Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination

We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance sampling are popular variance‐reduction strategies. Unfortunately, neither strategy improves the rate of convergence of Monte Carlo integration. J...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 4; pp. 93 - 102
Main Authors: Subr, Kartic, Nowrouzezahrai, Derek, Jarosz, Wojciech, Kautz, Jan, Mitchell, Kenny
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.07.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance sampling are popular variance‐reduction strategies. Unfortunately, neither strategy improves the rate of convergence of Monte Carlo integration. Jittered sampling (a type of stratified sampling), on the other hand is known to improve the convergence rate. Most rendering software optimistically combine importance sampling with jittered sampling, hoping to achieve both. We derive the exact error of the combination of multiple importance sampling with jittered sampling. In addition, we demonstrate a further benefit of introducing negative correlations (antithetic sampling) between estimates to the convergence rate. As with importance sampling, antithetic sampling is known to reduce error for certain classes of integrands without affecting the convergence rate. In this paper, our analysis and experiments reveal that importance and antithetic sampling, if used judiciously and in conjunction with jittered sampling, may improve convergence rates. We show the impact of such combinations of strategies on the convergence rate of estimators for direct illumination.
AbstractList We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance sampling are popular variance-reduction strategies. Unfortunately, neither strategy improves the rate of convergence of Monte Carlo integration. Jittered sampling (a type of stratified sampling), on the other hand is known to improve the convergence rate. Most rendering software optimistically combine importance sampling with jittered sampling, hoping to achieve both. We derive the exact error of the combination of multiple importance sampling with jittered sampling. In addition, we demonstrate a further benefit of introducing negative correlations (antithetic sampling) between estimates to the convergence rate. As with importance sampling, antithetic sampling is known to reduce error for certain classes of integrands without affecting the convergence rate. In this paper, our analysis and experiments reveal that importance and antithetic sampling, if used judiciously and in conjunction with jittered sampling, may improve convergence rates. We show the impact of such combinations of strategies on the convergence rate of estimators for direct illumination.
We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance sampling are popular variance-reduction strategies. Unfortunately, neither strategy improves the rate of convergence of Monte Carlo integration. Jittered sampling (a type of stratified sampling), on the other hand is known to improve the convergence rate. Most rendering software optimistically combine importance sampling with jittered sampling, hoping to achieve both. We derive the exact error of the combination of multiple importance sampling with jittered sampling. In addition, we demonstrate a further benefit of introducing negative correlations (antithetic sampling) between estimates to the convergence rate. As with importance sampling, antithetic sampling is known to reduce error for certain classes of integrands without affecting the convergence rate. In this paper, our analysis and experiments reveal that importance and antithetic sampling, if used judiciously and in conjunction with jittered sampling, may improve convergence rates. We show the impact of such combinations of strategies on the convergence rate of estimators for direct illumination. [PUBLICATION ABSTRACT]
Author Subr, Kartic
Jarosz, Wojciech
Nowrouzezahrai, Derek
Mitchell, Kenny
Kautz, Jan
Author_xml – sequence: 1
  givenname: Kartic
  surname: Subr
  fullname: Subr, Kartic
  organization: Disney Research, Zurich
– sequence: 2
  givenname: Derek
  surname: Nowrouzezahrai
  fullname: Nowrouzezahrai, Derek
  organization: University of Montreal
– sequence: 3
  givenname: Wojciech
  surname: Jarosz
  fullname: Jarosz, Wojciech
  organization: Disney Research, Zurich
– sequence: 4
  givenname: Jan
  surname: Kautz
  fullname: Kautz, Jan
  organization: University College London
– sequence: 5
  givenname: Kenny
  surname: Mitchell
  fullname: Mitchell, Kenny
  organization: Disney Research, Zurich
BookMark eNp9kEFPHCEYhkljk67aQ_8BSS_tYRSYAWaO7Ua3JkZ7sOmRfMvAimWGFZjo_vuyu-rBRLl8BJ73Tb7nEB2MYTQIfaHkhJZzqlf2hLKGig9oRhshq1bw7gDNCC13STj_hA5TuiOENFLwGfJnMYaIYQS_SS7hYLFJ2Q2QQ0w430LGUzJYh2HpRsgujDsm5aBvoYAaJxjW3o2r8hYhm5UzCdtS2btodMbO-2l4ih6jjxZ8Mp-f5hH6c352M_9VXV4vLuY_LivdkFpUPaG2Jb1mDdR9K3tihQEiQUvKGAWzBGb77UfXtWBasP2yDKkplx2wWtdH6Nu-dx3D_VT2UYNL2ngPowlTUpTzrrioZVPQr6_QuzDFYmNLNZyIljFeqO97SseQUjRWrWNxFDeKErX1rop3tfNe2NNXrHZ5t37x4_x7iQfnzebtajVfnD8nqn3CpWweXxIQ_ykha8nV36uF6hY_xc3VnKnf9X_ZHqer
CitedBy_id crossref_primary_10_1145_3476576_3476632
crossref_primary_10_1111_cgf_13042
crossref_primary_10_1111_cgf_13111
crossref_primary_10_1111_cgf_13653
crossref_primary_10_1111_cgf_13226
crossref_primary_10_1111_cgf_13777
crossref_primary_10_1111_cgf_13779
crossref_primary_10_1111_cgf_13935
crossref_primary_10_1145_2766930
crossref_primary_10_1145_3450626_3459783
crossref_primary_10_1145_3072959_3073656
crossref_primary_10_1186_s13634_018_0531_2
crossref_primary_10_1145_2932186
Cites_doi 10.1214/07-AOS548
10.1137/1012102
10.1145/2343483.2343502
10.1017/CBO9780511761188
10.1145/1015706.1015751
10.1145/882262.882314
10.1007/978-0-387-45528-0
10.1145/1073204.1073328
10.1017/S0305004100031467
10.1145/1187112.1187241
10.1145/2508363.2508411
10.1145/2231816.2231819
10.1017/S0305004100031455
10.1137/1.9781611970081
10.1057/palgrave.jors.2602645
10.1145/7529.8927
10.1111/j.1467-8659.2008.01252.x
10.1111/j.2397-2335.1934.tb04184.x
10.1080/01621459.2000.10473909
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12416
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 102
ExternalDocumentID 3372913241
10_1111_cgf_12416
CGF12416
ark_67375_WNG_9GB6TNC2_P
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4036-d01f80dc24a3d87d0f6ea07ac71221aeba2fdd87d998ae8afdbae87c1579a23c3
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340598800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Sep 05 07:48:09 EDT 2025
Fri Jul 25 23:47:31 EDT 2025
Tue Nov 18 21:56:39 EST 2025
Sat Nov 29 03:41:11 EST 2025
Fri Sep 19 01:20:00 EDT 2025
Tue Nov 11 03:30:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4036-d01f80dc24a3d87d0f6ea07ac71221aeba2fdd87d998ae8afdbae87c1579a23c3
Notes ark:/67375/WNG-9GB6TNC2-P
ArticleID:CGF12416
istex:ED15226B180FB44C7791D91EC3A00426698015F7
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12416
PQID 1545068225
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1559705374
proquest_journals_1545068225
crossref_primary_10_1111_cgf_12416
crossref_citationtrail_10_1111_cgf_12416
wiley_primary_10_1111_cgf_12416_CGF12416
istex_primary_ark_67375_WNG_9GB6TNC2_P
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hammersley J.M., Mauldon J.G.: General Principles of Antithetic Variates. Proc. Cambridge Philos. Soc. 52 (1956), 476-481. 2
Owen A., Zhou Y.: Safe and Effective Importance Sampling. Journal of the American Statistical Association 95, 449 (2000), 135-143. 2
Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, 1992. 3
Owen A.B.: Local Antithetic Sampling with Scrambled Nets. The Annals of Statistics 36, 5 (2008), 2319-2343. 2, 3, 6
Agarwal S., Ramamoorthi R., Belongie S., Jensen H.W.: Structured Importance Sampling of Environment Maps. ACM Transactions on Graphics 22, 3 (2003), 605-612. 2
Neyman J.: On the two different aspects of the representative method: the method of stratified sampling and of purposive selection. J. of the Royal Stat. Society 97, 4 (1934), 558-625. 3
Haber, S.: Numerical Evaluation of Multiple Integrals. SIAM Review 12 (1970), 481-526. 3
Bishop C.M.: Pattern Recognition and Machine Learning. Springer, 2006. 2
Křivánek J., Colbert M.: Real-time Shading with Filtered Importance Sampling. Computer Graphics Forum (EGSR '08) 27, 4 (2008), 1147-1154. 3
Ramamoorthi R., Anderson J., Meyer M., Nowrouzezahrai D.: A Theory of Monte Carlo Visibility Sampling. ACM Trans. Graph. 31, 5 (2012), 121:1-121:16. 3, 6
Cook R.L.: Stochastic Sampling in Computer Graphics. ACM Transactions on Graphics 5, 1 (Jan. 1986), 51-72. 2
Hesterberg T.C.: Advances in Importance Sampling. PhD thesis, Stanford University, 2003. 2
Georgiev I., Křivánek J., Hachisuka T., Nowrouzezahrai D., Jarosz W.: Joint Importance Sampling of Low-order Volumetric Scattering. ACM Transactions on Graphics 32, 6 (2013), 164:1-164:14. 2
Dick J., Pillichshammer F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, New York, NY, USA, 2010. 3
Clarberg P., Jarosz W., Akenine-Möller T., Jensen H.W.: Wavelet Importance Sampling: Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005). 2
Hammersley J.M., Morton K.W.: A New Monte Carlo Technique: Antithetic Variates. Proc. Cambridge Philos. Soc. 52 (1956), 449-475. 2
Saliby E., Paul R.J.: A farewell to the use of antithetic variates in Monte Carlo simulation. JORS 60, 7 (2009), 1026-1035. 2
Keller A., Heinrich S., Niederreiter H.: Monte Carlo and Quasi-Monte Carlo methods. Springer, 2006. 3
Veach E.: Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University, 1997. 1, 2
Keller A.: Quasi-Monte Carlo methods in computer graphics: the global illumination problem. Lectures in Applied Mathematics. 32 (1996), 455-470. 3
2012
2010
1956; 52
2009; 60
1970; 12
2008; 36
2000; 95
1997
1996
2006
1995
2005
2004
2003
1992
1996; 32
2012; 31
2005; 24
2013; 32
1986; 5
2008; 27
1934; 97
1983
2013
2003; 22
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
Veach E. (e_1_2_8_33_2) 1995
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
Veach E. (e_1_2_8_32_2) 1997
e_1_2_8_26_2
e_1_2_8_9_2
Hesterberg T.C. (e_1_2_8_10_2) 2003
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_22_2
Keller A. (e_1_2_8_15_2) 1996; 32
NELSEN R.B. (e_1_2_8_21_2) 2006
e_1_2_8_17_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
Keller A. (e_1_2_8_16_2) 2006
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_11_2
Lemieux C. (e_1_2_8_18_2) 2010
References_xml – reference: Hammersley J.M., Morton K.W.: A New Monte Carlo Technique: Antithetic Variates. Proc. Cambridge Philos. Soc. 52 (1956), 449-475. 2
– reference: Bishop C.M.: Pattern Recognition and Machine Learning. Springer, 2006. 2
– reference: Haber, S.: Numerical Evaluation of Multiple Integrals. SIAM Review 12 (1970), 481-526. 3
– reference: Owen A., Zhou Y.: Safe and Effective Importance Sampling. Journal of the American Statistical Association 95, 449 (2000), 135-143. 2
– reference: Hesterberg T.C.: Advances in Importance Sampling. PhD thesis, Stanford University, 2003. 2
– reference: Clarberg P., Jarosz W., Akenine-Möller T., Jensen H.W.: Wavelet Importance Sampling: Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005). 2
– reference: Georgiev I., Křivánek J., Hachisuka T., Nowrouzezahrai D., Jarosz W.: Joint Importance Sampling of Low-order Volumetric Scattering. ACM Transactions on Graphics 32, 6 (2013), 164:1-164:14. 2
– reference: Ramamoorthi R., Anderson J., Meyer M., Nowrouzezahrai D.: A Theory of Monte Carlo Visibility Sampling. ACM Trans. Graph. 31, 5 (2012), 121:1-121:16. 3, 6
– reference: Hammersley J.M., Mauldon J.G.: General Principles of Antithetic Variates. Proc. Cambridge Philos. Soc. 52 (1956), 476-481. 2
– reference: Veach E.: Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University, 1997. 1, 2
– reference: Cook R.L.: Stochastic Sampling in Computer Graphics. ACM Transactions on Graphics 5, 1 (Jan. 1986), 51-72. 2
– reference: Saliby E., Paul R.J.: A farewell to the use of antithetic variates in Monte Carlo simulation. JORS 60, 7 (2009), 1026-1035. 2
– reference: Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, 1992. 3
– reference: Agarwal S., Ramamoorthi R., Belongie S., Jensen H.W.: Structured Importance Sampling of Environment Maps. ACM Transactions on Graphics 22, 3 (2003), 605-612. 2
– reference: Dick J., Pillichshammer F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, New York, NY, USA, 2010. 3
– reference: Neyman J.: On the two different aspects of the representative method: the method of stratified sampling and of purposive selection. J. of the Royal Stat. Society 97, 4 (1934), 558-625. 3
– reference: Keller A.: Quasi-Monte Carlo methods in computer graphics: the global illumination problem. Lectures in Applied Mathematics. 32 (1996), 455-470. 3
– reference: Křivánek J., Colbert M.: Real-time Shading with Filtered Importance Sampling. Computer Graphics Forum (EGSR '08) 27, 4 (2008), 1147-1154. 3
– reference: Owen A.B.: Local Antithetic Sampling with Scrambled Nets. The Annals of Statistics 36, 5 (2008), 2319-2343. 2, 3, 6
– reference: Keller A., Heinrich S., Niederreiter H.: Monte Carlo and Quasi-Monte Carlo methods. Springer, 2006. 3
– start-page: 277
  year: 1996
  end-page: 280
– volume: 32
  start-page: 455
  year: 1996
  end-page: 470
  article-title: Quasi‐Monte Carlo methods in computer graphics: the global illumination problem
  publication-title: Lectures in Applied Mathematics.
– year: 1983
– volume: 27
  start-page: 1147
  issue: 4
  year: 2008
  end-page: 1154
  article-title: Real‐time Shading with Filtered Importance Sampling
  publication-title: Computer Graphics Forum (EGSR '08)
– volume: 24
  issue: 3
  year: 2005
  article-title: Wavelet Importance Sampling: Efficiently Evaluating Products of Complex Functions
  publication-title: ACM Transactions on Graphics
– volume: 52
  start-page: 449
  year: 1956
  end-page: 475
  article-title: A New Monte Carlo Technique: Antithetic Variates
  publication-title: Proc. Cambridge Philos. Soc.
– start-page: 183
  end-page: 194
– volume: 5
  issue: 1
  year: 1986
  article-title: Stochastic Sampling in Computer Graphics
  publication-title: ACM Transactions on Graphics
– year: 2003
– volume: 12
  start-page: 481
  year: 1970
  end-page: 526
  article-title: Numerical Evaluation of Multiple Integrals
  publication-title: SIAM Review
– year: 1992
– volume: 97
  start-page: 558
  issue: 4
  year: 1934
  end-page: 625
  article-title: On the two different aspects of the representative method: the method of stratified sampling and of purposive selection
  publication-title: J. of the Royal Stat. Society
– volume: 31
  start-page: 121:1
  issue: 5
  year: 2012
  end-page: 121:16
  article-title: A Theory of Monte Carlo Visibility Sampling
  publication-title: ACM Trans. Graph
– year: 2010
– volume: 36
  start-page: 2319
  issue: 5
  year: 2008
  end-page: 2343
  article-title: Local Antithetic Sampling with Scrambled Nets
  publication-title: The Annals of Statistics
– volume: 60
  start-page: 1026
  issue: 7
  year: 2009
  end-page: 1035
  article-title: A farewell to the use of antithetic variates in Monte Carlo simulation
  publication-title: JORS
– start-page: 496
  year: 2004
  end-page: 505
– volume: 22
  start-page: 605
  issue: 3
  year: 2003
  end-page: 612
  article-title: Structured Importance Sampling of Environment Maps
  publication-title: ACM Transactions on Graphics
– start-page: 147
  year: 2005
  end-page: 156
– volume: 52
  start-page: 476
  year: 1956
  end-page: 481
  article-title: General Principles of Antithetic Variates
  publication-title: Proc. Cambridge Philos. Soc.
– year: 2006
– year: 1997
– volume: 95
  start-page: 135
  issue: 449
  year: 2000
  end-page: 143
  article-title: Safe and Effective Importance Sampling
  publication-title: Journal of the American Statistical Association
– start-page: 21:1
  year: 2012
  end-page: 21:46
– volume: 32
  start-page: 164:1
  issue: 6
  year: 2013
  end-page: 164:14
  article-title: Joint Importance Sampling of Low‐order Volumetric Scattering
  publication-title: ACM Transactions on Graphics
– start-page: 419
  year: 1995
  end-page: 428
– year: 2013
– volume-title: Springer Series in Statistics
  year: 2006
  ident: e_1_2_8_21_2
– volume-title: Springer Series in Statistics
  year: 2010
  ident: e_1_2_8_18_2
– ident: e_1_2_8_27_2
– ident: e_1_2_8_24_2
  doi: 10.1214/07-AOS548
– ident: e_1_2_8_9_2
  doi: 10.1137/1012102
– ident: e_1_2_8_17_2
  doi: 10.1145/2343483.2343502
– ident: e_1_2_8_7_2
  doi: 10.1017/CBO9780511761188
– ident: e_1_2_8_19_2
  doi: 10.1145/1015706.1015751
– ident: e_1_2_8_2_2
  doi: 10.1145/882262.882314
– ident: e_1_2_8_4_2
  doi: 10.1007/978-0-387-45528-0
– volume-title: Monte Carlo and Quasi‐Monte Carlo methods
  year: 2006
  ident: e_1_2_8_16_2
– volume-title: Robust Monte Carlo Methods for Light Transport Simulation
  year: 1997
  ident: e_1_2_8_32_2
– ident: e_1_2_8_5_2
  doi: 10.1145/1073204.1073328
– ident: e_1_2_8_11_2
  doi: 10.1017/S0305004100031467
– ident: e_1_2_8_29_2
– ident: e_1_2_8_3_2
  doi: 10.1145/1187112.1187241
– ident: e_1_2_8_8_2
  doi: 10.1145/2508363.2508411
– ident: e_1_2_8_28_2
  doi: 10.1145/2231816.2231819
– ident: e_1_2_8_31_2
– volume: 32
  start-page: 455
  year: 1996
  ident: e_1_2_8_15_2
  article-title: Quasi‐Monte Carlo methods in computer graphics: the global illumination problem
  publication-title: Lectures in Applied Mathematics.
– ident: e_1_2_8_20_2
– start-page: 419
  volume-title: 22Nd Annual Conference on Computer Graphics and Interactive Techniques
  year: 1995
  ident: e_1_2_8_33_2
– ident: e_1_2_8_25_2
– volume-title: Advances in Importance Sampling
  year: 2003
  ident: e_1_2_8_10_2
– ident: e_1_2_8_12_2
  doi: 10.1017/S0305004100031455
– ident: e_1_2_8_23_2
  doi: 10.1137/1.9781611970081
– ident: e_1_2_8_30_2
  doi: 10.1057/palgrave.jors.2602645
– ident: e_1_2_8_6_2
  doi: 10.1145/7529.8927
– ident: e_1_2_8_14_2
  doi: 10.1111/j.1467-8659.2008.01252.x
– ident: e_1_2_8_22_2
  doi: 10.1111/j.2397-2335.1934.tb04184.x
– ident: e_1_2_8_13_2
– ident: e_1_2_8_26_2
  doi: 10.1080/01621459.2000.10473909
SSID ssj0004765
Score 2.1737416
Snippet We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Computer simulation
Convergence
Estimating techniques
Estimators
I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Illumination
Importance sampling
Monte Carlo methods
Monte Carlo simulation
Multimedia computer applications
Sampling
Strategy
Studies
Telematics
Title Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination
URI https://api.istex.fr/ark:/67375/WNG-9GB6TNC2-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12416
https://www.proquest.com/docview/1545068225
https://www.proquest.com/docview/1559705374
Volume 33
WOSCitedRecordID wos000340598800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7qnQ_6oNVaPFtlFZG-nCSbTTZLn_TsXR_KUaTFvi2T3U1brDlJcuKf705-eYUWBJ8SyCwZdnYy32xmvwF4b5WJrCHKWZ4gtTCLp5hbOc0UqhhdkuaqOSh8IpfL9OJCnW7BYX8WpuWHGDbcyDOa7zU5OGbVhpOby_yjD05h8gDG3K9bMYLxl6_z85O_xyJlEvfU3kQa0xELUSHPMPhWOBrTzP6-hTU3EWsTcuZP_0vZbXjSIU32qV0az2DLFc_h8Qb_4A7cHJXlqmTYEZOwVc6IdOMHJeIVq6-wZuvKMf8ynz-3W3sk4_GiuUIieGYVUkV6ccmquuecYB4GszZSsmvqo9wNfQHn86Oz2fG0a78wNYJoim0Q5mlgDRcY2VTaIE8cBhKNDDkP0WXIc0sPfMaGLvUmzvxFmjCWCnlkol0YFavCvQSmMuGiMBcmjoywqcAkE6pBZ9zn51k8gYPeCtp03OTUIuNG9zmKn0DdTOAE3g2iP1tCjruEPjSmHCSw_E4VbDLW35YLrRafk7PljOvTCez3ttad81aaUGWQeOTk9Xo7PPZuR_9SsHCrNcn4TIy4cITXvbH8_dro2WLe3Lz6d9E9eOShmWgLg_dhVJdr9xoeml_1dVW-6Vb6H2S8Axo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qnaA--C09rbqKiC9X8rHJZsEXPXtX8QxFrti3ZbK7aYttTpKc-Oe7ky-voCD4lEBmybCzk_nNZvY3AK-M1KHRRDkbxEgtzKIp5kZMM4kyQhsnuWwOCi9FmiYnJ_JoB972Z2Fafohhw408o_lek4PThvSWl-vTfN9FJz--BmPullE0gvGHL_Pj5e9zkSKOem5vYo3pmIWokmcYfCUejWlqf14Bm9uQtYk58zv_p-1duN1hTfauXRz3YMcW9-HWFgPhA7g4KMt1ybCjJmHrnBHtxiWl4hWrz7Bmm8oy9zaXQbebeyTjEKM-Q6J4ZhVSTXpxyqq6Z51gDgizNlayc-qk3A19CMfzg9XscNo1YJhqTkTFxvPzxDM64BiaRBgvjy16ArXwg8BHm2GQG3rgcja0iTNy5i5C-5GQGIQ6fASjYl3YXWAy4zb0c66jUHOTcIwzLht8FrgMPYsm8KY3g9IdOzk1ybhQfZbiJlA1EziBl4Po95aS409CrxtbDhJYfqMaNhGpr-lCycX7eJXOAnU0gb3e2Kpz30oRrvRih52cXi-Gx87x6G8KFna9IRmXixEbDne6N6b_uzZqtpg3N4__XfQ53DhcfV6q5cf00xO46YAab8uE92BUlxv7FK7rH_V5VT7rlv0v3gwHCg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9qT0Qf_BZPq64i4suVfGx2s-CLXptTPMIhLfZtmexHW6y5kuTEP9-dfHkFBcGnBDJLhp2dzG82s78h5LWROjYaKWcjDtjCLJmBM2JWSJAJWJ462R4UXoo8T09O5GqHvBvOwnT8EOOGG3pG-71GB7eXxm15uT51-z46hfwambBEcu-Wk4Mv2fHy97lIwZOB2xtZY3pmIazkGQdfiUcTnNqfV8DmNmRtY0525_-0vUtu91iTvu8Wxz2yY8v75NYWA-EDcnFYVeuKQk9NQteOIu3Gd0zFa9qcQUM3taX-bT6D7jb3UMYjRn0GSPFMa8Ca9PKU1s3AOkE9EKZdrKTn2Em5H_qQHGeHR_OPs74Bw0wzJCo2QejSwOiIQWxSYQLHLQQCtAijKARbQOQMPvA5G9jUG7nwF6HDREiIYh0_IrvlurSPCZUFs3HomE5izUzKgBdMtvgs8hl6kUzJ28EMSvfs5Ngk40INWYqfQNVO4JS8GkUvO0qOPwm9aW05SkD1DWvYRKK-5gslFx_4UT6P1GpK9gZjq959a4W4MuAeO3m9Xo6PvePh3xQo7XqDMj4XQzYc5nVvTf93bdR8kbU3T_5d9AW5sTrI1PJT_vkpuelxGuuqhPfIblNt7DNyXf9ozuvqeb_qfwFf7gaF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+analysis+of+estimators+that+use+combinations+of+stochastic+sampling+strategies+for+direct+illumination&rft.jtitle=Computer+graphics+forum&rft.au=Subr%2C+Kartic&rft.au=Nowrouzezahrai%2C+Derek&rft.au=Jarosz%2C+Wojciech&rft.au=Kautz%2C+Jan&rft.date=2014-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=4&rft.spage=93&rft_id=info:doi/10.1111%2Fcgf.12416&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3372913241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon