002/sapm1991852129
– ident: e_1_2_9_70_1
  doi: 10.1007/s40315-020-00325-w
– ident: e_1_2_9_20_1
  doi: 10.1016/j.physd.2019.132239
– ident: e_1_2_9_22_1
  doi: 10.1016/j.physd.2021.133053
– ident: e_1_2_9_14_1
  doi: 10.1137/S003613990038116X
– ident: e_1_2_9_26_1
  doi: 10.1098/rspa.1998.0278
– ident: e_1_2_9_6_1
  doi: 10.1007/s002200050732
– ident: e_1_2_9_19_1
  doi: 10.1137/16M108639X
– ident: e_1_2_9_54_1
  doi: 10.1103/PhysRevE.79.046607
– ident: e_1_2_9_21_1
  doi: 10.1137/21M1398410
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevB.9.1921
– ident: e_1_2_9_61_1
  doi: 10.1088/1751-8113/48/19/195204
– ident: e_1_2_9_41_1
  doi: 10.1016/j.physrep.2007.10.007
– ident: e_1_2_9_57_1
  doi: 10.1063/1.5121427
– ident: e_1_2_9_17_1
  doi: 10.1017/S0022112006002394
– ident: e_1_2_9_25_1
  doi: 10.1098/rspa.1989.0018
– ident: e_1_2_9_38_1
  doi: 10.1143/JPSJ.34.18
– ident: e_1_2_9_7_1
  doi: 10.1007/978-1-4757-0435-8_25
– ident: e_1_2_9_27_1
  doi: 10.1137/S0036139994261769
– ident: e_1_2_9_55_1
  doi: 10.1103/PhysRevE.84.046610
– ident: e_1_2_9_45_1
  doi: 10.1002/cpa.3160440823
– ident: e_1_2_9_68_1
  doi: 10.1137/060666123
– ident: e_1_2_9_59_1
  doi: 10.1103/PhysRevE.91.042207
– ident: e_1_2_9_37_1
  doi: 10.1143/PTPS.45.174
– ident: e_1_2_9_11_1
  doi: 10.1111/sapm.12057
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevE.56.6104
– ident: e_1_2_9_33_1
  doi: 10.1007/s00332-011-9119-9
– ident: e_1_2_9_8_1
  doi: 10.1016/j.physd.2008.10.005
– ident: e_1_2_9_35_1
  doi: 10.1143/JPSJ.22.431
– volume-title: Asymptotic Expansions: Their Derivation and Interpretation
  year: 1973
  ident: e_1_2_9_76_1
– ident: e_1_2_9_63_1
  doi: 10.1093/imamci/3.2-3.61
– ident: e_1_2_9_36_1
  doi: 10.1143/JPSJ.23.501
– ident: e_1_2_9_18_1
  doi: 10.1137/18M1220868
– ident: e_1_2_9_39_1
  doi: 10.1007/BF00905892
– ident: e_1_2_9_52_1
  doi: 10.1103/PhysRevE.66.016616
– ident: e_1_2_9_3_1
  doi: 10.1137/S0036141095288847
– volume-title: Computer Simulation of Liquids
  year: 1987
  ident: e_1_2_9_82_1
– ident: e_1_2_9_10_1
  doi: 10.1137/0151080
– ident: e_1_2_9_75_1
  doi: 10.1007/978-1-4757-0435-8_1
– ident: e_1_2_9_28_1
  doi: 10.1137/120872012
– ident: e_1_2_9_53_1
  doi: 10.1103/PhysRevLett.94.178002
– ident: e_1_2_9_43_1
  doi: 10.1143/PTP.51.703
– ident: e_1_2_9_81_1
  doi: 10.1103/PhysRev.159.98
– ident: e_1_2_9_15_1
  doi: 10.1017/jfm.2013.425
– ident: e_1_2_9_32_1
  doi: 10.1007/BF02099784
– ident: e_1_2_9_67_1
– ident: e_1_2_9_29_1
  doi: 10.1103/PhysRevE.64.056605
– ident: e_1_2_9_69_1
  doi: 10.1093/imanum/draa098
– ident: e_1_2_9_47_1
  doi: 10.1140/epjp/s13360-020-00587-2
– ident: e_1_2_9_74_1
  doi: 10.1098/rspa.1990.0111
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevE.73.026610
– ident: e_1_2_9_62_1
  doi: 10.1103/PhysRevLett.114.118002
– ident: e_1_2_9_24_1
  doi: 10.1007/BF02698550
– ident: e_1_2_9_64_1
  doi: 10.1109/61.772353
– ident: e_1_2_9_40_1
  doi: 10.1007/978-1-4757-3524-6
– ident: e_1_2_9_71_1
  doi: 10.1007/s00211-019-01023-z
– volume-title: Chebfun Guide
  year: 2014
  ident: e_1_2_9_80_1
– ident: e_1_2_9_46_1
  doi: 10.1002/(SICI)1097-0312(199601)49:1<35::AID-CPA2>3.0.CO;2-8
– ident: e_1_2_9_12_1
  doi: 10.1103/PhysRevLett.51.1111
– ident: e_1_2_9_51_1
  doi: 10.1098/rspa.1999.0447
– ident: e_1_2_9_16_1
  doi: 10.1017/S0956792514000217
– ident: e_1_2_9_72_1
  doi: 10.1137/17M1132409
– ident: e_1_2_9_77_1
  doi: 10.1023/A:1006145903624
– ident: e_1_2_9_30_1
  doi: 10.1016/S0076-5392(08)62672-7
– ident: e_1_2_9_58_1
  doi: 10.1016/j.physa.2004.04.092
– ident: e_1_2_9_78_1
  doi: 10.1137/19M125947X
– ident: e_1_2_9_60_1
  doi: 10.1088/1742‐5468/aa9a62
– ident: e_1_2_9_65_1
  doi: 10.1137/140998081
– ident: e_1_2_9_66_1
  doi: 10.1137/15M1025426
– ident: e_1_2_9_48_1
  doi: 10.1007/BF00910379
– ident: e_1_2_9_5_1
  doi: 10.1088/0305-4470/33/8/304
– ident: e_1_2_9_42_1
  doi: 10.1103/PhysRevB.9.1924
– ident: e_1_2_9_73_1
  doi: 10.1016/j.camwa.2019.07.025
– ident: e_1_2_9_4_1
  doi: 10.1137/0151081
– ident: e_1_2_9_31_1
  doi: 10.1137/16M1106122
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-642-96585-2
– volume: 163
  start-page: 150
  year: 1984
  ident: e_1_2_9_2_1
  article-title: Global exponential asymptotics of solutions of the tunnel equations and problems of large deviations
  publication-title: Proc. Steklov Inst. Math
– ident: e_1_2_9_23_1
  doi: 10.1088/0264-9381/21/6/021
– ident: e_1_2_9_79_1
  doi: 10.1007/s00211-020-01168-2
– ident: e_1_2_9_9_1
– ident: e_1_2_9_56_1
  doi: 10.1103/PhysRevE.89.053202
SSID ssj0001750
Score 2.372913
Snippet Traveling waves in woodpile chains are typically nanoptera, which are composed of a central solitary wave and exponentially small oscillations. These...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 520
SubjectTerms AAA approximation
analytic continuation
Approximation
Asymptotic methods
Chains
Continuation methods
exponential asymptotics
Mass ratios
Mathematical analysis
nanoptera
Nonlinear systems
Numerical methods
Oscillations
Pade approximation
Production methods
Solitary waves
Traveling waves
Title Exponential asymptotics of woodpile chain nanoptera using numerical analytic continuation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsapm.12548
https://www.proquest.com/docview/2774917365
Volume 150
WOSCitedRecordID wos000898169900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9590
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001750
  issn: 0022-2526
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76UNCDj6pYHyWgF4VKHpsXeClq8dCWohbqKWw2WS3YJJgq-u-dyaOtIIJ4y2Fms-zu7My3O_MtwKmpsoBzTbYtxw4QoHCt7ZqSDuAtOxC-aUk_I3Ht2YOBMx67wwpclrUwOT_E_MCNLCPbr8nAuZ8uGXnKk-kFumfmVKFOVVUIverXd91Rb74To2tUS7Zw3dStgp6UMnkW2t8d0iLKXI5VM2fT3fxfN7dgowgylU6-KrahEkYNWO_PGVrTBqxmqZ8i3YHHm48kjihpCFV4-jlNZjHJKLFUKCEnwd8q4plPIiXiUZxQybJC6fJPSvSW3_egHnGboJZCqe-TKOcP34VR9-bh6rZdPLjQFkzFjS9QNe6G3AwNNQg11ZWG6Qqd2Q7d5kqH4A7DKUeIZAt0_TJQhR36MnSZUO3Qcow9qEXY430qBTeJBicwJF1s2paPwMjFaJAJTTDh8iaclaPuiYKNnB7FePFKVEID52UD14STuWySc3D8KHVUTp5X2GHq6RjdIiA1LLMJ59k0_dKCd98Z9rOvg78IH8IavUGfp3IfQW32-hYew4p4n03S1xZUdTZsFSvzC0h_5uw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60KurBR1WsVl3Qi0JlH9nXsUhLxbYUrFBPS5rdaMFul24r-u-d2VcriCDe9jCTDZlMZib58gXgylSZz7kma5Zj-1igcK3mmpI24C3bF0PTksOExLVtd7vOYOD2MmwO3YVJ-SGKDTfyjGS9JgenDeklL495NL7F-MycVVhjGJYI0aezXrEQY2RUc7Jw3dStjJ2UgDwL3e_xaJFkLqeqSaxp7v6zl3uwkyWZSj2dFfuwEoRl2O4UDK1xGTYS6KeID-C58RFNQgINoQqPP8fRbEIyykQqBMiJ8L-KeOWjUAl5OInoyrJCcPkXJZyn5z2oR9wmqKUQ9H0Upvzhh_DUbPTvWrXswYWaYCoufL6qcTfgZmCofqCprjRMV-jMdug0VzpU7jA0OZZItsDQL31V2MFQBi4Tqh1YjnEEpRB7fExXwU2iwfENSQebtjXEwsjFbJAJTTDh8gpc58PuiYyNnB7FePPyqoQGzksGrgKXhWyUcnD8KFXNredlfhh7Oma3WJAallmBm8ROv7TgPdZ7neTr5C_CF7DZ6nfaXvu--3AKW_QefQrrrkJpNp0HZ7Au3mejeHqeTM8vaY_oag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90fqAPfkzF6dSCvihU-pE07ePQDcU5BirMp5KliQ60K3YT_e_Npd1UEEF868NdGnK53F3yyy8AR9QhCeeusoOQJbpA4a4dUYUb8AFLRJ8Gqm9IXNus0wl7vahbYnPwLkzBDzHdcEPPMOs1OrjMEvXFy3OePZ_q-EzCWZgjlBm_9Eh3uhDryOhMyMI96gUlOykCeT51v8ejzyTza6pqYk1r9Z-9XIOVMsm0GsWsWIcZmVZh-XrK0JpXYcFAP0W-AffNt2yYImhIq_D8_TkbDVHGGioLATmZ_q8lHvkgtVKeDjO8smwhXP7BSsfFeY_WQ24TrWUh9H2QFvzhm3DXat6eXdjlgwu2II5e-BLH5ZHkVPpOIl0nUj6NhEdYiKe5KsRyh2iT6xKJCR36VeIIJvtKRkQ4TAahvwWVVPd4G6-CU6TBSXyFB5ss6OvCKNLZIBGuICLiNTieDHssSjZyfBTjKZ5UJThwsRm4GhxOZbOCg-NHqfrEenHph3ns6exWF6R-QGtwYuz0SwvxTaN7bb52_iJ8AIvd81bcvuxc7cISPkdfoLrrUBm9jOUezIvX0SB_2Tez8wMXjufl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+asymptotics+of+woodpile+chain+nanoptera+using+numerical+analytic+continuation&rft.jtitle=Studies+in+applied+mathematics+%28Cambridge%29&rft.au=Deng%2C+Guo&rft.au=Lustri%2C+Christopher+J.&rft.date=2023-02-01&rft.issn=0022-2526&rft.eissn=1467-9590&rft.volume=150&rft.issue=2&rft.spage=520&rft.epage=557&rft_id=info:doi/10.1111%2Fsapm.12548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sapm_12548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2526&client=summon