Efficient estimation of propagator anisotropy and non‐Gaussianity in multishell diffusion MRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms

Purpose We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 89; H. 1; S. 440 - 453
Hauptverfasser: París, Guillem, Pieciak, Tomasz, Aja‐Fernández, Santiago, Tristán‐Vega, Antonio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.01.2023
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP). Theory and Methods First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test‐retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation. Results Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test–retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude. Conclusions Despite being a direct development on the MAP‐MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.
AbstractList Purpose We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP). Theory and Methods First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test‐retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation. Results Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test–retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude. Conclusions Despite being a direct development on the MAP‐MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.
We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP). First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation. Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude. Despite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.
Click here for author‐reader discussions
PurposeWe seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP‐MRI), to the Micro‐Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).Theory and MethodsFirst, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test‐retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.ResultsFindings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test–retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.ConclusionsDespite being a direct development on the MAP‐MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.
We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).PURPOSEWe seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.THEORY AND METHODSFirst, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation.Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.RESULTSFindings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude.Despite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.CONCLUSIONSDespite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.
Author París, Guillem
Pieciak, Tomasz
Tristán‐Vega, Antonio
Aja‐Fernández, Santiago
AuthorAffiliation 2 AGH University of Science and Technology Krakow Poland
1 Laboratorio de Procesado de Imagen (LPI) Universidad de Valladolid Valladolid Castilla y León Spain
AuthorAffiliation_xml – name: 1 Laboratorio de Procesado de Imagen (LPI) Universidad de Valladolid Valladolid Castilla y León Spain
– name: 2 AGH University of Science and Technology Krakow Poland
Author_xml – sequence: 1
  givenname: Guillem
  orcidid: 0000-0002-1564-1199
  surname: París
  fullname: París, Guillem
  email: guillem.paris@uva.es
  organization: Universidad de Valladolid
– sequence: 2
  givenname: Tomasz
  orcidid: 0000-0002-7543-3658
  surname: Pieciak
  fullname: Pieciak, Tomasz
  organization: AGH University of Science and Technology
– sequence: 3
  givenname: Santiago
  orcidid: 0000-0002-5337-5071
  surname: Aja‐Fernández
  fullname: Aja‐Fernández, Santiago
  organization: Universidad de Valladolid
– sequence: 4
  givenname: Antonio
  orcidid: 0000-0002-4614-2501
  surname: Tristán‐Vega
  fullname: Tristán‐Vega, Antonio
  organization: Universidad de Valladolid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36121312$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uEzEQxy1URNPAgRdAlrjQw7a217sbX5BQ1ZZKjZAqOFuO105cdu3gj1S58Qg8Tp-HJ2GalAqQONme-c2H_zNH6MAHbxB6TckJJYSdjnE8YYLXzTM0oQ1jFWsEP0AT0nFS1VTwQ3SU0i0hRIiOv0CHdUsZrSmboPtza512xmdsUnajyi54HCxex7BWS5VDxMq7FDK8t3DtMRT_-f3HpSopOXDlLXYej2XILq3MMODeWVvSQ5r5zRW-c3mFR6djgKCUY9G5RINVr9bZbQzWwW_CUHZlv5rozZB2VfqiBnwRSnQmQoFslhEMOSqfbIhjeomeWzUk8-rxnKIvF-efzz5W158ur84-XFeak7qpVMu0tdRwvmg1t1oJNVsIwxtDW7D2IJfu2gXtKVELypjWHVGUWWMF5zPT1VP0fp93XRaj6TUoBY3IdQSt4lYG5eTfHu9Wchk2UsxYyzsCCd49JojhWwGR5eiSBqGUN6EkyTradIIxxgF9-w96CwJ4-B5QTLRixmFsU_Tmz46eWvk9VACO9wCInlI09gmhRD4sjISFkbuFAfZ0z965wWz_D8r5zXwf8Qugecp-
Cites_doi 10.1016/j.neuroimage.2004.07.051
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2012.03.072
10.1016/j.neuroimage.2020.117406
10.1093/brain/awm216
10.1016/j.neuroimage.2005.01.028
10.1016/j.neuroimage.2016.03.046
10.1109/TMI.2015.2418674
10.1016/S1361-8415(01)00036-6
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2020.117616
10.1016/j.neuroimage.2007.12.035
10.1016/j.neuroimage.2007.02.050
10.3389/fnins.2018.00092
10.1016/j.neuroimage.2013.04.016
10.1016/j.ejrad.2021.109622
10.1109/42.906424
10.1007/978-3-319-54130-3_16
10.1016/j.neuroimage.2019.116137
10.1002/mrm.27101
10.1016/j.biopsych.2003.10.022
10.3174/ajnr.A1919
10.1016/j.neuroimage.2015.11.027
10.1002/mrm.26054
10.1093/oso/9780198539445.001.0001
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29435
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate PARÍS et al
EISSN 1522-2594
EndPage 453
ExternalDocumentID PMC9826470
36121312
10_1002_mrm_29435
MRM29435
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Consejería de Educación, Junta de Castilla y León and European Social Fund
  funderid: Orden EDU/1100/2017 12/12
– fundername: Narodowa Agencja Wymiany Akademickiej
  funderid: PPN/BEK/2019/1/00421
– fundername: Ministry of Science and Higher Education of Poland
  funderid: 692/STYP/13/2018
– fundername: Ministerio de Ciencia e Innovación
  funderid: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00
– fundername: ;
  grantid: PPN/BEK/2019/1/00421
– fundername: ;
  grantid: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00
– fundername: Consejería de Educación, Junta de Castilla y León and European Social Fund
  grantid: Orden EDU/1100/2017 12/12
– fundername: Ministry of Science and Higher Education of Poland
  grantid: 692/STYP/13/2018
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4035-a62cff1e44b6c4fca9a8b9e45e161e4d152c76b1d10ab122cc70a12fef9448e73
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855083800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:06:37 EST 2025
Sun Nov 09 10:06:27 EST 2025
Sat Nov 29 14:51:20 EST 2025
Thu Apr 03 07:02:26 EDT 2025
Sat Nov 29 06:34:35 EST 2025
Sun Jul 06 04:45:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multishell
MiSFIT
propagator
EAP
anisotropy
non-Gaussianity
Language English
License Attribution-NonCommercial
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4035-a62cff1e44b6c4fca9a8b9e45e161e4d152c76b1d10ab122cc70a12fef9448e73
Notes Funding information
Consejería de Educación, Junta de Castilla y León and European Social Fund, Grant/Award Number: Orden EDU/1100/2017 12/12; Ministerio de Ciencia e Innovación, Grant/Award Numbers: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00; Ministry of Science and Higher Education of Poland, Grant/Award Number: 692/STYP/13/2018; Narodowa Agencja Wymiany Akademickiej, Grant/Award Number: PPN/BEK/2019/1/00421
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Consejería de Educación, Junta de Castilla y León and European Social Fund, Grant/Award Number: Orden EDU/1100/2017 12/12; Ministerio de Ciencia e Innovación, Grant/Award Numbers: RTI2018‐094569‐B‐I00; PID2021‐124407NB‐I00; Ministry of Science and Higher Education of Poland, Grant/Award Number: 692/STYP/13/2018; Narodowa Agencja Wymiany Akademickiej, Grant/Award Number: PPN/BEK/2019/1/00421
ORCID 0000-0002-5337-5071
0000-0002-7543-3658
0000-0002-4614-2501
0000-0002-1564-1199
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29435
PMID 36121312
PQID 2729698421
PQPubID 1016391
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9826470
proquest_miscellaneous_2715792224
proquest_journals_2729698421
pubmed_primary_36121312
crossref_primary_10_1002_mrm_29435
wiley_primary_10_1002_mrm_29435_MRM29435
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2012; 61
2015; 34
2002; 17
2010; 31
2019; 3:768‐771
2021; 225
2004; 23
2016; 76
2019; 202
2016; 127
1991
2005; 26
2007; 36
2001; 20
2004; 55
2001; 5
2013; 78
2021; 138
2007; 130
2016; 134
2014; 9:e87024
2017
2018; 12
2008; 40
2003; 20
2021; 227:117616
2018; 79
e_1_2_8_28_1
e_1_2_8_24_1
Zuo XN (e_1_2_8_25_1) 2019; 3
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Tristán‐Vega A (e_1_2_8_17_1) 2021; 227
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
Yuan J (e_1_2_8_16_1) 2014; 9
Callaghan PT (e_1_2_8_3_1) 1991
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 31
  start-page: 741
  year: 2010
  end-page: 748
  article-title: Non‐Gaussian analysis of diffusion‐weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study
  publication-title: Am J Neuroradiol
– volume: 34
  start-page: 2058
  year: 2015
  end-page: 2078
  article-title: Estimating diffusion propagator and its moments using directional radial basis functions
  publication-title: IEEE Trans Med Imaging
– volume: 55
  start-page: 323
  year: 2004
  end-page: 326
  article-title: White matter structure in autism: preliminary evidence from diffusion tensor imaging
  publication-title: Biolog Psych
– volume: 202
  year: 2019
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 227:117616
  year: 2021
  article-title: Efficient and accurate EAP imaging from multi‐shell dMRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms (MiSFIT)
  publication-title: NeuroImage
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 36
  start-page: 617
  year: 2007
  end-page: 629
  article-title: Hybrid diffusion imaging
  publication-title: NeuroImage
– volume: 138
  year: 2021
  article-title: Primary application of mean apparent propagator‐MRI diffusion model in the grading of diffuse Glioma
  publication-title: Eur J Radiol
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an icbm template
  publication-title: Neuroimage
– volume: 127
  start-page: 422
  year: 2016
  end-page: 434
  article-title: Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure
  publication-title: NeuroImage
– volume: 9:e87024
  year: 2014
  article-title: Non‐Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma
  publication-title: PLoS One
– volume: 130
  start-page: 2508
  year: 2007
  end-page: 2519
  article-title: White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study
  publication-title: Brain
– volume: 78
  start-page: 16
  year: 2013
  end-page: 32
  article-title: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure
  publication-title: NeuroImage
– volume: 26
  start-page: 132
  year: 2005
  end-page: 140
  article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain
  publication-title: NeuroImage
– volume: 225
  year: 2021
  article-title: MICRA: microstructural image compilation with repeated acquisitions
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– start-page: :187
  year: 2017
  end-page: 199
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts
  publication-title: Magn Reson Med
– volume: 12
  start-page: 92
  year: 2018
  article-title: On the viability of diffusion MRI‐based microstructural biomarkers in ischemic stroke
  publication-title: Front Neurosci
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Medical image analysis
– volume: 3:768‐771
  year: 2019
  article-title: Harnessing reliability for neuroscience research
  publication-title: Nature Human Behav
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– year: 1991
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– volume: 79
  start-page: 3172
  year: 2018
  end-page: 3193
  article-title: On modeling
  publication-title: Magnetic Resonance in Medicine
– volume: 134
  start-page: 365
  year: 2016
  end-page: 385
  article-title: MAPL: tissue microstructure estimation using Laplacian‐regularized MAP‐MRI and its application to HCP data
  publication-title: NeuroImage
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_8_21_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neuroimage.2020.117406
– ident: e_1_2_8_10_1
  doi: 10.1093/brain/awm216
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2005.01.028
– ident: e_1_2_8_5_1
  doi: 10.1016/j.neuroimage.2016.03.046
– ident: e_1_2_8_6_1
  doi: 10.1109/TMI.2015.2418674
– ident: e_1_2_8_27_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_8_28_1
  doi: 10.1006/nimg.2002.1132
– volume: 227
  year: 2021
  ident: e_1_2_8_17_1
  article-title: Efficient and accurate EAP imaging from multi‐shell dMRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms (MiSFIT)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117616
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2007.12.035
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2007.02.050
– volume: 3
  year: 2019
  ident: e_1_2_8_25_1
  article-title: Harnessing reliability for neuroscience research
  publication-title: Nature Human Behav
– ident: e_1_2_8_8_1
  doi: 10.3389/fnins.2018.00092
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2013.04.016
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ejrad.2021.109622
– ident: e_1_2_8_23_1
  doi: 10.1109/42.906424
– ident: e_1_2_8_12_1
  doi: 10.1007/978-3-319-54130-3_16
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 9
  year: 2014
  ident: e_1_2_8_16_1
  article-title: Non‐Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma
  publication-title: PLoS One
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.27101
– ident: e_1_2_8_11_1
  doi: 10.1016/j.biopsych.2003.10.022
– ident: e_1_2_8_15_1
  doi: 10.3174/ajnr.A1919
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neuroimage.2015.11.027
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.26054
– volume-title: Principles of Nuclear Magnetic Resonance Microscopy
  year: 1991
  ident: e_1_2_8_3_1
  doi: 10.1093/oso/9780198539445.001.0001
SSID ssj0009974
Score 2.4064178
Snippet Purpose We seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator...
Click here for author‐reader discussions
We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI...
PurposeWe seek to reformulate the so‐called Propagator Anisotropy (PA) and Non‐Gaussianity (NG), originally conceived for the Mean Apparent Propagator...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 440
SubjectTerms Algorithms
Anisotropy
Brain - diagnostic imaging
Computational efficiency
Computer applications
Computing time
Convolution
Diffusion
Diffusion Magnetic Resonance Imaging - methods
EAP
Evaluation
Humans
Image Processing, Computer-Assisted - methods
Integral transforms
Kernels
Magnetic resonance imaging
MiSFIT
multishell
non‐Gaussianity
propagator
Reliability analysis
Reproducibility of Results
Substantia alba
s—Computer Processing and Modeling
Title Efficient estimation of propagator anisotropy and non‐Gaussianity in multishell diffusion MRI with micro‐structure adaptive convolution kernels and dual Fourier integral transforms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29435
https://www.ncbi.nlm.nih.gov/pubmed/36121312
https://www.proquest.com/docview/2729698421
https://www.proquest.com/docview/2715792224
https://pubmed.ncbi.nlm.nih.gov/PMC9826470
Volume 89
WOSCitedRecordID wos000855083800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFhAXfspfoFQGceCybew4cSxOCLpQiV1VKyr2FjmOI1aw2WrTReLGI_A4PA9PwoydTVlVSEhcIke2ZVuesb-xx98APKddQlRxPdAutQNpaj3QFdo8WuRxWilbJSIEm1DjcT6d6pMteLl-CxP4IfoDN9IMv16TgpuyPbwgDZ0v5wdC425_BXY4T3KK2yDkyQXjrg4UzErSQqPlmlYoFod91c3N6BLCvOwo-SeA9TvQ8NZ_9f023OyAJ3sVJOUObLlmF66Puqv1XbjmfUFtexd-HnlaCewMIwqO8LaRLWqGPcflh6x0ZppZuzjH_2-YrFizaH59__HWrFp6k4nAns0a5n0VW3I0ZRSGZUXncmw0OWZ09svm5AmIlQKB7WrpmKnMGS2-jDzhO41gn90SB9v6VujZGBuGIHus47n4ws7X0Lu9B6fDow-v3w26AA8DK4kq02TC1jV3UpaZlbU12uSldjJ1iEOdrBBbWJWVvOKxKbkQ1qrYcFG7WqNV6VRyH7ZxgO4hMFEiMHOl4lWeyLqUeZopWeaprtAiVCqL4Nl6pouzwONRBMZmUeBsFH42Ithby0DRqXJbCDQ_Mp1LwSN42mejEtLNimncYkVleKo0Qi0ZwYMgMn0rCXG0JVxEoDaEqS9ABN-bOc3skyf61mj7SRVH8MIL0987XowmI5949O9FH8MNgYAtHCftwTbOtnsCV-1XFI3lvtcl_Kppvg87bybD0_f49_F4_BvPPS12
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VAoULP6VAoIBBHLiEJl4njiUuCHXpimaFqiJ6ixzHESvYbLXpInHjEXgcnocnYcZOUlYVEhI3R7FlW56xvxmPvwF4TqcEr6I6VDYxodC1ClWFNo_iWZRU0lQj7pNNyOk0OzlR7zfgVf8WxvNDDA430gy3X5OCk0N675w1dL6cv-QKj_tLcFkg0KDEDR8n03PKXeU5mKWgnUaJnlco4ntD0_XT6ALEvBgp-SeCdUfQ-Ob_Df4W3OigJ3vtZeU2bNhmG7by7nJ9G666aFDT3oGf-45YAkfDiITDv25ki5rh0HEDIjud6WbWLs7w-xsWK9Ysml_ff7zVq5ZeZSK0Z7OGuWjFlkJNGSViWZFnjuVHE0beXzanWEBs5ClsV0vLdKVPaftlFAvf6QT7bJc429b1Qg_H2Nin2WMd08UXdtaD73YHPoz3j98chF2Kh9AIIsvUKTd1HVshytSI2mils1JZkVhEolZUiC6MTMu4iiNdxpwbIyMd89rWCu1KK0d3YRMnaO8D4yVCM1vKuMpGoi5FlqRSlFmiKrQJpUwDeNYvdXHqmTwKz9nMC1yNwq1GALu9EBSdMrcFRwMkVZngcQBPh9-ohnS3ohu7WFGdOJEKwZYI4J6XmaGXEbG0jWIegFyTpqECUXyv_2lmnxzVt0LrT8gogBdOmv4-8CI_yl3hwb9XfQLXDo7zw-JwMn33EK5zhG_eubQLm7jy9hFcMV9RTJaPnWL9BreHLjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVRc-Cl_gQIGceASmjhOHEtcEO1CRXdVrajUW-TYjljBZlebLhI3HoHH4Xl4EmbiZMuqQkLi5ii2bMsz9jfj8TcAL-iU4DaqQuVSEwpdqVBZtHkUz6PUSmMT7pNNyPE4PztTJ1vwun8L4_kh1g430ox2vyYFdwtb7V-whs6Ws1dc4XF_BbYFJZEZwPbBZHh6fEG6qzwLsxS01yjRMwtFfH_dePM8ugQyL8dK_olh20NoePP_hn8LbnTgk73x0nIbtly9Czuj7np9F6618aCmuQM_D1tqCRwNIxoO_76RzSuGQ8ctiCx1putpMz_H729YtKye17--_3inVw29y0Rwz6Y1a-MVGwo2ZZSKZUW-OTaaHDHy_7IZRQNiI09iu1o6pq1e0AbMKBq-0wr22S1xtk3bCz0dY0OfaI91XBdf2HkPv5u7cDo8_Pj2fdgleQiNILpMnXFTVbETosyMqIxWOi-VE6lDLOqERXxhZFbGNo50GXNujIx0zCtXKbQsnUzuwQAn6B4A4yWCM1fK2OaJqEqRp5kUZZ4qi1ahlFkAz_ulLhaey6PwrM28wNUo2tUIYK8XgqJT56bgaIJkKhc8DuDZ-jcqIt2u6NrNV1QnTqVCuCUCuO9lZt1LQjxtScwDkBvStK5AJN-bf-rpp5bsW6H9J2QUwMtWmv4-8GI0GbWFh_9e9SnsnBwMi-Oj8YdHcJ0jfvPepT0Y4MK7x3DVfEUpWT7pNOs3tDMu4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+of+propagator+anisotropy+and+non%E2%80%90Gaussianity+in+multishell+diffusion+MRI+with+micro%E2%80%90structure+adaptive+convolution+kernels+and+dual+Fourier+integral+transforms&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Par%C3%ADs%2C+Guillem&rft.au=Pieciak%2C+Tomasz&rft.au=Aja%E2%80%90Fern%C3%A1ndez%2C+Santiago&rft.au=Trist%C3%A1n%E2%80%90Vega%2C+Antonio&rft.date=2023-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=89&rft.issue=1&rft.spage=440&rft.epage=453&rft_id=info:doi/10.1002%2Fmrm.29435&rft.externalDBID=10.1002%252Fmrm.29435&rft.externalDocID=MRM29435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon