Self Tuning Texture Optimization

The goal of example‐based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and resolution required for a specific modeling task. The challenge is to faithfully capture all of the visual characteristics of the exemplar tex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 34; číslo 2; s. 349 - 359
Hlavní autoři: Kaspar, Alexandre, Neubert, Boris, Lischinski, Dani, Pauly, Mark, Kopf, Johannes
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.05.2015
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The goal of example‐based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and resolution required for a specific modeling task. The challenge is to faithfully capture all of the visual characteristics of the exemplar texture, without introducing obvious repetitions or unnatural looking visual elements. While existing non‐parametric synthesis methods have made remarkable progress towards this goal, most such methods have been demonstrated only on relatively low‐resolution exemplars. Real‐world high resolution textures often contain texture details at multiple scales, which these methods have difficulty reproducing faithfully. In this work, we present a new general‐purpose and fully automatic self‐tuning non‐parametric texture synthesis method that extends Texture Optimization by introducing several key improvements that result in superior synthesis ability. Our method is able to self‐tune its various parameters and weights and focuses on addressing three challenging aspects of texture synthesis: (i) irregular large scale structures are faithfully reproduced through the use of automatically generated and weighted guidance channels; (ii) repetition and smoothing of texture patches is avoided by new spatial uniformity constraints; (iii) a smart initialization strategy is used in order to improve the synthesis of regular and near‐regular textures, without affecting textures that do not exhibit regularities. We demonstrate the versatility and robustness of our completely automatic approach on a variety of challenging high‐resolution texture exemplars.
AbstractList The goal of example‐based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and resolution required for a specific modeling task. The challenge is to faithfully capture all of the visual characteristics of the exemplar texture, without introducing obvious repetitions or unnatural looking visual elements. While existing non‐parametric synthesis methods have made remarkable progress towards this goal, most such methods have been demonstrated only on relatively low‐resolution exemplars. Real‐world high resolution textures often contain texture details at multiple scales, which these methods have difficulty reproducing faithfully. In this work, we present a new general‐purpose and fully automatic self‐tuning non‐parametric texture synthesis method that extends Texture Optimization by introducing several key improvements that result in superior synthesis ability. Our method is able to self‐tune its various parameters and weights and focuses on addressing three challenging aspects of texture synthesis: (i) irregular large scale structures are faithfully reproduced through the use of automatically generated and weighted guidance channels; (ii) repetition and smoothing of texture patches is avoided by new spatial uniformity constraints; (iii) a smart initialization strategy is used in order to improve the synthesis of regular and near‐regular textures, without affecting textures that do not exhibit regularities. We demonstrate the versatility and robustness of our completely automatic approach on a variety of challenging high‐resolution texture exemplars.
The goal of example‐based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and resolution required for a specific modeling task. The challenge is to faithfully capture all of the visual characteristics of the exemplar texture, without introducing obvious repetitions or unnatural looking visual elements. While existing non‐parametric synthesis methods have made remarkable progress towards this goal, most such methods have been demonstrated only on relatively low‐resolution exemplars. Real‐world high resolution textures often contain texture details at multiple scales, which these methods have difficulty reproducing faithfully. In this work, we present a new general‐purpose and fully automatic self‐tuning non‐parametric texture synthesis method that extends Texture Optimization by introducing several key improvements that result in superior synthesis ability. Our method is able to self‐tune its various parameters and weights and focuses on addressing three challenging aspects of texture synthesis: (i) irregular large scale structures are faithfully reproduced through the use of automatically generated and weighted guidance channels; (ii) repetition and smoothing of texture patches is avoided by new spatial uniformity constraints ; (iii) a smart initialization strategy is used in order to improve the synthesis of regular and near‐regular textures, without affecting textures that do not exhibit regularities. We demonstrate the versatility and robustness of our completely automatic approach on a variety of challenging high‐resolution texture exemplars.
Author Kaspar, Alexandre
Neubert, Boris
Pauly, Mark
Kopf, Johannes
Lischinski, Dani
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Kaspar
  fullname: Kaspar, Alexandre
  organization: École Polytechnique Fédérale de Lausanne
– sequence: 2
  givenname: Boris
  surname: Neubert
  fullname: Neubert, Boris
  organization: École Polytechnique Fédérale de Lausanne
– sequence: 3
  givenname: Dani
  surname: Lischinski
  fullname: Lischinski, Dani
  organization: The Hebrew University of Jerusalem
– sequence: 4
  givenname: Mark
  surname: Pauly
  fullname: Pauly, Mark
  organization: École Polytechnique Fédérale de Lausanne
– sequence: 5
  givenname: Johannes
  surname: Kopf
  fullname: Kopf, Johannes
  organization: Microsoft Research
BookMark eNp1kEFPwjAYhhuDiYge_AckXvQwaLe13Y5KBDQEEsXorenKV1IcG7ZbBH-9FdAD0V6-Hp7n_dr3FDWKsgCELgjuEH-6aq47JKSMHqEmiRkPEkbTBmpi4u8cU3qCTp1bYIxjzmgTtZ8g1-1pXZhi3p7CuqottCeryizNp6xMWZyhYy1zB-f72ULP_btpbxiMJoP73s0oUDGOaMCjWabTGaZxCFESgpSQsZilmhPOGVYpA5nNEsg4ZimjmdaKJ6HSPErDFBSNWuhql7uy5XsNrhJL4xTkuSygrJ3wMYlfFPLYo5cH6KKsbeFfJwhLMUlonISe6u4oZUvnLGihTLX9UmWlyQXB4rsx4RsT28a8cX1grKxZSrv5k92nf5gcNv-Dojfo_xjBzjCugvWvIe2bYDziVLyMB-J1yB-Ht8lYPERfr92JjQ
CitedBy_id crossref_primary_10_1007_s00371_017_1375_8
crossref_primary_10_1134_S0361768819040078
crossref_primary_10_1145_2816795_2818101
crossref_primary_10_1016_j_cag_2020_01_002
crossref_primary_10_1007_s00371_016_1290_4
crossref_primary_10_1145_2766983
crossref_primary_10_1109_TIP_2021_3052075
crossref_primary_10_1145_2897824_2925891
crossref_primary_10_1145_3072959_3015461
crossref_primary_10_1016_j_cag_2021_06_012
crossref_primary_10_1145_3502431
crossref_primary_10_1111_cgf_14061
crossref_primary_10_1111_cgf_15193
crossref_primary_10_1109_TVCG_2022_3143615
crossref_primary_10_1007_s41095_016_0064_2
crossref_primary_10_1111_cgf_13132
crossref_primary_10_1145_3197517_3201285
crossref_primary_10_1109_TMM_2018_2880604
crossref_primary_10_1145_3306346_3322993
crossref_primary_10_1145_3306346_3323006
crossref_primary_10_1145_2897824_2925917
crossref_primary_10_1145_3451270
crossref_primary_10_1007_s00371_023_02944_5
crossref_primary_10_1007_s00371_021_02212_4
crossref_primary_10_1109_TMM_2022_3201387
crossref_primary_10_1080_17452759_2024_2361864
crossref_primary_10_1145_2897824_2925964
crossref_primary_10_1155_2022_1626747
crossref_primary_10_1137_18M1175781
crossref_primary_10_1109_TVCG_2025_3566315
crossref_primary_10_1145_2897824_2925948
crossref_primary_10_1111_cgf_14398
crossref_primary_10_1145_3015461
crossref_primary_10_1145_3378541
crossref_primary_10_1111_cgf_13621
crossref_primary_10_1111_cgf_12764
crossref_primary_10_1111_cgf_13229
crossref_primary_10_1145_3158353
crossref_primary_10_1145_3072959_3073660
crossref_primary_10_1049_iet_cvi_2019_0416
crossref_primary_10_1111_cgf_70172
crossref_primary_10_1109_TIP_2016_2627812
crossref_primary_10_1111_cgf_14169
crossref_primary_10_1007_s10851_022_01108_9
crossref_primary_10_1111_cgf_13117
crossref_primary_10_1111_cgf_13635
crossref_primary_10_1007_s41095_022_0288_2
crossref_primary_10_1111_cgf_13119
crossref_primary_10_1145_3528223_3530062
crossref_primary_10_1145_3414685_3417780
crossref_primary_10_1007_s41095_021_0243_7
Cites_doi 10.1109/ICCV.2013.231
10.1023/B:VISI.0000029664.99615.94
10.1145/1073204.1073263
10.1007/978-3-642-33709-3_2
10.1145/1857907.1857910
10.1109/CVPR.2008.4587842
10.1109/TVCG.2013.113
10.1145/1201775.882264
10.1109/TSMC.1979.4310076
10.1007/s00371-006-0078-3
10.1145/2010324.1964957
10.1145/1015706.1015730
10.1145/1618452.1618453
10.1145/1141911.1141921
10.1145/882262.882266
10.1145/2167076.2167080
10.1109/TPAMI.2007.60
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12565
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Computer and Information Systems Abstracts
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 359
ExternalDocumentID 3721827621
10_1111_cgf_12565
CGF12565
ark_67375_WNG_XH7RHB8N_J
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
ALUQN
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4035-73dbf9d0542e382eaaeb6469f717760c96eabd8eb706965bffc782cf73929ec53
IEDL.DBID DRFUL
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358326600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Oct 02 07:11:30 EDT 2025
Mon Jul 14 08:18:31 EDT 2025
Sat Nov 29 03:41:11 EST 2025
Tue Nov 18 22:39:04 EST 2025
Tue Oct 28 04:18:46 EDT 2025
Tue Nov 11 03:31:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4035-73dbf9d0542e382eaaeb6469f717760c96eabd8eb706965bffc782cf73929ec53
Notes istex:5BC8C6B7D9343EA78A9E04760AEABC3AFACC98ED
ArticleID:CGF12565
Supporting Information
ark:/67375/WNG-XH7RHB8N-J
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://infoscience.epfl.ch/record/212637
PQID 1690185482
PQPubID 30877
PageCount 11
ParticipantIDs proquest_miscellaneous_1778035274
proquest_journals_1690185482
crossref_citationtrail_10_1111_cgf_12565
crossref_primary_10_1111_cgf_12565
wiley_primary_10_1111_cgf_12565_CGF12565
istex_primary_ark_67375_WNG_XH7RHB8N_J
PublicationCentury 2000
PublicationDate 2015-05
May 2015
2015-05-00
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Rosenberger A., Cohen-Or D., Lischinski D.: Layered shape synthesis: automatic generation of control maps for non-stationary textures. ACM Trans. Graph. 28, 5 (2009), Article 107. 3
Wu Q., Yu Y.: Feature matching and deformation for texture synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004) 23, 3 (2004), 364-367. 2, 3
Van Rijsbergen C.: Information retrieval. Butterworths, 1979. 7
Kim V.G., Lipman Y., Funkhouser T.: Symmetry-guided texture synthesis and manipulation. ACM Trans. Graph. 31, 3 (June 2012), 22:1-22:14. 3
Barnes C., Shechtman E., Finkelstein A., Goldman D.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009) 28, 3 (2009), Article no. 24. 3, 4
Efros A.A., Leung T.K.: Texture synthesis by non-parametric sampling. Proceedings of ICCV 99 2 (1999), 1033-1038. 3
Lowe D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91-110. 7
Otsu N.: A threshold selection method from gray-level histograms. Systems, Man and Cybernetics, IEEE Transactions on 9, 1 (Jan 1979), 62-66. 4
Kwatra V., Essa I., Bobick A., Kwatra N.: Texture optimization for example-based synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005) 24, 3 (2005), 795-802. 1, 3
Liu Y., Lin W.-C., Hays J.H.: Near-regular texture analysis and manipulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004) 23, 3 (2004). 6
Hertzmann A., Jacobs C.E., Oliver N., Curless B., Salesin D.H.: Image analogies. Proceedings of SIGGRAPH 2001 (2001), 327-340. 3
Huang J.-B., Kang S.B., Ahuja N., Kopf J.: Image completion using planar structure guidance. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (2014), to appear. 7
Criminisi A., Sharp T., Rother C., P'erez P.: Geodesic image and video editing. ACM Transactions on Graphics 29, 5 (2010), article no. 134. 4
Kwatra V., Schödl A., Essa I., Turk G., Bobick A.: Graphcut textures: Image and video synthesis using graph cuts. ACM SIGGRAPH 2003 Papers 22, 3 (2003), 277-286. 1, 2, 3, 9
Lefebvre S., Hoppe H.: Appearance-space texture synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006) 25, 3 (2006), 541-548. 2, 3, 4
Darabi S., Shechtman E., Barnes C., Goldman D.B., Sen P.: Image Melding: Combining inconsistent images using patch-based synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (2012). 1, 2, 3, 4
Wu R., Wang W., Yu Y.: Optimized synthesis of art patterns and layered textures. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar. 2014), 436-446. 3
Wei L.-Y., Levoy M.: Fast texture synthesis using tree-structured vector quantization. Proceedings of SIGGRAPH 2000 (2000), 479-488. 3
Wexler Y., Shechtman E., Irani M.: Space-time completion of video. Transactions on Pattern Analysis and Machine Intelligence (PAMI) 29, 3 (2007), 463-476. 1, 3, 4
Kopf J., Fu C.-W., Cohen-Or D., Deussen O., Lischinski D., Wong T.-T.: Solid texture synthesis from 2d exemplars. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3 (2007), Article no. 2. 5, 6
Zhang J., Zhou K., Velho L., Guo B., Shum H.-Y.: Synthesis of progressively-variant textures on arbitrary surfaces. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003) 22, 3 (2003), 295-302. 2, 3
Han J., Zhou K., Wei L.-Y., Gong M., Bao H., Zhang X., Guo B.: Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9-11 (2006), 918-925. 3
Ma C., Wei L.-Y., Tong X.: Discrete element textures. ACM Trans. Graph. 30, 4 (July 2011), 62:1-62:10. 2, 6
2004; 60
2012
2010
2004; 23
2009
2008
2011; 30
1999; 2
2000; 2000
2012; 31
1979
2005; 24
2009; 28
2014; 20
2007; 29
2001
2010; 29
2006; 22
2006; 25
2013
2001; 2001
2014; 33
1979; 9
2007; 26
2003; 22
e_1_2_8_29_2
Darabi S. (e_1_2_8_5_2) 2012; 31
e_1_2_8_23_2
e_1_2_8_25_2
Huang J.‐B. (e_1_2_8_10_2) 2014; 33
e_1_2_8_3_2
e_1_2_8_6_2
Van Rijsbergen C. (e_1_2_8_26_2) 1979
Wei L.‐Y. (e_1_2_8_28_2) 2000; 2000
Risser E. (e_1_2_8_24_2) 2010
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
Efros A.A. (e_1_2_8_8_2) 1999; 2
Liu Y. (e_1_2_8_19_2) 2004; 23
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_15_2
Kopf J. (e_1_2_8_14_2) 2007; 26
Wei L.‐Y. (e_1_2_8_27_2) 2008
Barnes C. (e_1_2_8_2_2) 2009; 28
Dong Y. (e_1_2_8_4_2) 2008
Hertzmann A. (e_1_2_8_9_2) 2001; 2001
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – reference: Han J., Zhou K., Wei L.-Y., Gong M., Bao H., Zhang X., Guo B.: Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9-11 (2006), 918-925. 3
– reference: Lowe D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91-110. 7
– reference: Ma C., Wei L.-Y., Tong X.: Discrete element textures. ACM Trans. Graph. 30, 4 (July 2011), 62:1-62:10. 2, 6
– reference: Otsu N.: A threshold selection method from gray-level histograms. Systems, Man and Cybernetics, IEEE Transactions on 9, 1 (Jan 1979), 62-66. 4
– reference: Criminisi A., Sharp T., Rother C., P'erez P.: Geodesic image and video editing. ACM Transactions on Graphics 29, 5 (2010), article no. 134. 4
– reference: Efros A.A., Leung T.K.: Texture synthesis by non-parametric sampling. Proceedings of ICCV 99 2 (1999), 1033-1038. 3
– reference: Kwatra V., Schödl A., Essa I., Turk G., Bobick A.: Graphcut textures: Image and video synthesis using graph cuts. ACM SIGGRAPH 2003 Papers 22, 3 (2003), 277-286. 1, 2, 3, 9
– reference: Lefebvre S., Hoppe H.: Appearance-space texture synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006) 25, 3 (2006), 541-548. 2, 3, 4
– reference: Wei L.-Y., Levoy M.: Fast texture synthesis using tree-structured vector quantization. Proceedings of SIGGRAPH 2000 (2000), 479-488. 3
– reference: Kopf J., Fu C.-W., Cohen-Or D., Deussen O., Lischinski D., Wong T.-T.: Solid texture synthesis from 2d exemplars. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3 (2007), Article no. 2. 5, 6
– reference: Wexler Y., Shechtman E., Irani M.: Space-time completion of video. Transactions on Pattern Analysis and Machine Intelligence (PAMI) 29, 3 (2007), 463-476. 1, 3, 4
– reference: Zhang J., Zhou K., Velho L., Guo B., Shum H.-Y.: Synthesis of progressively-variant textures on arbitrary surfaces. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003) 22, 3 (2003), 295-302. 2, 3
– reference: Hertzmann A., Jacobs C.E., Oliver N., Curless B., Salesin D.H.: Image analogies. Proceedings of SIGGRAPH 2001 (2001), 327-340. 3
– reference: Rosenberger A., Cohen-Or D., Lischinski D.: Layered shape synthesis: automatic generation of control maps for non-stationary textures. ACM Trans. Graph. 28, 5 (2009), Article 107. 3
– reference: Kim V.G., Lipman Y., Funkhouser T.: Symmetry-guided texture synthesis and manipulation. ACM Trans. Graph. 31, 3 (June 2012), 22:1-22:14. 3
– reference: Wu Q., Yu Y.: Feature matching and deformation for texture synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004) 23, 3 (2004), 364-367. 2, 3
– reference: Kwatra V., Essa I., Bobick A., Kwatra N.: Texture optimization for example-based synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005) 24, 3 (2005), 795-802. 1, 3
– reference: Wu R., Wang W., Yu Y.: Optimized synthesis of art patterns and layered textures. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar. 2014), 436-446. 3
– reference: Darabi S., Shechtman E., Barnes C., Goldman D.B., Sen P.: Image Melding: Combining inconsistent images using patch-based synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (2012). 1, 2, 3, 4
– reference: Huang J.-B., Kang S.B., Ahuja N., Kopf J.: Image completion using planar structure guidance. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (2014), to appear. 7
– reference: Liu Y., Lin W.-C., Hays J.H.: Near-regular texture analysis and manipulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004) 23, 3 (2004). 6
– reference: Van Rijsbergen C.: Information retrieval. Butterworths, 1979. 7
– reference: Barnes C., Shechtman E., Finkelstein A., Goldman D.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009) 28, 3 (2009), Article no. 24. 3, 4
– year: 2009
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: Systems, Man and Cybernetics, IEEE Transactions on
– volume: 23
  issue: 3
  year: 2004
  article-title: Near‐regular texture analysis and manipulation
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004)
– volume: 28
  issue: 5
  year: 2009
  article-title: Layered shape synthesis: automatic generation of control maps for non‐stationary textures
  publication-title: ACM Trans. Graph
– volume: 2001
  start-page: 327
  year: 2001
  end-page: 340
  article-title: Image analogies
  publication-title: Proceedings of SIGGRAPH
– volume: 25
  start-page: 541
  issue: 3
  year: 2006
  end-page: 548
  article-title: Appearance‐space texture synthesis
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006)
– volume: 29
  start-page: 463
  issue: 3
  year: 2007
  end-page: 476
  article-title: Space‐time completion of video
  publication-title: Transactions on Pattern Analysis and Machine Intelligence (PAMI)
– volume: 30
  start-page: 62:1
  issue: 4
  year: 2011
  end-page: 62:10
  article-title: Discrete element textures
  publication-title: ACM Trans. Graph
– volume: 29
  issue: 5
  year: 2010
  article-title: Geodesic image and video editing
  publication-title: ACM Transactions on Graphics
– volume: 22
  start-page: 295
  issue: 3
  year: 2003
  end-page: 302
  article-title: Synthesis of progressively‐variant textures on arbitrary surfaces
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003)
– volume: 28
  issue: 3
  year: 2009
  article-title: PatchMatch: a randomized correspondence algorithm for structural image editing
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009)
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: Int. J. Comput. Vision
– year: 1979
– volume: 22
  start-page: 277
  issue: 3
  year: 2003
  end-page: 286
  article-title: Graphcut textures: Image and video synthesis using graph cuts
  publication-title: ACM SIGGRAPH 2003 Papers
– volume: 23
  start-page: 364
  issue: 3
  year: 2004
  end-page: 367
  article-title: Feature matching and deformation for texture synthesis
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004)
– volume: 31
  issue: 4
  year: 2012
  article-title: Image Melding: Combining inconsistent images using patch‐based synthesis
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012)
– year: 2012
– start-page: 1165
  year: 2008
  end-page: 1174
– start-page: 52:1
  year: 2008
  end-page: 52:9
– year: 2008
– start-page: 115
  year: 2012
  end-page: 124
– volume: 33
  issue: 4
  year: 2014
  article-title: Image completion using planar structure guidance
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014)
– start-page: 85:1
  year: 2010
  end-page: 85:6
– volume: 2
  start-page: 1033
  year: 1999
  end-page: 1038
  article-title: Texture synthesis by non‐parametric sampling
  publication-title: Proceedings of ICCV 99
– volume: 22
  start-page: 918
  issue: 9‐11
  year: 2006
  end-page: 925
  article-title: Fast example‐based surface texture synthesis via discrete optimization
  publication-title: The Visual Computer
– start-page: 341
  year: 2001
  end-page: 346
– volume: 24
  start-page: 795
  issue: 3
  year: 2005
  end-page: 802
  article-title: Texture optimization for example‐based synthesis
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005)
– volume: 26
  issue: 3
  year: 2007
  article-title: Solid texture synthesis from 2d exemplars
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007)
– volume: 2000
  start-page: 479
  year: 2000
  end-page: 488
  article-title: Fast texture synthesis using tree‐structured vector quantization
  publication-title: Proceedings of SIGGRAPH
– volume: 31
  start-page: 22:1
  issue: 3
  year: 2012
  end-page: 22:14
  article-title: Symmetry‐guided texture synthesis and manipulation
  publication-title: ACM Trans. Graph
– volume: 20
  start-page: 436
  issue: 3
  year: 2014
  end-page: 446
  article-title: Optimized synthesis of art patterns and layered textures
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2013
– volume: 28
  issue: 3
  year: 2009
  ident: e_1_2_8_2_2
  article-title: PatchMatch: a randomized correspondence algorithm for structural image editing
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009)
– ident: e_1_2_8_6_2
  doi: 10.1109/ICCV.2013.231
– volume: 33
  issue: 4
  year: 2014
  ident: e_1_2_8_10_2
  article-title: Image completion using planar structure guidance
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014)
– ident: e_1_2_8_20_2
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_8_13_2
  doi: 10.1145/1073204.1073263
– ident: e_1_2_8_11_2
  doi: 10.1007/978-3-642-33709-3_2
– start-page: 85:1
  volume-title: ACM SIGGRAPH 2010 Papers
  year: 2010
  ident: e_1_2_8_24_2
– volume-title: Information retrieval
  year: 1979
  ident: e_1_2_8_26_2
– start-page: 1165
  volume-title: Proceedings of the Nineteenth Eurographics Conference on Rendering
  year: 2008
  ident: e_1_2_8_4_2
– ident: e_1_2_8_29_2
– ident: e_1_2_8_18_2
– ident: e_1_2_8_3_2
  doi: 10.1145/1857907.1857910
– ident: e_1_2_8_25_2
  doi: 10.1109/CVPR.2008.4587842
– ident: e_1_2_8_31_2
  doi: 10.1109/TVCG.2013.113
– ident: e_1_2_8_16_2
  doi: 10.1145/1201775.882264
– ident: e_1_2_8_22_2
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_8_12_2
  doi: 10.1007/s00371-006-0078-3
– volume: 2001
  start-page: 327
  year: 2001
  ident: e_1_2_8_9_2
  article-title: Image analogies
  publication-title: Proceedings of SIGGRAPH
– ident: e_1_2_8_21_2
  doi: 10.1145/2010324.1964957
– ident: e_1_2_8_32_2
  doi: 10.1145/1015706.1015730
– ident: e_1_2_8_23_2
  doi: 10.1145/1618452.1618453
– volume: 23
  issue: 3
  year: 2004
  ident: e_1_2_8_19_2
  article-title: Near‐regular texture analysis and manipulation
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004)
– ident: e_1_2_8_17_2
  doi: 10.1145/1141911.1141921
– ident: e_1_2_8_33_2
  doi: 10.1145/882262.882266
– volume: 31
  issue: 4
  year: 2012
  ident: e_1_2_8_5_2
  article-title: Image Melding: Combining inconsistent images using patch‐based synthesis
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012)
– volume: 2
  start-page: 1033
  year: 1999
  ident: e_1_2_8_8_2
  article-title: Texture synthesis by non‐parametric sampling
  publication-title: Proceedings of ICCV 99
– ident: e_1_2_8_7_2
– volume: 2000
  start-page: 479
  year: 2000
  ident: e_1_2_8_28_2
  article-title: Fast texture synthesis using tree‐structured vector quantization
  publication-title: Proceedings of SIGGRAPH
– ident: e_1_2_8_15_2
  doi: 10.1145/2167076.2167080
– ident: e_1_2_8_30_2
  doi: 10.1109/TPAMI.2007.60
– volume: 26
  issue: 3
  year: 2007
  ident: e_1_2_8_14_2
  article-title: Solid texture synthesis from 2d exemplars
  publication-title: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007)
– start-page: 52:1
  volume-title: ACM SIGGRAPH 2008 Papers
  year: 2008
  ident: e_1_2_8_27_2
SSID ssj0004765
Score 2.468938
Snippet The goal of example‐based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and...
The goal of example-based texture synthesis methods is to generate arbitrarily large textures from limited exemplars in order to fit the exact dimensions and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms Analysis
Automation
Categories and Subject Descriptors (according to ACM CCS)
Channels
I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Image processing systems
Optimization
Repetition
Studies
Surface layer
Synthesis
Texture
Visual
Title Self Tuning Texture Optimization
URI https://api.istex.fr/ark:/67375/WNG-XH7RHB8N-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12565
https://www.proquest.com/docview/1690185482
https://www.proquest.com/docview/1778035274
Volume 34
WOSCitedRecordID wos000358326600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB4cu4f00FcSsq1TNqWUXDaYfehBTq0T25TgFtehvglJOyolqV1sb8nPz2i9u7WhhUJvCzuC0WNG30gznwDeWszzFKWOpCYXmGJuIm0SG1mTCIEyybXV5WMTfDwWs5n83IKLuhZmww_RHLh5yyj9tTdwbVZbRm6_uXPanVm2B52Y1m3Whs7lZHBz_bsskrOspvb2pDEVsZBP5Gka72xHHT-y9ztYcxuxllvO4Ol_KfsMnlRIM3y_WRrPoYXzF_B4i3_wAMIveOfCaeHPRsIpueliieEnciI_qurMQ7gZXE37o6h6MiGyaUk-meTGyZxwWIyJiFFrNIwiYEdRG2c9Kxlqkws0vMcky4xzliCCddzDJLRZcgTt-WKOxxAazZ2WiUxjF6eoM92zFNAywhsyZ8KIAM7qkVO24hP3z1rcqTquoE6rstMBvGlEf25INP4k9K4c_kZCL2991hnP1NfxUM1GfDL6IMbqYwDden5UZXAr5W_7CHqkIg7gtPlNpuLvP_QcFwXJcC48_StPSfdytv6ujeoPB-XHy38XfQX7BKeyTTpkF9rrZYEn8Mj-Wn9fLV9Xq_MBIcvmcA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSxxBEC6MG4g-qIlK1iOOIYS8jCxz9AF58Vo3cTMJZsV9a7p7qkPIusoewZ9v9ezMuEIEIW8DUw3V3VXVX_XxFcAHi3meoNSh1BQCE8xNqE1sQ2tiIVDGuba6KDbBs0z0-_LHAnyu3sLM-CHqDTfvGUW89g7uN6TnvNz-cge0PLP0BTQSMiOy78bJRfuy-_AukrO04vb2rDEls5C_yVM3frQeNfzQ3j0Cm_OQtVhz2qv_p-0arJRYMzicGcdrWMDhG1ieYyBch-AnDlzQm_rdkaBHgXo6wuA7hZHr8n3mBly2T3vHnbAsmhDapKCfjHPjZE5ILMJYRKg1GkY5sKO8jbOWlQy1yQUa3mKSpcY5SyDBOu6BEto03oTF4c0Q30JgNHdaxjKJXJSgTnXLUkrLCHHInAkjmvCpGjplS0ZxX9hioKrMgjqtik434X0tejuj0fiX0Mdi_GsJPfrj753xVF1lZ6rf4RedI5Gpr03YqSZIlS43Vv68j8BHIqIm7Ne_yVn8CYge4s2UZDgXngCWJ6R7MV1Pa6OOz9rFx9bzRffgVaf3rau6X7LzbVgicJXOLkfuwOJkNMVdeGn_Tn6PR-9KU70H-AzqYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSxxBEC50VyR5iMaDbGJ0EoL4MrLM0Qf44jWuB6PoivvW9FEdRLMuu27Iz7d7dmaygoLg28BUQ_VRVV_18RXAL43GJMhlyKVzgQkaFUoV61CrmDHksZFaFsUmaJ6zXo9fzMBO9RZmwg9Rb7h5yyj8tTdwHBg7ZeX6t9124Zmks9BMfBGZBjQPLrPrs__vIilJK25vzxpTMgv5mzx142fxqOmH9t8zsDkNWYuYky28T9tF-FRizWB3sjg-wwz2l-DjFAPhMgRXeG-D7tjvjgRd56jHQwzOnRv5U77PXIHr7LC73wnLogmhTgr6ydgoy41DYhHGLEIpURGXA1uXt1HS1pygVIahom3CSaqs1Q4kaEs9UEKdxqvQ6D_08QsESlIrecyTyEYJylS2tUtpiUMc3BCmWAu2qqETumQU94Ut7kWVWbhOi6LTLfhZiw4mNBovCW0W419LyOGdv3dGU3GTH4leh1529lguTlqwVk2QKE1uJPx5nwMfCYta8KP-7YzFn4DIPj6MnQylzBPA0sTpXkzX69qI_aOs-Pj6dtENmL84yMTZcX76DT44bJVO7kauQeNxOMbvMKf_Pt6OhuvlSn0CorTp2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self+Tuning+Texture+Optimization&rft.jtitle=Computer+graphics+forum&rft.au=Kaspar%2C+Alexandre&rft.au=Neubert%2C+Boris&rft.au=Lischinski%2C+Dani&rft.au=Pauly%2C+Mark&rft.date=2015-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=349&rft.epage=359&rft_id=info:doi/10.1111%2Fcgf.12565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon