Efficient estimation of propagator anisotropy and non‐Gaussianity in multishell diffusion MRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms
Purpose We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 89; H. 1; S. 440 - 453 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
01.01.2023
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).
Theory and Methods
First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test‐retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.
Results
Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test–retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.
Conclusions
Despite being a direct development on the MAP‐MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings. |
|---|---|
| AbstractList | Purpose
We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).
Theory and Methods
First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test‐retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.
Results
Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test–retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.
Conclusions
Despite being a direct development on the MAP‐MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings. We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP). First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation. Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude. Despite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings. Click here for author‐reader discussions PurposeWe seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).Theory and MethodsFirst, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test‐retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.ResultsFindings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test–retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.ConclusionsDespite being a direct development on the MAP‐MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings. We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).PURPOSEWe seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.THEORY AND METHODSFirst, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.RESULTSFindings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.Despite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.CONCLUSIONSDespite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings. |
| Author | París, Guillem Pieciak, Tomasz Tristán‐Vega, Antonio Aja‐Fernández, Santiago |
| AuthorAffiliation | 2 AGH University of Science and Technology Krakow Poland 1 Laboratorio de Procesado de Imagen (LPI) Universidad de Valladolid Valladolid Castilla y León Spain |
| AuthorAffiliation_xml | – name: 1 Laboratorio de Procesado de Imagen (LPI) Universidad de Valladolid Valladolid Castilla y León Spain – name: 2 AGH University of Science and Technology Krakow Poland |
| Author_xml | – sequence: 1 givenname: Guillem orcidid: 0000-0002-1564-1199 surname: París fullname: París, Guillem email: guillem.paris@uva.es organization: Universidad de Valladolid – sequence: 2 givenname: Tomasz orcidid: 0000-0002-7543-3658 surname: Pieciak fullname: Pieciak, Tomasz organization: AGH University of Science and Technology – sequence: 3 givenname: Santiago orcidid: 0000-0002-5337-5071 surname: Aja‐Fernández fullname: Aja‐Fernández, Santiago organization: Universidad de Valladolid – sequence: 4 givenname: Antonio orcidid: 0000-0002-4614-2501 surname: Tristán‐Vega fullname: Tristán‐Vega, Antonio organization: Universidad de Valladolid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36121312$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1uEzEQxy1URNPAgRdAlrjQw7a217sbX5BQ1ZZKjZAqOFuO105cdu3gj1S58Qg8Tp-HJ2GalAqQONme-c2H_zNH6MAHbxB6TckJJYSdjnE8YYLXzTM0oQ1jFWsEP0AT0nFS1VTwQ3SU0i0hRIiOv0CHdUsZrSmboPtza512xmdsUnajyi54HCxex7BWS5VDxMq7FDK8t3DtMRT_-f3HpSopOXDlLXYej2XILq3MMODeWVvSQ5r5zRW-c3mFR6djgKCUY9G5RINVr9bZbQzWwW_CUHZlv5rozZB2VfqiBnwRSnQmQoFslhEMOSqfbIhjeomeWzUk8-rxnKIvF-efzz5W158ur84-XFeak7qpVMu0tdRwvmg1t1oJNVsIwxtDW7D2IJfu2gXtKVELypjWHVGUWWMF5zPT1VP0fp93XRaj6TUoBY3IdQSt4lYG5eTfHu9Wchk2UsxYyzsCCd49JojhWwGR5eiSBqGUN6EkyTradIIxxgF9-w96CwJ4-B5QTLRixmFsU_Tmz46eWvk9VACO9wCInlI09gmhRD4sjISFkbuFAfZ0z965wWz_D8r5zXwf8Qugecp- |
| Cites_doi | 10.1016/j.neuroimage.2004.07.051 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2020.117406 10.1093/brain/awm216 10.1016/j.neuroimage.2005.01.028 10.1016/j.neuroimage.2016.03.046 10.1109/TMI.2015.2418674 10.1016/S1361-8415(01)00036-6 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2020.117616 10.1016/j.neuroimage.2007.12.035 10.1016/j.neuroimage.2007.02.050 10.3389/fnins.2018.00092 10.1016/j.neuroimage.2013.04.016 10.1016/j.ejrad.2021.109622 10.1109/42.906424 10.1007/978-3-319-54130-3_16 10.1016/j.neuroimage.2019.116137 10.1002/mrm.27101 10.1016/j.biopsych.2003.10.022 10.3174/ajnr.A1919 10.1016/j.neuroimage.2015.11.027 10.1002/mrm.26054 10.1093/oso/9780198539445.001.0001 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.29435 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Biochemistry Abstracts 1 MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | PARÍS et al |
| EISSN | 1522-2594 |
| EndPage | 453 |
| ExternalDocumentID | PMC9826470 36121312 10_1002_mrm_29435 MRM29435 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Consejería de Educación, Junta de Castilla y León and European Social Fund funderid: Orden EDU/1100/2017 12/12 – fundername: Narodowa Agencja Wymiany Akademickiej funderid: PPN/BEK/2019/1/00421 – fundername: Ministry of Science and Higher Education of Poland funderid: 692/STYP/13/2018 – fundername: Ministerio de Ciencia e Innovación funderid: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00 – fundername: ; grantid: PPN/BEK/2019/1/00421 – fundername: ; grantid: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00 – fundername: Consejería de Educación, Junta de Castilla y León and European Social Fund grantid: Orden EDU/1100/2017 12/12 – fundername: Ministry of Science and Higher Education of Poland grantid: 692/STYP/13/2018 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4035-a62cff1e44b6c4fca9a8b9e45e161e4d152c76b1d10ab122cc70a12fef9448e73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855083800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Nov 04 02:06:37 EST 2025 Sun Nov 09 10:06:27 EST 2025 Sat Nov 29 14:51:20 EST 2025 Thu Apr 03 07:02:26 EDT 2025 Sat Nov 29 06:34:35 EST 2025 Sun Jul 06 04:45:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | multishell MiSFIT propagator EAP anisotropy non-Gaussianity |
| Language | English |
| License | Attribution-NonCommercial 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4035-a62cff1e44b6c4fca9a8b9e45e161e4d152c76b1d10ab122cc70a12fef9448e73 |
| Notes | Funding information Consejería de Educación, Junta de Castilla y León and European Social Fund, Grant/Award Number: Orden EDU/1100/2017 12/12; Ministerio de Ciencia e Innovación, Grant/Award Numbers: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00; Ministry of Science and Higher Education of Poland, Grant/Award Number: 692/STYP/13/2018; Narodowa Agencja Wymiany Akademickiej, Grant/Award Number: PPN/BEK/2019/1/00421 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Consejería de Educación, Junta de Castilla y León and European Social Fund, Grant/Award Number: Orden EDU/1100/2017 12/12; Ministerio de Ciencia e Innovación, Grant/Award Numbers: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00; Ministry of Science and Higher Education of Poland, Grant/Award Number: 692/STYP/13/2018; Narodowa Agencja Wymiany Akademickiej, Grant/Award Number: PPN/BEK/2019/1/00421 |
| ORCID | 0000-0002-5337-5071 0000-0002-7543-3658 0000-0002-4614-2501 0000-0002-1564-1199 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29435 |
| PMID | 36121312 |
| PQID | 2729698421 |
| PQPubID | 1016391 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9826470 proquest_miscellaneous_2715792224 proquest_journals_2729698421 pubmed_primary_36121312 crossref_primary_10_1002_mrm_29435 wiley_primary_10_1002_mrm_29435_MRM29435 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2012; 61 2015; 34 2002; 17 2010; 31 2019; 3:768‐771 2021; 225 2004; 23 2016; 76 2019; 202 2016; 127 1991 2005; 26 2007; 36 2001; 20 2004; 55 2001; 5 2013; 78 2021; 138 2007; 130 2016; 134 2014; 9:e87024 2017 2018; 12 2008; 40 2003; 20 2021; 227:117616 2018; 79 e_1_2_8_28_1 e_1_2_8_24_1 Zuo XN (e_1_2_8_25_1) 2019; 3 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Tristán‐Vega A (e_1_2_8_17_1) 2021; 227 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 Yuan J (e_1_2_8_16_1) 2014; 9 Callaghan PT (e_1_2_8_3_1) 1991 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – volume: 31 start-page: 741 year: 2010 end-page: 748 article-title: Non‐Gaussian analysis of diffusion‐weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study publication-title: Am J Neuroradiol – volume: 34 start-page: 2058 year: 2015 end-page: 2078 article-title: Estimating diffusion propagator and its moments using directional radial basis functions publication-title: IEEE Trans Med Imaging – volume: 55 start-page: 323 year: 2004 end-page: 326 article-title: White matter structure in autism: preliminary evidence from diffusion tensor imaging publication-title: Biolog Psych – volume: 202 year: 2019 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 227:117616 year: 2021 article-title: Efficient and accurate EAP imaging from multi‐shell dMRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms (MiSFIT) publication-title: NeuroImage – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 36 start-page: 617 year: 2007 end-page: 629 article-title: Hybrid diffusion imaging publication-title: NeuroImage – volume: 138 year: 2021 article-title: Primary application of mean apparent propagator‐MRI diffusion model in the grading of diffuse Glioma publication-title: Eur J Radiol – volume: 40 start-page: 570 year: 2008 end-page: 582 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an icbm template publication-title: Neuroimage – volume: 127 start-page: 422 year: 2016 end-page: 434 article-title: Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure publication-title: NeuroImage – volume: 9:e87024 year: 2014 article-title: Non‐Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma publication-title: PLoS One – volume: 130 start-page: 2508 year: 2007 end-page: 2519 article-title: White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study publication-title: Brain – volume: 78 start-page: 16 year: 2013 end-page: 32 article-title: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure publication-title: NeuroImage – volume: 26 start-page: 132 year: 2005 end-page: 140 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: NeuroImage – volume: 225 year: 2021 article-title: MICRA: microstructural image compilation with repeated acquisitions publication-title: NeuroImage – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – start-page: :187 year: 2017 end-page: 199 – volume: 76 start-page: 1574 year: 2016 end-page: 1581 article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts publication-title: Magn Reson Med – volume: 12 start-page: 92 year: 2018 article-title: On the viability of diffusion MRI‐based microstructural biomarkers in ischemic stroke publication-title: Front Neurosci – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 5 start-page: 143 year: 2001 end-page: 156 article-title: A global optimisation method for robust affine registration of brain images publication-title: Medical image analysis – volume: 3:768‐771 year: 2019 article-title: Harnessing reliability for neuroscience research publication-title: Nature Human Behav – volume: 20 start-page: 870 year: 2003 end-page: 888 article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging publication-title: Neuroimage – year: 1991 – volume: 61 start-page: 1000 year: 2012 end-page: 1016 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: NeuroImage – volume: 79 start-page: 3172 year: 2018 end-page: 3193 article-title: On modeling publication-title: Magnetic Resonance in Medicine – volume: 134 start-page: 365 year: 2016 end-page: 385 article-title: MAPL: tissue microstructure estimation using Laplacian‐regularized MAP‐MRI and its application to HCP data publication-title: NeuroImage – ident: e_1_2_8_22_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_8_21_1 doi: 10.1016/S1053-8119(03)00336-7 – ident: e_1_2_8_24_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_8_18_1 doi: 10.1016/j.neuroimage.2020.117406 – ident: e_1_2_8_10_1 doi: 10.1093/brain/awm216 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2005.01.028 – ident: e_1_2_8_5_1 doi: 10.1016/j.neuroimage.2016.03.046 – ident: e_1_2_8_6_1 doi: 10.1109/TMI.2015.2418674 – ident: e_1_2_8_27_1 doi: 10.1016/S1361-8415(01)00036-6 – ident: e_1_2_8_28_1 doi: 10.1006/nimg.2002.1132 – volume: 227 year: 2021 ident: e_1_2_8_17_1 article-title: Efficient and accurate EAP imaging from multi‐shell dMRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms (MiSFIT) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117616 – ident: e_1_2_8_26_1 doi: 10.1016/j.neuroimage.2007.12.035 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2007.02.050 – volume: 3 year: 2019 ident: e_1_2_8_25_1 article-title: Harnessing reliability for neuroscience research publication-title: Nature Human Behav – ident: e_1_2_8_8_1 doi: 10.3389/fnins.2018.00092 – ident: e_1_2_8_7_1 doi: 10.1016/j.neuroimage.2013.04.016 – ident: e_1_2_8_13_1 doi: 10.1016/j.ejrad.2021.109622 – ident: e_1_2_8_23_1 doi: 10.1109/42.906424 – ident: e_1_2_8_12_1 doi: 10.1007/978-3-319-54130-3_16 – ident: e_1_2_8_20_1 doi: 10.1016/j.neuroimage.2019.116137 – volume: 9 year: 2014 ident: e_1_2_8_16_1 article-title: Non‐Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma publication-title: PLoS One – ident: e_1_2_8_2_1 doi: 10.1002/mrm.27101 – ident: e_1_2_8_11_1 doi: 10.1016/j.biopsych.2003.10.022 – ident: e_1_2_8_15_1 doi: 10.3174/ajnr.A1919 – ident: e_1_2_8_9_1 doi: 10.1016/j.neuroimage.2015.11.027 – ident: e_1_2_8_19_1 doi: 10.1002/mrm.26054 – volume-title: Principles of Nuclear Magnetic Resonance Microscopy year: 1991 ident: e_1_2_8_3_1 doi: 10.1093/oso/9780198539445.001.0001 |
| SSID | ssj0009974 |
| Score | 2.4064178 |
| Snippet | Purpose
We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator... Click here for author‐reader discussions We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI... PurposeWe seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 440 |
| SubjectTerms | Algorithms Anisotropy Brain - diagnostic imaging Computational efficiency Computer applications Computing time Convolution Diffusion Diffusion Magnetic Resonance Imaging - methods EAP Evaluation Humans Image Processing, Computer-Assisted - methods Integral transforms Kernels Magnetic resonance imaging MiSFIT multishell non‐Gaussianity propagator Reliability analysis Reproducibility of Results Substantia alba s—Computer Processing and Modeling |
| Title | Efficient estimation of propagator anisotropy and non‐Gaussianity in multishell diffusion MRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29435 https://www.ncbi.nlm.nih.gov/pubmed/36121312 https://www.proquest.com/docview/2729698421 https://www.proquest.com/docview/2715792224 https://pubmed.ncbi.nlm.nih.gov/PMC9826470 |
| Volume | 89 |
| WOSCitedRecordID | wos000855083800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFhAXfspfoFQGceCybew4cSxOCLpQiV1VKyr2FjmOI1aw2WrTReLGI_A4PA9PwoydTVlVSEhcIke2ZVuesb-xx98APKddQlRxPdAutQNpaj3QFdo8WuRxWilbJSIEm1DjcT6d6pMteLl-CxP4IfoDN9IMv16TgpuyPbwgDZ0v5wdC425_BXY4T3KK2yDkyQXjrg4UzErSQqPlmlYoFod91c3N6BLCvOwo-SeA9TvQ8NZ_9f023OyAJ3sVJOUObLlmF66Puqv1XbjmfUFtexd-HnlaCewMIwqO8LaRLWqGPcflh6x0ZppZuzjH_2-YrFizaH59__HWrFp6k4nAns0a5n0VW3I0ZRSGZUXncmw0OWZ09svm5AmIlQKB7WrpmKnMGS2-jDzhO41gn90SB9v6VujZGBuGIHus47n4ws7X0Lu9B6fDow-v3w26AA8DK4kq02TC1jV3UpaZlbU12uSldjJ1iEOdrBBbWJWVvOKxKbkQ1qrYcFG7WqNV6VRyH7ZxgO4hMFEiMHOl4lWeyLqUeZopWeaprtAiVCqL4Nl6pouzwONRBMZmUeBsFH42Ithby0DRqXJbCDQ_Mp1LwSN42mejEtLNimncYkVleKo0Qi0ZwYMgMn0rCXG0JVxEoDaEqS9ABN-bOc3skyf61mj7SRVH8MIL0987XowmI5949O9FH8MNgYAtHCftwTbOtnsCV-1XFI3lvtcl_Kppvg87bybD0_f49_F4_BvPPS12 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VAoULP6VAoIBBHLiEJl4njiUuCHXpimaFqiJ6ixzHESvYbLXpInHjEXgcnocnYcZOUlYVEhI3R7FlW56xvxmPvwF4TqcEr6I6VDYxodC1ClWFNo_iWZRU0lQj7pNNyOk0OzlR7zfgVf8WxvNDDA430gy3X5OCk0N675w1dL6cv-QKj_tLcFkg0KDEDR8n03PKXeU5mKWgnUaJnlco4ntD0_XT6ALEvBgp-SeCdUfQ-Ob_Df4W3OigJ3vtZeU2bNhmG7by7nJ9G666aFDT3oGf-45YAkfDiITDv25ki5rh0HEDIjud6WbWLs7w-xsWK9Ysml_ff7zVq5ZeZSK0Z7OGuWjFlkJNGSViWZFnjuVHE0beXzanWEBs5ClsV0vLdKVPaftlFAvf6QT7bJc429b1Qg_H2Nin2WMd08UXdtaD73YHPoz3j98chF2Kh9AIIsvUKTd1HVshytSI2mils1JZkVhEolZUiC6MTMu4iiNdxpwbIyMd89rWCu1KK0d3YRMnaO8D4yVCM1vKuMpGoi5FlqRSlFmiKrQJpUwDeNYvdXHqmTwKz9nMC1yNwq1GALu9EBSdMrcFRwMkVZngcQBPh9-ohnS3ohu7WFGdOJEKwZYI4J6XmaGXEbG0jWIegFyTpqECUXyv_2lmnxzVt0LrT8gogBdOmv4-8CI_yl3hwb9XfQLXDo7zw-JwMn33EK5zhG_eubQLm7jy9hFcMV9RTJaPnWL9BreHLjc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVRc-Cl_gQIGceASmjhOHEtcEO1CRXdVrajUW-TYjljBZlebLhI3HoHH4Xl4EmbiZMuqQkLi5ii2bMsz9jfj8TcAL-iU4DaqQuVSEwpdqVBZtHkUz6PUSmMT7pNNyPE4PztTJ1vwun8L4_kh1g430ox2vyYFdwtb7V-whs6Ws1dc4XF_BbYFJZEZwPbBZHh6fEG6qzwLsxS01yjRMwtFfH_dePM8ugQyL8dK_olh20NoePP_hn8LbnTgk73x0nIbtly9Czuj7np9F6618aCmuQM_D1tqCRwNIxoO_76RzSuGQ8ctiCx1putpMz_H729YtKye17--_3inVw29y0Rwz6Y1a-MVGwo2ZZSKZUW-OTaaHDHy_7IZRQNiI09iu1o6pq1e0AbMKBq-0wr22S1xtk3bCz0dY0OfaI91XBdf2HkPv5u7cDo8_Pj2fdgleQiNILpMnXFTVbETosyMqIxWOi-VE6lDLOqERXxhZFbGNo50GXNujIx0zCtXKbQsnUzuwQAn6B4A4yWCM1fK2OaJqEqRp5kUZZ4qi1ahlFkAz_ulLhaey6PwrM28wNUo2tUIYK8XgqJT56bgaIJkKhc8DuDZ-jcqIt2u6NrNV1QnTqVCuCUCuO9lZt1LQjxtScwDkBvStK5AJN-bf-rpp5bsW6H9J2QUwMtWmv4-8GI0GbWFh_9e9SnsnBwMi-Oj8YdHcJ0jfvPepT0Y4MK7x3DVfEUpWT7pNOs3tDMu4A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+of+propagator+anisotropy+and+non%E2%80%90Gaussianity+in+multishell+diffusion+MRI+with+micro%E2%80%90structure+adaptive+convolution+kernels+and+dual+Fourier+integral+transforms&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Par%C3%ADs%2C+Guillem&rft.au=Pieciak%2C+Tomasz&rft.au=Aja%E2%80%90Fern%C3%A1ndez%2C+Santiago&rft.au=Trist%C3%A1n%E2%80%90Vega%2C+Antonio&rft.date=2023-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=89&rft.issue=1&rft.spage=440&rft.epage=453&rft_id=info:doi/10.1002%2Fmrm.29435&rft.externalDBID=10.1002%252Fmrm.29435&rft.externalDocID=MRM29435 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |