Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D

We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical methods for partial differential equations Ročník 30; číslo 4; s. 1211 - 1233
Hlavní autoři: Gatica, Gabriel N., Heuer, Norbert, Meddahi, Salim
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Blackwell Publishing Ltd 01.07.2014
Wiley Subscription Services, Inc
Témata:
ISSN:0749-159X, 1098-2426
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well‐known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well‐posed and propose a conforming Galerkin method based on the lowest‐order Arnold–Falk–Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211–1233, 2014
AbstractList We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well‐known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well‐posed and propose a conforming Galerkin method based on the lowest‐order Arnold–Falk–Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211–1233, 2014
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three-dimensional time-harmonic fluid-solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well-known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well-posed and propose a conforming Galerkin method based on the lowest-order Arnold-Falk-Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright copyright 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211-1233, 2014
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three-dimensional time-harmonic fluid-solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well-known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well-posed and propose a conforming Galerkin method based on the lowest-order Arnold-Falk-Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211-1233, 2014 [PUBLICATION ABSTRACT]
Author Gatica, Gabriel N.
Meddahi, Salim
Heuer, Norbert
Author_xml – sequence: 1
  givenname: Gabriel N.
  surname: Gatica
  fullname: Gatica, Gabriel N.
  organization: CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, 160-C, Casilla, Chile
– sequence: 2
  givenname: Norbert
  surname: Heuer
  fullname: Heuer, Norbert
  organization: Departamento de Matemática, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
– sequence: 3
  givenname: Salim
  surname: Meddahi
  fullname: Meddahi, Salim
  email: salim@uniovi.es
  organization: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, España, Oviedo
BookMark eNp9kE1PHSEUhomxSa-2i_4Dkm7axSgwzAfL5taqydVuNG26IcxwUCwDt8Ck6q-X61UXJu0Kwnmf95BnD-364AGhD5QcUELYoZ-nA0b7tt1BC0pEXzHO2l20IB0XFW3Ez7doL6UbQihtqFigvAzz2ll_hYPBk70FjY31NgMGBxP4jJXXOGU1WGfvy3QIs9cq3r3MJ8jXQSdsQsQKGzdbXaXgrMbWZ4hqzDZ4vI5hKEB5w_XXd-iNUS7B-6dzH11-O7pYnlSr78enyy-rauSkbquBEdJ0PW2YoH0jBtWNChhtDac1GE2ZIoMwRowj16QDPYjeCCDCQG_aumX1Pvq07S3b_8yQspxsGsE55SHMSdKGU05IzXiJfnwVvQlz9OV3ciOK8J4_Fn7epsYYUopg5DraqdiQlMiNf1n8y0f_JXv4KjvarDYyclTW_Y_4ax3c_btanl-ePRPVlrApw-0LoeJv2XZ118gf58eS1qvV8kL8KpcH8Seo4Q
CitedBy_id crossref_primary_10_1007_s10958_024_07112_1
crossref_primary_10_1007_s10958_021_05618_6
crossref_primary_10_1016_j_jcp_2021_110867
crossref_primary_10_1016_j_ifacol_2015_09_318
crossref_primary_10_1002_nme_5243
crossref_primary_10_1007_s10958_025_07662_y
crossref_primary_10_1137_18M1198235
Cites_doi 10.1137/110836705
10.1007/978-3-642-97146-4
10.1002/num.20074
10.1137/060660370
10.1016/B978-0-444-87272-2.50054-3
10.1137/0519043
10.1007/978-1-4757-4338-8
10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S
10.1007/978-3-662-03537-5
10.1007/s00211-004-0579-9
10.1137/050639958
10.1007/b98828
10.1016/j.apnum.2008.12.025
10.1007/978-1-4612-3172-1
10.1090/S0025-5718-07-01998-9
10.1017/S0962492902000041
10.1017/S0962492906210018
10.1137/S0036139993259027
10.1090/qam/1096235
10.1016/j.jcp.2004.02.005
ContentType Journal Article
Copyright Copyright © 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.21866
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 1233
ExternalDocumentID 3285632141
10_1002_num_21866
NUM21866
ark_67375_WNG_13LLCT9Z_1
Genre article
GrantInformation_xml – fundername: BASAL (Project CMM), Universidad de Chile, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción, CONICYT‐Chile [Anillo ACT1118 (ANANUM) and Fondecyt Project 1110324], and Ministery of Education of Spain (Project MTM2010‐18427).
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4036-b20057815291859ba7cae216f413efd12a0b9ff9cc4d07edb98f9e09fe8f63623
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335013400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-159X
IngestDate Fri Jul 11 08:48:19 EDT 2025
Fri Jul 25 12:19:31 EDT 2025
Tue Nov 18 22:32:16 EST 2025
Sat Nov 29 05:35:12 EST 2025
Wed Jan 22 16:52:32 EST 2025
Sun Sep 21 06:20:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4036-b20057815291859ba7cae216f413efd12a0b9ff9cc4d07edb98f9e09fe8f63623
Notes ArticleID:NUM21866
istex:26A31C7593A0D39B5231DDC0A47AA52D3D799DAC
ark:/67375/WNG-13LLCT9Z-1
BASAL (Project CMM), Universidad de Chile, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción, CONICYT-Chile [Anillo ACT1118 (ANANUM) and Fondecyt Project 1110324], and Ministery of Education of Spain (Project MTM2010-18427).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://hdl.handle.net/10651/26337
PQID 1519048462
PQPubID 1016406
PageCount 23
ParticipantIDs proquest_miscellaneous_1541400324
proquest_journals_1519048462
crossref_primary_10_1002_num_21866
crossref_citationtrail_10_1002_num_21866
wiley_primary_10_1002_num_21866_NUM21866
istex_primary_ark_67375_WNG_13LLCT9Z_1
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationTitleAlternate Numer. Methods Partial Differential Eq
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. Buffa and R. Hiptmair, Regularized combined field integral equations, Numer Math 100 (2005) 1-19.
C. J. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J Appl Math 55 (1995) 904-922.
G. Hsiao, The coupling of BEM and FEM-A brief review, Boundary elements X, Vol. 1, Springer-Verlag, New York, 1988 pp. 431-445.
G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of BEM, FEM, and mixed-FEM for a two-dimensional fluid-solid interaction problem, Appl Numer Math 59 (2009) 2735-2750.
D. Boffi, F. Brezzi, and M. Fortin, Reduced symmetry elements in linear elasticity, Commun Pure Appl Anal 8 (2009), 1-28.
A. Márquez, S. Meddahi, and V. Selgas A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems, J Comput Phy 199 (2004) 205-220.
S. A. Sauter and C. Schwab, Boundary element methods, Springer Series in Computational Mathematics 39, Springer-Verlag, Berlin 2011.
G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D, SIAM J Numer Anal 50 (2012), 1648-1674.
W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.
G. C. Hsiao, R. E. Kleinman, and G. F Roach, Weak solutions of fluid-solid interaction problems, Mathe Nachrich 218 (2000) 139-163.
M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements The mathematics of finite elements and applications IV, Academic Press, London, 1988.
D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd Ed., Springer-Verlag, Berlin, 1998.
J. Bielak and R. C. MacCamy, Symmetric finite element and boundary integral coupling methods for fluid-solid interaction Q Appl Math 49 (1991) 107-119.
R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer 11 (2002), 237-339.
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Verlag, 1991.
R. Hiptmair and P. Meury, Stabilized FEM-BEM coupling for Helmholtz transmission problems, SIAM J Numer Analy 44 (2006) 2107-2130.
S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer-Verlag, New York Inc., New York, 1994.
A. Ern and J.-L. Guermond, Elément finis: théorie, applications mise en euvre Vol. 36 SMAI Mathématiques et Applications, Springer, Heidelberg, 2002.
R. Kress, Linear integral equations, Springer-Verlag, Berlin, 1989.
S. Meddahi and Sayas F.-J., Analysis of a new BEM-FEM coupling for two dimensional fluid-solid interaction Numer Meth Partial Differen Equ 21 (2005), 1017-1042.
D. N. Arnold, R. S. Falk, and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math Comput 76 (2007), 1699-1723.
D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica 15 (2006) 1-155.
M. Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J Numer Anal 19 (1988) 613-626.
G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem, SIAM J Numer Anal 45 (2007) 2072-2097.
F. Ihlenburg, Finite element analysis of acoustic scattering, Springer-Verlag, New York, 1998.
2012; 50
2004; 199
1988; 1
1991; 49
2011
2005; 100
2000
1988; 19
2006; 44
2000; 218
1995; 55
2006; 15
2002; 11
1998
2005; 21
2009; 8
1994
1991
2002
2007; 76
2007; 45
2009; 59
1989
1988
Sauter S. A. (e_1_2_6_14_1) 2011
Dauge M. (e_1_2_6_24_1) 1988
e_1_2_6_10_1
McLean W. (e_1_2_6_19_1) 2000
e_1_2_6_30_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Costabel M. (e_1_2_6_21_1) 1988
e_1_2_6_20_1
Hsiao G. C. (e_1_2_6_3_1) 1994
e_1_2_6_9_1
Ern A. (e_1_2_6_26_1) 2002
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
Boffi D. (e_1_2_6_27_1) 2009; 8
Hsiao G. (e_1_2_6_13_1) 1988
References_xml – reference: S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer-Verlag, New York Inc., New York, 1994.
– reference: S. A. Sauter and C. Schwab, Boundary element methods, Springer Series in Computational Mathematics 39, Springer-Verlag, Berlin 2011.
– reference: S. Meddahi and Sayas F.-J., Analysis of a new BEM-FEM coupling for two dimensional fluid-solid interaction Numer Meth Partial Differen Equ 21 (2005), 1017-1042.
– reference: J. Bielak and R. C. MacCamy, Symmetric finite element and boundary integral coupling methods for fluid-solid interaction Q Appl Math 49 (1991) 107-119.
– reference: G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of BEM, FEM, and mixed-FEM for a two-dimensional fluid-solid interaction problem, Appl Numer Math 59 (2009) 2735-2750.
– reference: A. Buffa and R. Hiptmair, Regularized combined field integral equations, Numer Math 100 (2005) 1-19.
– reference: G. Hsiao, The coupling of BEM and FEM-A brief review, Boundary elements X, Vol. 1, Springer-Verlag, New York, 1988 pp. 431-445.
– reference: D. Boffi, F. Brezzi, and M. Fortin, Reduced symmetry elements in linear elasticity, Commun Pure Appl Anal 8 (2009), 1-28.
– reference: A. Márquez, S. Meddahi, and V. Selgas A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems, J Comput Phy 199 (2004) 205-220.
– reference: W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.
– reference: D. N. Arnold, R. S. Falk, and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math Comput 76 (2007), 1699-1723.
– reference: C. J. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J Appl Math 55 (1995) 904-922.
– reference: G. C. Hsiao, R. E. Kleinman, and G. F Roach, Weak solutions of fluid-solid interaction problems, Mathe Nachrich 218 (2000) 139-163.
– reference: A. Ern and J.-L. Guermond, Elément finis: théorie, applications mise en euvre Vol. 36 SMAI Mathématiques et Applications, Springer, Heidelberg, 2002.
– reference: R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer 11 (2002), 237-339.
– reference: G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D, SIAM J Numer Anal 50 (2012), 1648-1674.
– reference: F. Ihlenburg, Finite element analysis of acoustic scattering, Springer-Verlag, New York, 1998.
– reference: D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd Ed., Springer-Verlag, Berlin, 1998.
– reference: R. Kress, Linear integral equations, Springer-Verlag, Berlin, 1989.
– reference: M. Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J Numer Anal 19 (1988) 613-626.
– reference: R. Hiptmair and P. Meury, Stabilized FEM-BEM coupling for Helmholtz transmission problems, SIAM J Numer Analy 44 (2006) 2107-2130.
– reference: M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements The mathematics of finite elements and applications IV, Academic Press, London, 1988.
– reference: G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem, SIAM J Numer Anal 45 (2007) 2072-2097.
– reference: D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica 15 (2006) 1-155.
– reference: F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Verlag, 1991.
– year: 2011
– volume: 218
  start-page: 139
  year: 2000
  end-page: 163
  article-title: Weak solutions of fluid‐solid interaction problems
  publication-title: Mathe Nachrich
– volume: 11
  start-page: 237
  year: 2002
  end-page: 339
  article-title: Finite elements in computational electromagnetism
  publication-title: Acta Numer
– start-page: 79
  year: 1994
  end-page: 88
– volume: 59
  start-page: 2735
  year: 2009
  end-page: 2750
  article-title: Analysis of the coupling of BEM, FEM, and mixed‐FEM for a two‐dimensional fluid‐solid interaction problem
  publication-title: Appl Numer Math
– year: 1989
– year: 2000
– volume: 55
  start-page: 904
  year: 1995
  end-page: 922
  article-title: Fluid–solid interaction: acoustic scattering by a smooth elastic obstacle
  publication-title: SIAM J Appl Math
– volume: 19
  start-page: 613
  year: 1988
  end-page: 626
  article-title: Boundary integral operators on Lipschitz domains: elementary results
  publication-title: SIAM J Numer Anal
– volume: 76
  start-page: 1699
  year: 2007
  end-page: 1723
  article-title: Mixed finite element methods for linear elasticity with weakly imposed symmetry
  publication-title: Math Comput
– volume: 45
  start-page: 2072
  year: 2007
  end-page: 2097
  article-title: Analysis of the coupling of primal and dual‐mixed finite element methods for a two‐dimensional fluid‐solid interaction problem
  publication-title: SIAM J Numer Anal
– volume: 100
  start-page: 1
  year: 2005
  end-page: 19
  article-title: Regularized combined field integral equations
  publication-title: Numer Math
– year: 1994
– year: 1998
– volume: 199
  start-page: 205
  year: 2004
  end-page: 220
  article-title: A new BEM‐FEM coupling strategy for two‐dimensional fluid‐solid interaction problems
  publication-title: J Comput Phy
– volume: 21
  start-page: 1017
  year: 2005
  end-page: 1042
  article-title: Analysis of a new BEM‐FEM coupling for two dimensional fluid‐solid interaction
  publication-title: Numer Meth Partial Differen Equ
– start-page: 321
  year: 1989
  end-page: 326
– volume: 50
  start-page: 1648
  year: 2012
  end-page: 1674
  article-title: Analysis of the coupling of Lagrange and Arnold‐Falk‐Winther finite elements for a fluid‐solid interaction problem in 3D
  publication-title: SIAM J Numer Anal
– volume: 44
  start-page: 2107
  year: 2006
  end-page: 2130
  article-title: Stabilized FEM‐BEM coupling for Helmholtz transmission problems
  publication-title: SIAM J Numer Analy
– volume: 15
  start-page: 1
  year: 2006
  end-page: 155
  article-title: Finite element exterior calculus, homological techniques, and applications
  publication-title: Acta Numerica
– year: 2002
– year: 1988
– volume: 8
  start-page: 1
  year: 2009
  end-page: 28
  article-title: Reduced symmetry elements in linear elasticity
  publication-title: Commun Pure Appl Anal
– volume: 1
  start-page: 431
  year: 1988
  end-page: 445
– volume: 49
  start-page: 107
  year: 1991
  end-page: 119
  article-title: Symmetric finite element and boundary integral coupling methods for fluid‐solid interaction
  publication-title: Q Appl Math
– year: 1991
– ident: e_1_2_6_10_1
  doi: 10.1137/110836705
– ident: e_1_2_6_30_1
  doi: 10.1007/978-3-642-97146-4
– ident: e_1_2_6_8_1
  doi: 10.1002/num.20074
– ident: e_1_2_6_9_1
  doi: 10.1137/060660370
– volume-title: Boundary element methods, Springer Series in Computational Mathematics 39
  year: 2011
  ident: e_1_2_6_14_1
– ident: e_1_2_6_5_1
  doi: 10.1016/B978-0-444-87272-2.50054-3
– ident: e_1_2_6_29_1
– ident: e_1_2_6_20_1
  doi: 10.1137/0519043
– volume-title: Symmetric methods for the coupling of finite elements and boundary elements The mathematics of finite elements and applications IV
  year: 1988
  ident: e_1_2_6_21_1
– volume-title: Lecture Notes in Mathematics, 1341
  year: 1988
  ident: e_1_2_6_24_1
– ident: e_1_2_6_22_1
  doi: 10.1007/978-1-4757-4338-8
– ident: e_1_2_6_4_1
  doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S
– ident: e_1_2_6_25_1
  doi: 10.1007/978-3-662-03537-5
– volume-title: Strongly elliptic systems and boundary integral equations
  year: 2000
  ident: e_1_2_6_19_1
– ident: e_1_2_6_15_1
  doi: 10.1007/s00211-004-0579-9
– ident: e_1_2_6_16_1
  doi: 10.1137/050639958
– ident: e_1_2_6_6_1
  doi: 10.1007/b98828
– ident: e_1_2_6_11_1
  doi: 10.1016/j.apnum.2008.12.025
– ident: e_1_2_6_17_1
  doi: 10.1007/978-1-4612-3172-1
– ident: e_1_2_6_12_1
  doi: 10.1090/S0025-5718-07-01998-9
– ident: e_1_2_6_28_1
  doi: 10.1017/S0962492902000041
– volume-title: Elément finis: théorie, applications mise en euvre Vol. 36 SMAI Mathématiques et Applications
  year: 2002
  ident: e_1_2_6_26_1
– ident: e_1_2_6_23_1
  doi: 10.1017/S0962492906210018
– ident: e_1_2_6_18_1
  doi: 10.1137/S0036139993259027
– start-page: 79
  volume-title: Teubner‐Text zur Mathematik, Band 34
  year: 1994
  ident: e_1_2_6_3_1
– volume: 8
  start-page: 1
  year: 2009
  ident: e_1_2_6_27_1
  article-title: Reduced symmetry elements in linear elasticity
  publication-title: Commun Pure Appl Anal
– start-page: 431
  volume-title: The coupling of BEM and FEM—A brief review, Boundary elements X
  year: 1988
  ident: e_1_2_6_13_1
– ident: e_1_2_6_2_1
  doi: 10.1090/qam/1096235
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jcp.2004.02.005
SSID ssj0011519
Score 2.0706484
Snippet We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem....
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three-dimensional time-harmonic fluid-solid interaction problem....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1211
SubjectTerms Acoustics
Boundary element method
elastodynamic equation
Finite element method
Galerkin methods
Helmholtz equation
Joining
Mathematical analysis
Mathematical models
mixed finite elements
Three dimensional
Title Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D
URI https://api.istex.fr/ark:/67375/WNG-13LLCT9Z-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21866
https://www.proquest.com/docview/1519048462
https://www.proquest.com/docview/1541400324
Volume 30
WOSCitedRecordID wos000335013400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VXQ5w4BuxUJBBCHEJzYc3icUJbVk4bFcIdWHFxbJjG0W0WZQ0VeHEf-Af8kuYibNRK4GExC2KJ5Jlz_i92OM3AE-nyDl4ZrNAC6UDXsQu0JEwAYnLEZ1OTafO_2GRLZf5ei3e7cDL7V0Yrw8xbLhRZHTrNQW40s3eOdHQ9vgFFVRKL8E4Rr-djmC8_36-WgyHCAhmwqtwigBRe70VFgrjveHjC3A0ppE9u8A1zzPWDnLm1_-rszfgWs802SvvGjdhx1a34OrBINPa3IbT2aalG7mf2cax4_LMGuZKIqHM-qxypirDkD9SBu13bNVdEab629DuC1A3DKkvU8wdtaX59eMn-nNpGClR1P7eBOvr1uA7luzfgdX89eHsbdAXYggKToLFmraeshyhXiC8C62yQtk4Sh0ioHUmilWohXOiKLgJM2u0yJ2woXA2dykiZHIXRtWmsveAxTp3mRZWFIngOslzjQtAyLlOVeqESSfwfDsfsuhVyqlYxpH0-soxVUqR3VBO4Mlg-tVLc_zJ6Fk3qYOFqr9QLls2lR-Xb2SULBazQ_FJRhPY3c667MO4keRBuMTxNJ7A46EZA5BOVVRlNy3ZcPxJDZGYYt87H_h7b-RyddA93P930wdwBUka9ynCuzA6qVv7EC4XpydlUz_qff436-QGUg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UrqA-1DturTqKiC-xuUyTDPgiW9eK2SCyq0tfhkxmpoS22ZJtSu2T_8F_6C_xnCQbWlAQfAuZExjmnDPfl7l8B-DlDnIOHpnIUSJTDs996yhPaIfE5YhOh7pR5_-aRGkaz-fi8xq8Xd2FafUh-gU3yoxmvqYEpwXp7UuqofXxG6qoFF6DAccwwvge7H4Zz5J-FwHRTLQynMJB2J6vlIVcf7v_-AoeDWhoz6-QzcuUtcGc8e3_6-0d2Oi4JnvXBsddWDPlPbg16YVal_fhbLSo6U7uAVtYdlycG81sQTSUmfZcOctKzZBB0hnaC2xVTRmm6nvf3pagXjIkvyxj9qgu9K8fPzGiC81Ii6Jqb06wrnINvmPB7gOYjd9PR3tOV4rByTlJFitafIpiBHuBAC9UFuWZ8b3QIgYaqz0_c5WwVuQ5125ktBKxFcYV1sQ2RIwMHsJ6uSjNI2C-im2khBF5ILgK4lih71zOVZiFVuhwCK9XDpF5p1NO5TKOZKuw7FOtFNkM5RBe9KYnrTjHn4xeNV7tLbLqkE6zRTvyW_pBekGSjKZiX3pD2Fq5XXaJvJQUQjjJ8dAfwvO-GVOQ9lWy0ixqsuH4m-oiNcW-N0Hw997IdDZpHjb_3fQZ3NibThKZfEw_PYabSNl4e2B4C9ZPq9o8gev52WmxrJ52CfAblJkKQg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL3UXRH74GdLt1YdRcSX2HxMkwz4Iruuimko0tXFlyGTmZHQNluyTak--R_8h_4S702yoQUFwbeQuYFh5t45JzN3zgV4toecg0cmcpTIlMNz3zrKE9ohcTmi06Fu1Pk_JVGaxvO5OFiDV6u7MK0-RL_hRpHRrNcU4OZU291LqqH1yUuqqBRegyGnIjIDGE4-TmdJf4qAaCZaGU7hIGzPV8pCrr_bf3wFj4Y0tBdXyOZlytpgzvT2__X2DtzquCZ73TrHXVgz5T1Y3--FWpf34Xy8qOlO7le2sOykuDCa2YJoKDNtXjnLSs2QQVIO7XdsVU0Zpupb396WoF4yJL8sY_a4LvSvHz_RowvNSIuiam9OsK5yDb5jwWQDZtM3h-N3TleKwck5SRYr2nyKYgR7gQAvVBblmfG90CIGGqs9P3OVsFbkOdduZLQSsRXGFdbENkSMDDZhUC5KswXMV7GNlDAiDwRXQRwrXAJczlWYhVbocAQvVhMi806nnMplHMtWYdmnWimyGcoRPO1NT1txjj8ZPW9mtbfIqiPKZov25Of0rfSCJBkfii_SG8HOatplF8hLSS6EixwP_RE86ZsxBOlcJSvNoiYbjr-pLlJT7HvjBH_vjUxn-83D9r-bPoYbB5OpTN6nHx7ATWRsvM0X3oHBWVWbh3A9Pz8rltWjzv9_AxGpCb0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+mixed+finite+element+and+stabilized+boundary+element+methods+for+a+fluid-solid+interaction+problem+in+3D&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Gatica%2C+Gabriel+N.&rft.au=Heuer%2C+Norbert&rft.au=Meddahi%2C+Salim&rft.date=2014-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=30&rft.issue=4&rft.spage=1211&rft.epage=1233&rft_id=info:doi/10.1002%2Fnum.21866&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_13LLCT9Z_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon