Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual...
Uloženo v:
| Vydáno v: | Numerical methods for partial differential equations Ročník 30; číslo 4; s. 1211 - 1233 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Blackwell Publishing Ltd
01.07.2014
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0749-159X, 1098-2426 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well‐known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well‐posed and propose a conforming Galerkin method based on the lowest‐order Arnold–Falk–Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211–1233, 2014 |
|---|---|
| Bibliografie: | ArticleID:NUM21866 istex:26A31C7593A0D39B5231DDC0A47AA52D3D799DAC ark:/67375/WNG-13LLCT9Z-1 BASAL (Project CMM), Universidad de Chile, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción, CONICYT-Chile [Anillo ACT1118 (ANANUM) and Fondecyt Project 1110324], and Ministery of Education of Spain (Project MTM2010-18427). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0749-159X 1098-2426 |
| DOI: | 10.1002/num.21866 |