DRL based binary computation offloading in wireless powered mobile edge computing
This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computati...
Uloženo v:
| Vydáno v: | IET communications Ročník 17; číslo 15; s. 1837 - 1849 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Stevenage
John Wiley & Sons, Inc
01.09.2023
Wiley |
| Témata: | |
| ISSN: | 1751-8628, 1751-8636 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. It is aimed to maximize the sum computation rate (SCR) of WDs by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. Due to the strong coupling between the offloading decision and other optimization variables, the SCR maximization is formulated as a mixed integer nonlinear programming problem. To address this challenging problem, an online DRL‐based decoupling optimization algorithm is proposed. Specifically, the original problem is first split into a top‐problem of optimizing binary offloading decision and a sub‐problem of optimizing transmit powers and WPT duration under given offloading decision. Then a self‐learning DRL framework is designed to output the near‐optimal offloading decisions. Finally, for the sub‐problem, based on the Lagrangian dual theory, an efficient approach to fast obtain the closed‐form expression of the optimal solution is proposed. The simulation results show that the proposed DRL‐based algorithm can achieve the near‐maximal SCR with low computational complexity.
This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. The sum computation rate (SCR) of WDs is maximized by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. |
|---|---|
| AbstractList | This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. It is aimed to maximize the sum computation rate (SCR) of WDs by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. Due to the strong coupling between the offloading decision and other optimization variables, the SCR maximization is formulated as a mixed integer nonlinear programming problem. To address this challenging problem, an online DRL‐based decoupling optimization algorithm is proposed. Specifically, the original problem is first split into a top‐problem of optimizing binary offloading decision and a sub‐problem of optimizing transmit powers and WPT duration under given offloading decision. Then a self‐learning DRL framework is designed to output the near‐optimal offloading decisions. Finally, for the sub‐problem, based on the Lagrangian dual theory, an efficient approach to fast obtain the closed‐form expression of the optimal solution is proposed. The simulation results show that the proposed DRL‐based algorithm can achieve the near‐maximal SCR with low computational complexity. This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. It is aimed to maximize the sum computation rate (SCR) of WDs by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. Due to the strong coupling between the offloading decision and other optimization variables, the SCR maximization is formulated as a mixed integer nonlinear programming problem. To address this challenging problem, an online DRL‐based decoupling optimization algorithm is proposed. Specifically, the original problem is first split into a top‐problem of optimizing binary offloading decision and a sub‐problem of optimizing transmit powers and WPT duration under given offloading decision. Then a self‐learning DRL framework is designed to output the near‐optimal offloading decisions. Finally, for the sub‐problem, based on the Lagrangian dual theory, an efficient approach to fast obtain the closed‐form expression of the optimal solution is proposed. The simulation results show that the proposed DRL‐based algorithm can achieve the near‐maximal SCR with low computational complexity. This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. The sum computation rate (SCR) of WDs is maximized by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. It is aimed to maximize the sum computation rate (SCR) of WDs by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. Due to the strong coupling between the offloading decision and other optimization variables, the SCR maximization is formulated as a mixed integer nonlinear programming problem. To address this challenging problem, an online DRL‐based decoupling optimization algorithm is proposed. Specifically, the original problem is first split into a top‐problem of optimizing binary offloading decision and a sub‐problem of optimizing transmit powers and WPT duration under given offloading decision. Then a self‐learning DRL framework is designed to output the near‐optimal offloading decisions. Finally, for the sub‐problem, based on the Lagrangian dual theory, an efficient approach to fast obtain the closed‐form expression of the optimal solution is proposed. The simulation results show that the proposed DRL‐based algorithm can achieve the near‐maximal SCR with low computational complexity. Abstract This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. It is aimed to maximize the sum computation rate (SCR) of WDs by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. Due to the strong coupling between the offloading decision and other optimization variables, the SCR maximization is formulated as a mixed integer nonlinear programming problem. To address this challenging problem, an online DRL‐based decoupling optimization algorithm is proposed. Specifically, the original problem is first split into a top‐problem of optimizing binary offloading decision and a sub‐problem of optimizing transmit powers and WPT duration under given offloading decision. Then a self‐learning DRL framework is designed to output the near‐optimal offloading decisions. Finally, for the sub‐problem, based on the Lagrangian dual theory, an efficient approach to fast obtain the closed‐form expression of the optimal solution is proposed. The simulation results show that the proposed DRL‐based algorithm can achieve the near‐maximal SCR with low computational complexity. |
| Author | Shen, Guanqun Chi, Kaikai Chen, Wenchao Chen, Xiaolong Zhu, Bincheng |
| Author_xml | – sequence: 1 givenname: Guanqun surname: Shen fullname: Shen, Guanqun organization: Zhejiang University of Technology – sequence: 2 givenname: Wenchao surname: Chen fullname: Chen, Wenchao email: wcchen@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 3 givenname: Bincheng surname: Zhu fullname: Zhu, Bincheng organization: Zhejiang University of Technology – sequence: 4 givenname: Kaikai orcidid: 0000-0003-4751-2049 surname: Chi fullname: Chi, Kaikai organization: Zhejiang University of Technology – sequence: 5 givenname: Xiaolong surname: Chen fullname: Chen, Xiaolong organization: Jinhua Polytechnic |
| BookMark | eNp9kEtLAzEYRYMo2FY3_oIBd8LUvCYzWUp9FSqi6Drk8U1JmU5qMqX03zt1xIWIq4Rwzs3ljtFxG1pA6ILgKcFcXtv1lk4JFUV1hEakLEheCSaOf-60OkXjlFYYF4XgfIRebl8XmdEJXGZ8q-M-s2G92Xa686HNQl03QTvfLjPfZjsfoYGUsk3YQeyNdTC-gQzcEr61njxDJ7VuEpx_nxP0fn_3NnvMF88P89nNIrccsyonFjsOthZgKFCw4DQDUWKDJa6lYbIWrgAjsRXWUttXZ0RLUmluuNSSsgmaD7ku6JXaRL_u26ugvfp6CHGpdOy8bUBhTgomitK4quREMCOcMQ4cobysC37IuhyyNjF8bCF1ahW2se3rK4YlpZKUlPfU1UDZGFKKUP_8SrA6zK8O86uv-XsY_4KtH1btovbN3woZlF2_6v6fcDV7eqeD8wlIjZlt |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3434655 crossref_primary_10_1016_j_comnet_2024_110352 |
| Cites_doi | 10.1109/COMST.2016.2594120 10.1109/JIOT.2020.3048937 10.1109/TWC.2020.2970920 10.1109/TCOMM.2022.3221422 10.1049/cmu2.12397 10.1109/MNET.2017.1700006 10.1109/LWC.2019.2915618 10.1109/TCOMM.2022.3153068 10.1109/JIOT.2022.3177658 10.1109/COMST.2017.2682318 10.1109/JIOT.2017.2750180 10.1109/MWC.2019.1800475 10.1109/TMC.2018.2885268 10.1109/TWC.2022.3188302 10.1109/JIOT.2022.3175760 10.1109/COMST.2017.2745201 10.1109/TWC.2020.2988386 10.1109/JIOT.2021.3057360 10.1109/JSAC.2018.2864426 10.1155/2022/6722848 10.1109/TMC.2019.2928811 10.1109/TCOMM.2017.2787700 10.1109/TWC.2020.2964765 10.1109/JIOT.2016.2584538 10.1109/TWC.2019.2959300 10.1109/TCCN.2019.2925025 10.1109/ACCESS.2020.2974809 10.1109/TWC.2018.2821664 10.1109/TVT.2022.3204310 10.1109/TPDS.2021.3129618 10.1016/j.adhoc.2019.102052 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W DOA |
| DOI | 10.1049/cmu2.12658 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8636 |
| EndPage | 1849 |
| ExternalDocumentID | oai_doaj_org_article_04153657bd874163b6dbbded1247f542 10_1049_cmu2_12658 CMU212658 |
| Genre | article |
| GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LR20F020003 – fundername: National Natural Science Foundation of China funderid: 62272414 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 2QL 4.4 4IJ 5GY 6IK 6OB 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH ZL0 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4038-1c0d4ecf6eb2e2eceda3e670b090f9b39f6d5eb90c6cc2c86231a918a4b49a923 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001025826400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8628 |
| IngestDate | Fri Oct 03 12:38:20 EDT 2025 Wed Aug 13 10:43:33 EDT 2025 Wed Oct 29 21:48:48 EDT 2025 Tue Nov 18 22:42:42 EST 2025 Wed Jan 22 16:15:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4038-1c0d4ecf6eb2e2eceda3e670b090f9b39f6d5eb90c6cc2c86231a918a4b49a923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4751-2049 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12658 |
| PQID | 3092291724 |
| PQPubID | 1936360 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04153657bd874163b6dbbded1247f542 proquest_journals_3092291724 crossref_primary_10_1049_cmu2_12658 crossref_citationtrail_10_1049_cmu2_12658 wiley_primary_10_1049_cmu2_12658_CMU212658 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 20230901 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET communications |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2019; 8 2021; 8 2019; 5 2022; 70 2022; 21 2020; 33 2006; 1 2020; 98 2018; 66 2020; 19 2020; 8 2018; 18 2017; 31 2018; 17 2018; 5 2016; 3 2022 2021 2019; 26 2022; 9 2017; 19 2015 2014 2023; 71 2022; 16 2023; 72 2018; 36 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 Wang R. (e_1_2_12_22_1) 2021 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_23_1 e_1_2_12_25_1 He B. (e_1_2_12_24_1) e_1_2_12_26_1 Wigderson A. (e_1_2_12_36_1) 2006 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 Marsland S. (e_1_2_12_39_1) 2015 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 18 start-page: 2871 issue: 12 year: 2018 end-page: 2884 article-title: Hierarchical cooperation improves delay in cognitive radio networks with heterogeneous mobile secondary nodes publication-title: IEEE Trans. Mob. Comput. – volume: 19 start-page: 1855 issue: 3 year: 2020 end-page: 1867 article-title: Energy efficiency and delay tradeoff for wireless powered mobile‐edge computing systems with multi‐access schemes publication-title: IEEE Trans. Wireless Commun. – volume: 98 year: 2020 article-title: UAV‐assisted wireless powered Internet of Things: Joint trajectory optimization and resource allocation publication-title: Ad Hoc Networks – volume: 36 start-page: 1927 issue: 9 year: 2018 end-page: 1941 article-title: Computation rate maximization in UAV‐enabled wireless‐powered mobile‐edge computing systems publication-title: IEEE J. Sel. Areas Commun. – volume: 8 start-page: 10731 issue: 13 year: 2021 end-page: 10744 article-title: Computation energy efficiency maximization for a NOMA‐based WPT‐MEC network publication-title: IEEE Internet Things J. – volume: 3 start-page: 854 issue: 6 year: 2016 end-page: 864 article-title: Fog and IoT: An overview of research opportunities publication-title: IEEE Internet Things J. – volume: 33 start-page: 1841 issue: 8 year: 2020 end-page: 1855 article-title: Online learning for distributed computation offloading in wireless powered mobile edge computing networks publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 72 start-page: 747 issue: 1 year: 2023 end-page: 759 article-title: Impacts of sensing energy and data availability on throughput of energy harvesting cognitive radio networks publication-title: IEEE Trans. Veh. Technol. – year: 2014 article-title: Adam: A method for stochastic optimization – volume: 19 start-page: 2443 issue: 4 year: 2020 end-page: 2459 article-title: Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems publication-title: IEEE Trans. Wireless Commun. – volume: 9 start-page: 20681 issue: 20 year: 2022 end-page: 20692 article-title: Modeling on energy‐efficiency computation offloading using probabilistic action generating publication-title: IEEE Internet Things J. – volume: 70 start-page: 2853 issue: 4 year: 2022 end-page: 2869 article-title: Non‐orthogonal Multiple Access assisted Federated Learning via Wireless Power Transfer: A Cost‐Efficient Approach publication-title: IEEE Trans. Commun. – volume: 66 start-page: 1594 issue: 4 year: 2018 end-page: 1608 article-title: Computation offloading and resource allocation in mixed Fog/Cloud computing systems with min‐max fairness guarantee publication-title: IEEE Trans. Commun. – volume: 16 start-page: 951 issue: 9 year: 2022 end-page: 962 article-title: DRL based offloading of industrial IoT applications in wireless powered mobile edge computing publication-title: IET Commun. – volume: 17 start-page: 4177 issue: 6 year: 2018 end-page: 4190 article-title: Computation rate maximization for wireless powered mobile‐edge computing with binary computation offloading publication-title: IEEE Trans. Wireless Commun. – volume: 19 start-page: 3170 issue: 5 year: 2020 end-page: 3184 article-title: Computation efficiency maximization in wireless‐powered mobile edge computing networks publication-title: IEEE Trans. Wireless Commun. – start-page: 1 year: 2021 end-page: 5 – volume: 1 start-page: 665 year: 2006 end-page: 712 – volume: 31 start-page: 62 issue: 6 year: 2017 end-page: 69 article-title: Toward the evolution of wireless powered communication networks for the future Internet of Things publication-title: IEEE Netw. – volume: 19 start-page: 2581 issue: 11 year: 2020 end-page: 2593 article-title: Deep reinforcement learning for online computation offloading in wireless powered mobile‐edge computing networks publication-title: IEEE Trans. Mob. Comput. – volume: 19 start-page: 2322 issue: 4 year: 2017 end-page: 2358 article-title: A survey on mobile edge computing: The communication perspective publication-title: IEEE Commun. Surv. Tutorials – start-page: 1 end-page: 7 – volume: 5 start-page: 450 issue: 1 year: 2018 end-page: 465 article-title: Mobile edge computing: A survey publication-title: IEEE Internet Things J. – volume: 21 start-page: 10934 issue: 12 year: 2022 end-page: 10948 article-title: DRL‐based partial offloading for maximizing sum computation rate of wireless powered mobile edge computing network publication-title: IEEE Trans. Wireless Commun. – start-page: 1 year: 2022 end-page: 31 article-title: Optimizing computation offloading under heterogeneous delay requirements for wireless powered mobile edge computing – volume: 8 start-page: 9233 issue: 11 year: 2021 end-page: 9243 article-title: Backscatter‐assisted data offloading in OFDMA‐based wireless‐powered mobile edge computing for IoT networks publication-title: IEEE Internet Things J. – volume: 26 start-page: 184 issue: 4 year: 2019 end-page: 192 article-title: Toward realization of long‐range wireless‐powered sensor networks publication-title: IEEE Wireless Commun. – volume: 9 start-page: 20997 issue: 21 year: 2022 end-page: 21009 article-title: Computation bits maximization in UAV‐assisted MEC networks with fairness constraint publication-title: IEEE Internet Things J. – volume: 19 start-page: 4947 issue: 7 year: 2020 end-page: 4963 article-title: Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge Computing Systems publication-title: IEEE Trans. Wireless Commun. – volume: 19 start-page: 1628 issue: 3 year: 2017 end-page: 1656 article-title: Mobile edge computing: A survey on architecture and computation offloading publication-title: IEEE Commun. Surv. Tutorials. – volume: 71 start-page: 441 issue: 1 year: 2023 end-page: 456 article-title: DDPG‐based joint time and energy management in ambient backscatter‐assisted hybrid underlay CRNs publication-title: IEEE Trans. Commun. – volume: 5 start-page: 595 issue: 3 year: 2019 end-page: 607 article-title: Energy‐efficient resource allocation for energy harvesting‐based cognitive machine‐to‐machine communications publication-title: IEEE Trans. Cognit. Commun. Network. – volume: 8 start-page: 36757 year: 2020 end-page: 36763 article-title: Partial offloading in energy harvested mobile edge computing: A direct search approach publication-title: IEEE Access – volume: 8 start-page: 1320 issue: 5 year: 2019 end-page: 1323 article-title: Computation offloading and resource allocation for wireless powered mobile edge computing with latency constraint publication-title: IEEE Wireless Commun. Lett. – year: 2015 – volume: 19 start-page: 33 issue: 1 year: 2017 end-page: 56 article-title: Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks publication-title: IEEE Commun. Surv. Tutor. – ident: e_1_2_12_3_1 doi: 10.1109/COMST.2016.2594120 – ident: e_1_2_12_20_1 doi: 10.1109/JIOT.2020.3048937 – ident: e_1_2_12_34_1 doi: 10.1109/TWC.2020.2970920 – ident: e_1_2_12_15_1 doi: 10.1109/TCOMM.2022.3221422 – ident: e_1_2_12_18_1 doi: 10.1049/cmu2.12397 – ident: e_1_2_12_12_1 doi: 10.1109/MNET.2017.1700006 – ident: e_1_2_12_32_1 doi: 10.1109/LWC.2019.2915618 – ident: e_1_2_12_11_1 doi: 10.1109/TCOMM.2022.3153068 – ident: e_1_2_12_27_1 doi: 10.1109/JIOT.2022.3177658 – ident: e_1_2_12_8_1 doi: 10.1109/COMST.2017.2682318 – volume-title: Machine Learning: An Algorithmic Perspective year: 2015 ident: e_1_2_12_39_1 – ident: e_1_2_12_9_1 doi: 10.1109/JIOT.2017.2750180 – ident: e_1_2_12_13_1 doi: 10.1109/MWC.2019.1800475 – ident: e_1_2_12_4_1 doi: 10.1109/TMC.2018.2885268 – ident: e_1_2_12_19_1 doi: 10.1109/TWC.2022.3188302 – ident: e_1_2_12_38_1 – ident: e_1_2_12_35_1 doi: 10.1109/JIOT.2022.3175760 – ident: e_1_2_12_5_1 doi: 10.1109/COMST.2017.2745201 – ident: e_1_2_12_6_1 doi: 10.1109/TWC.2020.2988386 – start-page: 1 volume-title: 2019 IEEE GLOBECOM Workshops ident: e_1_2_12_24_1 – ident: e_1_2_12_31_1 doi: 10.1109/JIOT.2021.3057360 – ident: e_1_2_12_37_1 doi: 10.1109/JSAC.2018.2864426 – ident: e_1_2_12_30_1 doi: 10.1155/2022/6722848 – ident: e_1_2_12_29_1 doi: 10.1109/TMC.2019.2928811 – ident: e_1_2_12_7_1 doi: 10.1109/TCOMM.2017.2787700 – start-page: 665 volume-title: Proceedings of ICM year: 2006 ident: e_1_2_12_36_1 – ident: e_1_2_12_23_1 doi: 10.1109/TWC.2020.2964765 – ident: e_1_2_12_2_1 doi: 10.1109/JIOT.2016.2584538 – ident: e_1_2_12_17_1 doi: 10.1109/TWC.2019.2959300 – ident: e_1_2_12_16_1 doi: 10.1109/TCCN.2019.2925025 – start-page: 1 volume-title: 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP) year: 2021 ident: e_1_2_12_22_1 – ident: e_1_2_12_21_1 doi: 10.1109/ACCESS.2020.2974809 – ident: e_1_2_12_26_1 doi: 10.1109/JSAC.2018.2864426 – ident: e_1_2_12_33_1 doi: 10.1109/JIOT.2022.3175760 – ident: e_1_2_12_28_1 doi: 10.1109/TWC.2018.2821664 – ident: e_1_2_12_14_1 doi: 10.1109/TVT.2022.3204310 – ident: e_1_2_12_25_1 doi: 10.1109/TPDS.2021.3129618 – ident: e_1_2_12_10_1 doi: 10.1016/j.adhoc.2019.102052 |
| SSID | ssj0055644 |
| Score | 2.347464 |
| Snippet | This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access... Abstract This paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1837 |
| SubjectTerms | Algorithms Computation offloading data communication Decoupling Edge computing Energy consumption Energy efficiency Internet of Things Linear programming Mixed integer Mobile computing Nonlinear programming Optimization Unmanned aerial vehicles Wireless power transmission wireless sensor networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MTplIBeFOrSNGmbo06HBx0qDnYLzRcI2zr24d_vS9qNCaIXb6W8tOH32vde2pffD6FLpVLjNKeRINpEzPAsUpbZKIuto1wpR1kRxCayXi8fDMTLmtSX7wmr6IEr4Np-C3mS8kyZPBQPcG2ljDWQlzLHWYi-JBPLxVQVgzlPg4wr5MY4gpo9XxKTMtHWowW9iWnqRd7XUlFg7P9WZq4XqyHbdHfRTl0m4ttqentow4730fYaeeABer1_e8I-CRmswqZarINCQ4Aal84Ny9Afjz_G2BMSDyGm4YkXRYMRo1LBbbH_mFYPA8tD1O8-vHceo1ogIdKMQKCKNTHMapfC8thSq60pEptmRBFBnFCJcKnhVoEbfHe0BiCSuBBxXjDFRAGl3RFqjMuxPUaYswKQJcQxRZiGZbFzxjptU2IVF3nWRFdLrKSu2cO9iMVQhr_YTEiPqwy4NtHFynZScWb8aHXnIV9ZeJ7rcAK8L2vvy7-830StpcNk_fLNZEIEpbAMpayJroMTf5mG7Dz3aTg6-Y8JnaItL0hfdaG1UGM-XdgztKk_5x-z6Xl4SL8Au93qfw priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R4FAOPNoilpcs0UsrpTiOncQnxFMcWlReEjcrfiGkZbPsAr8fe9aBrYS49BZFdjTyZ8-M7cn3AXzXurTeCJZJamzGragy7bjLqtx5JrT2jDcoNlGdndU3N_JvOnAbp7LKzieio7atiWfkuwWVjIW9BeN7w4csqkbF29UkofEJ5iJLQo6le5edJxaiRDHXECHzLGTudUdPyuWuuX9iv3JWRqn3qYCEvP3_JJvTKSvGnJOl_7V2GRZTtkn2J9NjBWbc4AssTHEQfoXzo4vfJMYySzT-m0sMCj0gYqT1vt9imT25G5DIa9wPrpEMo7Za6HHf6mA3iWdyqVto-Q2uT46vDk-zpLOQGU6Dv8sNtdwZX4ZdtmPOONsUrqyoppJ6qQvpSyucDmjGImsTRrLIG5nXDddcNiFDXIXZQTtwa0AEbwL4lHquKTdhd-29dd64kjotZF314Ec32MokEvKohdFXeBnOpYrAKASmBzuvbYcT6o13Wx1EzF5bRLpsfNGOblVafSryEBSlqLStMQMNNmptnQ3JTeUFZz3Y7GBUaQ2P1RuGPfiJs-ADM9Thn2uGT-sff2sDPkfF-kmZ2ibMPo6e3BbMm-fHu_FoG-fvCxAQ-Ts priority: 102 providerName: ProQuest |
| Title | DRL based binary computation offloading in wireless powered mobile edge computing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12658 https://www.proquest.com/docview/3092291724 https://doaj.org/article/04153657bd874163b6dbbded1247f542 |
| Volume | 17 |
| WOSCitedRecordID | wos001025826400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8636 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8636 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055644 issn: 1751-8628 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9q64M--FEVz9YjoC8Vtmazye4G-mJri4IeZ7VY-hJ28iGF6225tv79TrK7ZwtSKL4syzKBIZP5SHby-wG8RSxdsEpkmluXSaeqDL30WZX7IBRiELJJZBPVZFIfH-vpCuwMd2E6fIjlgVv0jBSvo4M32LGQUFFLRrRnV2I7F5RB78FanhdVXNNCToc4rFSZqFwpP-YZ1e31AE4q9fu_Y2-ko4Taf6PUvF6wpoxz8Pj_dH0Cj_pKk33olsZTWPHzdXh4DX_wGXz7ePiFxTzmGKZ7ucwmkodkLdaGMGtTiz07nbOIaTyjsMjOI68ajThrkXRh8TyuH0aSz-HoYP_H3qes51jIrOQU63LLnfQ2lLTD9sJb75rClxVHrnnQWOhQOuWRLBkbrC3NY5E3Oq8biVI3VB2-gNV5O_cvgSnZkOE5DxK5tLSzDsH5YH3JPSpdVyPYGqba2B6APPJgzEz6ES61idNk0jSN4M1S9ryD3fin1G602FIiQmWnD-3il-k9z0QMgqJUFbo6VZ-kI6LzjgqbKigpRrA52Nv0_nthCq6FoJ2skCN4lyx7ixpm7-uRSG-v7iK8AQ8id33XsLYJq5eLK_8a7tvfl6cXi3Fay2NY292fTA_H6ahgHBtTv9Nzqk7o-fPz5A9J_P0V |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48EYsFLAEHEAKdRw7iQ8IQUvVqtsVj1bqzcQvVGm7WXZbEH-K38h4NimLhHrrgVsU2ZFjf575bI_nA3hmbemjUyLT3PlMelVlNsiQVXmIQlkbhWxIbKIajerDQ_1hBX71d2FSWGVvE8lQ-9alPfL1gmshcG0h5JvptyypRqXT1V5CYwGL3fDzBy7Z5q93NnF8nwux9X5_YzvrVAUyJznO7txxL4OLJa4pgwgu-KYIZcUt1zxqW-hYehUstj2FFDtk_EXe6LxupJW60SnRAZr8S0gjhKZQwc-95VeqJPFY9Mh5hvXqPh2q1Ovu-FS8ykWZpOWXHCDpBPxFbpcpMvm4rRv_W-_chOsdm2ZvF_C_BSthchuuLeVYvAMfNz8NWfLVnlm6e8wcCVkQIlkb47ilawTsaMJS3uYxmn42TdpxWOO4tdhPLO05dtWw5F04uJB_ugerk3YS7gNTskFwcx6l5dLVdR2jD9GFkgerdF0N4EU_uMZ1SdaT1sfY0GG_1CYBwRAQBvD0rOx0kVrkn6XeJYyclUjpwOlFO_tqOutiUp6FolSV9TUxbGyjtT54JG9VVFIMYK2Hjels1Nz8wcwAXhLqzmmG2dg7EPT04PxvPYEr2_t7QzPcGe0-hKsCOeEiJG8NVk9mp-ERXHbfT47ms8c0dxh8uWg4_gaUkFfo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD4hQIw-AF6IK4hN1AdNxu102pnpgzHCupGAm9VIQnwp05shWXaWXdDw1_x1nnZncE0Mbzz4NpmcTnr5ei6d0_MBvNA6t94IlkhqbMKtKBLtuEuK1HkmtPaMV5FsohgMyuNjOVyCX-1dmJBW2erEqKhtbcIZeTejkjGMLRjv-iYtYtjrv5ucJ4FBKvxpbek05hA5cFc_MXybvd3v4Vq_ZKz_4evex6RhGEgMp7jTU0Mtd8bnGF865oyzVebygmoqqZc6kz63wmkcR0gvNuj9Z2kl07LimstKhqIHqP5XCowxQzrhUHxrrYAQeSSSReucJtiubEujctk1Z5fsTcryQDO_YAwjZ8Bfju6iuxztXX_9f56pDVhrvGzyfr4t7sOSGz-Aewu1Fx_C596XQxJsuCU63kkmJhJcRKSS2vtRHa8XkNMxCfWcR2gSyCRwymGLs1rjnJFwFtk0Q8lHcHQrY9qE5XE9do-BCF4h6Cn1XFNuyrL03jpvXE6dFrIsOvCqXWhlmuLrgQNkpGISAJcqgEJFUHTg-bXsZF5y5J9SuwEv1xKhTHh8UU-_q0brqFB_IctFoW0ZPW_so9bWWXTqCi8468B2CyHV6K6Z-oOfDryOCLyhG2rv0xGLT09u_tYzuIMoVIf7g4MtuMvQVZxn6m3D8sX00j2FVfPj4nQ23YnbiMDJbaPxN0foYME |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRL+based+binary+computation+offloading+in+wireless+powered+mobile+edge+computing&rft.jtitle=IET+communications&rft.au=Shen%2C+Guanqun&rft.au=Chen%2C+Wenchao&rft.au=Zhu%2C+Bincheng&rft.au=Chi%2C+Kaikai&rft.date=2023-09-01&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=17&rft.issue=15&rft.spage=1837&rft.epage=1849&rft_id=info:doi/10.1049%2Fcmu2.12658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cmu2_12658 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon |