Large Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low‐Resource Languages

ABSTRACT Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often lacks sufficient training data and leads to hallucinations. This often results in translated content that diverges significantly from the source...

Full description

Saved in:
Bibliographic Details
Published in:CAAI Transactions on Intelligence Technology Vol. 10; no. 4; pp. 1104 - 1117
Main Authors: Hongying, Zan, Javed, Arifa, Abdullah, Muhammad, Rashid, Javed, Faheem, Muhammad
Format: Journal Article
Language:English
Published: Wiley 01.08.2025
Subjects:
ISSN:2468-2322, 2468-6557, 2468-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often lacks sufficient training data and leads to hallucinations. This often results in translated content that diverges significantly from the source text. This research proposes a refined Contrastive Decoding (CD) algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in low‐resource NMT and improve translation quality. Advanced large language NMT models, including ChatGLM and LLaMA, are fine‐tuned and implemented for their superior contextual understanding and cross‐lingual capabilities. The refined CD algorithm evaluates multiple candidate translations using BLEU score, semantic similarity, and Named Entity Recognition accuracy. Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates. Fine‐tuned models achieve higher evaluation metrics compared to baseline models and state‐of‐the‐art models. An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations. Notably, the refined methodology increased the BLEU score by approximately 30% compared to baseline models.
AbstractList ABSTRACT Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often lacks sufficient training data and leads to hallucinations. This often results in translated content that diverges significantly from the source text. This research proposes a refined Contrastive Decoding (CD) algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in low‐resource NMT and improve translation quality. Advanced large language NMT models, including ChatGLM and LLaMA, are fine‐tuned and implemented for their superior contextual understanding and cross‐lingual capabilities. The refined CD algorithm evaluates multiple candidate translations using BLEU score, semantic similarity, and Named Entity Recognition accuracy. Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates. Fine‐tuned models achieve higher evaluation metrics compared to baseline models and state‐of‐the‐art models. An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations. Notably, the refined methodology increased the BLEU score by approximately 30% compared to baseline models.
ABSTRACT Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often lacks sufficient training data and leads to hallucinations. This often results in translated content that diverges significantly from the source text. This research proposes a refined Contrastive Decoding (CD) algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in low‐resource NMT and improve translation quality. Advanced large language NMT models, including ChatGLM and LLaMA, are fine‐tuned and implemented for their superior contextual understanding and cross‐lingual capabilities. The refined CD algorithm evaluates multiple candidate translations using BLEU score, semantic similarity, and Named Entity Recognition accuracy. Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates. Fine‐tuned models achieve higher evaluation metrics compared to baseline models and state‐of‐the‐art models. An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations. Notably, the refined methodology increased the BLEU score by approximately 30% compared to baseline models.
Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often lacks sufficient training data and leads to hallucinations. This often results in translated content that diverges significantly from the source text. This research proposes a refined Contrastive Decoding (CD) algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in low‐resource NMT and improve translation quality. Advanced large language NMT models, including ChatGLM and LLaMA, are fine‐tuned and implemented for their superior contextual understanding and cross‐lingual capabilities. The refined CD algorithm evaluates multiple candidate translations using BLEU score, semantic similarity, and Named Entity Recognition accuracy. Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates. Fine‐tuned models achieve higher evaluation metrics compared to baseline models and state‐of‐the‐art models. An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations. Notably, the refined methodology increased the BLEU score by approximately 30% compared to baseline models.
Author Hongying, Zan
Faheem, Muhammad
Rashid, Javed
Javed, Arifa
Abdullah, Muhammad
Author_xml – sequence: 1
  givenname: Zan
  surname: Hongying
  fullname: Hongying, Zan
  organization: Zhengzhou University
– sequence: 2
  givenname: Arifa
  surname: Javed
  fullname: Javed, Arifa
  organization: Zhengzhou University
– sequence: 3
  givenname: Muhammad
  surname: Abdullah
  fullname: Abdullah, Muhammad
  organization: Zhengzhou University
– sequence: 4
  givenname: Javed
  surname: Rashid
  fullname: Rashid, Javed
  organization: University of Okara
– sequence: 5
  givenname: Muhammad
  surname: Faheem
  fullname: Faheem, Muhammad
  email: muhammad.faheem@uwasa.fi
  organization: VTT Technical Research Center of Finland
BookMark eNp9kMtKAzEUhoNUsF42PkHWQmsmySSdZamXFqYIorgMmeTMmDKdSDK1dOcj-Iw-iWNH1JWr_OR85zvwH6NB4xtA6Dwh44Tw7NK4lo4lIYQfoCHlYjKijNLBn3yEzmJcdUSSZVnK5BCFXIcKcK6baqO7sPQW6oifXPuMZ75pg46tewV8BcZb11R4Wlc-dNM1Ln3Ac13XG-Ma3Trf4KVrXdVH1-Dcbz_e3u8h-k0wvyfiKTosdR3h7Ps9QY831w-z-Si_u13MpvnIcML4yDKWpsyyFGSmqUiNgEJqQjNWMi2FtURaCVkq6CQtjBbWWEYTMyl5AoKDZCdo0Xut1yv1Etxah53y2qn9hw-V0qF1pgZlUmotAOUlFZwYXlAujZATwSno0had66J3meBjDFD--BKivspXX-WrffkdnPTw1tWw-4dUs8UD7Xc-AUY_ioM
Cites_doi 10.1145/3571730
10.18653/v1/W19-5401
10.1111/srt.13524
10.1016/j.dib.2024.110461.68
10.18653/v1/2023.eacl-main.75
10.18653/v1/2023.wmt-1.1
10.18653/v1/2021.findings-acl.120
10.2139/ssrn.4390455
10.32629/jai.v3i2.279
10.1016/j.dib.2024.11021250.66
10.18653/v1/2024.acl-long.586
10.1162/tacl_a_00474
10.18653/v1/2022.emnlp-main.599
10.18653/v1/2021.naacl-main.92
10.18653/v1/2024.eacl-short.4
10.18653/v1/2022.acl-long.26
10.18653/v1/2023.acl-long.3
10.1049/blc2.12081.69
10.1007/s10579‐023‐09704‐w
10.32629/jai.v4i1.359
10.3390/sym13050786
10.1080/08839514.2023.2175112
10.1162/tacl_a_00563
10.18653/v1/2024.eacl-long.155
10.1201/9781003244332‐4
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/cit2.70004
DatabaseName Wiley Online Library Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 1117
ExternalDocumentID oai_doaj_org_article_c52ddee24f2640c4b247c678642eafdb
10_1049_cit2_70004
CIT270004
Genre article
GrantInformation_xml – fundername: VTT Technical Research Center of Finland
GroupedDBID 0R~
1OC
24P
AAEDW
AAHJG
AAJGR
AALRI
AAMMB
AAXUO
AAYWO
ABMAC
ABQXS
ACCMX
ACESK
ACGFS
ACVFH
ACXQS
ADBBV
ADCNI
ADMLS
ADVLN
AEFGJ
AEUPX
AEXQZ
AFKRA
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
ICD
IDLOA
ITC
K7-
M41
M43
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
ROL
RUI
SSZ
WIN
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c4034-d33553d35e79a265c6eb7a0293f3a76dd07d7e956285bca6dcd321c8f41e64e73
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001458943800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2468-2322
2468-6557
IngestDate Fri Oct 03 12:51:48 EDT 2025
Wed Oct 29 21:09:37 EDT 2025
Fri Aug 29 10:00:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4034-d33553d35e79a265c6eb7a0293f3a76dd07d7e956285bca6dcd321c8f41e64e73
Notes The authors are highly grateful to their affiliated universities and institutes for providing research facilities. The research work of M. Faheem is supported by VTT Technical Research Center of Finland.
Funding
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.70004
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c52ddee24f2640c4b247c678642eafdb
crossref_primary_10_1049_cit2_70004
wiley_primary_10_1049_cit2_70004_CIT270004
PublicationCentury 2000
PublicationDate August 2025
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 58
2019; 3
2021; 4
2023; 55
2023; 11
2021; 22
2023; 37
2019; 1
2024; 53
2024; 54
2020; 33
2024
2024; 38
2021; 13
2023; 24
2020; 3
2020; 2
2023
2022
2023; 29
2021
2019
2018
2024; 1
2022; 10
2022; 1
2024; 46
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_45_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_40_1
Khan Z. (e_1_2_10_41_1) 2020; 2
Guan X. (e_1_2_10_2_1) 2024
Chen H. H. (e_1_2_10_43_1) 2024; 46
Fan A. (e_1_2_10_3_1) 2021; 22
Chowdhery A. (e_1_2_10_4_1) 2023; 24
Radford A. (e_1_2_10_9_1) 2019; 1
Wenzek G. (e_1_2_10_10_1) 2021
Rei R. (e_1_2_10_27_1) 2022
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
Brown T. (e_1_2_10_21_1) 2020; 33
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
Bawden R. (e_1_2_10_24_1) 2023
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 29
  issue: 11
  year: 2023
  article-title: Segmentation and Classification of Skin Lesions Using Hybrid Deep Learning Method in the Internet of Medical Things
  publication-title: Skin Research and Technology
– start-page: 1
  year: 2023
  end-page: 42
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  article-title: Language Models Are Unsupervised Multitask Learners
  publication-title: OpenAI blog
– start-page: 1059
  year: 2023
  end-page: 1075
– volume: 37
  issue: 1
  year: 2023
  article-title: A Study on the Evaluation of Tokenizer Performance in Natural Language Processing
  publication-title: Applied Artificial Intelligence
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  article-title: Language Models Are Few‐Shot Learners
  publication-title: Advances in Neural Information Processing Systems
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  end-page: 5
  article-title: A Seq to Seq Machine Translation From Urdu to Chinese
  publication-title: Journal of Autonomous Intelligence
– volume: 53
  issue: 5
  year: 2024
  article-title: Cyberattack Patterns in Blockchain‐Based Communication Networks for Distributed Renewable Energy Systems: A Study on Big Datasets
  publication-title: Data in Brief
– start-page: 578
  year: 2022
  end-page: 585
– year: 2021
– start-page: 78
  year: 2023
  end-page: 109
  article-title: A Review of the Approaches to Neural Machine Translation
  publication-title: Natural Language Processing and Information Retrieval
– volume: 46
  start-page: 518
  issue: 03
  year: 2024
  article-title: Chinese‐Urdu Neural Machine Translation Interacting Pos Sequence Prediction in Urdu Language
  publication-title: Computer Engineering & Science
– year: 2024
– start-page: 89
  year: 2021
  end-page: 99
– volume: 10
  start-page: 522
  year: 2022
  end-page: 538
  article-title: The Flores‐101 Evaluation Benchmark for Low‐Resource and Multilingual Machine Translation
  publication-title: Transactions of the Association for Computational Linguistics
– year: 2018
– start-page: 1393
  year: 2021)
  end-page: 1404
– volume: 38
  start-page: 18126
  year: 2024
  end-page: 18134
– volume: 11
  start-page: 546
  year: 2023
  end-page: 564
  article-title: Understanding and Detecting Hallucinations in Neural Machine Translation via Model Introspection
  publication-title: Transactions of the Association for Computational Linguistics
– volume: 58
  start-page: 1
  issue: 2
  year: 2023
  end-page: 43
  article-title: Democratizing Neural Machine Translation With Opus‐Mt
  publication-title: Language Resources and Evaluation
– volume: 13
  issue: 5
  year: 2021
  article-title: Low‐resource Named Entity Recognition via the Pre‐training Model
  publication-title: Symmetry
– start-page: 10879
  year: 2024
  end-page: 10899
– volume: 22
  start-page: 1
  issue: 107
  year: 2021
  end-page: 48
  article-title: Beyond English‐Centric Multilingual Machine Translation
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 2526
  year: 2024
  end-page: 2539
– volume: 2
  start-page: 29
  issue: 4
  year: 2020
  end-page: 36
  article-title: A Study of Neural Machine Translation From Chinese to Urdu
  publication-title: Journal of Autonomous Intelligence
– year: 2022
– year: 2023
– volume: 1
  start-page: 320
  year: 2022
  end-page: 335
– volume: 24
  start-page: 1
  issue: 240
  year: 2023
  end-page: 113
  article-title: Palm: Scaling Language Modeling With Pathways
  publication-title: Journal of Machine Learning Research
– volume: 55
  start-page: 1
  issue: 12
  year: 2023
  end-page: 38
  article-title: Survey of Hallucination in Natural Language Generation
  publication-title: ACM Computing Surveys
– volume: 3
  start-page: 1
  year: 2019
  end-page: 10
– start-page: 1
  year: 2024
  end-page: 15
  article-title: A Blockchain‐Based Resilient and Secure Framework for Events Monitoring and Control in Distributed Renewable Energy Systems
  publication-title: IET Blockchain
– volume: 54
  issue: 5
  year: 2024
  article-title: Multilayer Cyber attacks Identification and Classification Using Machine Learning in Internet of Blockchain(IoBC)‐Based Energy Networks
  publication-title: Data in Brief
– year: 2019
– volume: 3
  start-page: 34
  issue: 2
  year: 2020
  end-page: 44
  article-title: Research on Chinese‐Urdu Machine Translation Based on Deep Learning
  publication-title: Journal of Autonomous Intelligence
– ident: e_1_2_10_8_1
  doi: 10.1145/3571730
– ident: e_1_2_10_32_1
  doi: 10.18653/v1/W19-5401
– ident: e_1_2_10_47_1
  doi: 10.1111/srt.13524
– ident: e_1_2_10_45_1
  doi: 10.1016/j.dib.2024.110461.68
– ident: e_1_2_10_5_1
– ident: e_1_2_10_14_1
  doi: 10.18653/v1/2023.eacl-main.75
– ident: e_1_2_10_30_1
  doi: 10.18653/v1/2023.wmt-1.1
– volume: 33
  start-page: 1877
  year: 2020
  ident: e_1_2_10_21_1
  article-title: Language Models Are Few‐Shot Learners
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_37_1
  doi: 10.18653/v1/2021.findings-acl.120
– volume: 24
  start-page: 1
  issue: 240
  year: 2023
  ident: e_1_2_10_4_1
  article-title: Palm: Scaling Language Modeling With Pathways
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_23_1
  doi: 10.2139/ssrn.4390455
– ident: e_1_2_10_35_1
– ident: e_1_2_10_26_1
  doi: 10.18653/v1/2023.eacl-main.75
– ident: e_1_2_10_42_1
  doi: 10.32629/jai.v3i2.279
– volume: 2
  start-page: 29
  issue: 4
  year: 2020
  ident: e_1_2_10_41_1
  article-title: A Study of Neural Machine Translation From Chinese to Urdu
  publication-title: Journal of Autonomous Intelligence
– ident: e_1_2_10_44_1
  doi: 10.1016/j.dib.2024.11021250.66
– ident: e_1_2_10_38_1
  doi: 10.18653/v1/2024.acl-long.586
– ident: e_1_2_10_6_1
  doi: 10.1162/tacl_a_00474
– ident: e_1_2_10_13_1
  doi: 10.18653/v1/2022.emnlp-main.599
– ident: e_1_2_10_16_1
– ident: e_1_2_10_25_1
  doi: 10.18653/v1/2021.naacl-main.92
– ident: e_1_2_10_19_1
– start-page: 18126
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2024
  ident: e_1_2_10_2_1
– ident: e_1_2_10_28_1
  doi: 10.18653/v1/2024.eacl-short.4
– ident: e_1_2_10_20_1
– volume-title: Investigating the Translation Performance of a Large Multilingual Language Model: The Case of Bloom
  year: 2023
  ident: e_1_2_10_24_1
– ident: e_1_2_10_17_1
  doi: 10.18653/v1/2022.acl-long.26
– ident: e_1_2_10_15_1
  doi: 10.18653/v1/2023.acl-long.3
– ident: e_1_2_10_46_1
  doi: 10.1049/blc2.12081.69
– ident: e_1_2_10_18_1
– ident: e_1_2_10_31_1
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: e_1_2_10_9_1
  article-title: Language Models Are Unsupervised Multitask Learners
  publication-title: OpenAI blog
– ident: e_1_2_10_12_1
– start-page: 89
  volume-title: Proceedings of the Sixth Conference on Machine Translation
  year: 2021
  ident: e_1_2_10_10_1
– ident: e_1_2_10_29_1
  doi: 10.1007/s10579‐023‐09704‐w
– ident: e_1_2_10_40_1
  doi: 10.32629/jai.v4i1.359
– ident: e_1_2_10_7_1
– volume: 46
  start-page: 518
  issue: 03
  year: 2024
  ident: e_1_2_10_43_1
  article-title: Chinese‐Urdu Neural Machine Translation Interacting Pos Sequence Prediction in Urdu Language
  publication-title: Computer Engineering & Science
– ident: e_1_2_10_36_1
  doi: 10.3390/sym13050786
– ident: e_1_2_10_22_1
– start-page: 578
  volume-title: Proceedings of the Seventh Conference on Machine Translation (WMT)
  year: 2022
  ident: e_1_2_10_27_1
– ident: e_1_2_10_34_1
  doi: 10.1080/08839514.2023.2175112
– ident: e_1_2_10_11_1
  doi: 10.1162/tacl_a_00563
– volume: 22
  start-page: 1
  issue: 107
  year: 2021
  ident: e_1_2_10_3_1
  article-title: Beyond English‐Centric Multilingual Machine Translation
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_39_1
  doi: 10.18653/v1/2024.eacl-long.155
– ident: e_1_2_10_33_1
  doi: 10.1201/9781003244332‐4
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.3058858
Snippet ABSTRACT Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often...
Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often lacks...
ABSTRACT Neural machine translation (NMT) has advanced with deep learning and large‐scale multilingual models, yet translating low‐resource languages often...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 1104
SubjectTerms ChatGLM
contrastive decoding
hallucination
LLAMA
LLM
low resource NMT
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kePAiior1iwU9CbHp7iabPdZqqRCLh6q9hf20gdhK2urVn-Bv9Je4u2lLe9GLtyUEJswkM-9NhjcAXFCGDGVUBgkmOiBMxgGnHAeWSwgjk1gxP0TzlNJeLxkM2MPKqi83E1bJA1eOa8gI2S9QI2Js6Q4lEYhQaTOsxc2aGyVc9rWoZ4VM-e6KxT0Rpgs9UsIaMp-iK-ogzFoF8kL968DUV5bODtieQ0LYqh5lF2zo0R4oUzeiDdN5OxG6nWXFBD7n0yF0ilIln7hEBW8sfXTlB7aKl7El-sNXaGEo7PKimMm8avXB-7xS0rDHfATT8cf359eib780MdkHj53bfrsbzPcjBJKEmAQKW7CAFY40ZRzFkYy1oDy0BdxgTmOlQqqotgQIJZGQPFZSYdSUiSFNHRNN8QGojcYjfQggZkYnysEBpIjQghmTYIEFid1yI2Pq4Hzhs-ytksHI_O9rwjLn2cx7tg6unTuXdzjpan_BBjSbBzT7K6B1cOmD8YudrH3XR_509B8Wj8EWclt9_VjfCahNy5k-BZvyfZpPyjP_Yv0AICnVgg
  priority: 102
  providerName: Directory of Open Access Journals
Title Large Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low‐Resource Languages
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.70004
https://doaj.org/article/c52ddee24f2640c4b247c678642eafdb
Volume 10
WOSCitedRecordID wos001458943800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050729737
  issn: 2468-2322
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: K7-
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: PIMPY
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: WIN
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FPXjxgYr1RUBPwuo2yW424MVHi0ItHtR6W_LUhdrKtupN_An-Rn-Jk2xb8SKIlxB2s2SZSTLfTJJvENrjgjguuI4yymzEhE4jySWNwJdQTmepEeEQzW2bdzrZ3Z24qqGjyV2Yih9iGnDzMyOs136CS1VlIQFQC0rUxYgc8DiQgc42GjTziRsIu_qOsAD2SQJpJvHXiwA6kAk_KROH35__sEiBuP8nUA2WprX4v39cQgtjhImPqyGxjGq2v4LKtj_xjdvj6CT2KdB6Q9wtRg_YE1SVcujXPXwG3qi3Zvi4dz8o4e0jBlSLz2Wv96yLKnKIL4uKmAOqRR-3B6-f7x-TbYBpF8NVdNNqXp-eR-N0C5FmMWWRoYA9qKGJ5UKSNNGpVVzGgAcclTw1JuaGW_CnSJYoLVOjDSUNnTnWsCmznK6hmf6gb9cRpsLZzHh0QQxTVgnnMqqoAj1ow5yro92JyPOnilUjD7vhTOReZnmQWR2deG1MW3gm7PBgUN7n44mV64TACm0JcwDtYs0UYVyDBQa_ykpnVB3tBw390k9-enFNQm3jL4030TzxyYDDacAtNDMqn-02mtMvo2JY7oSxuBNcfCgv35pQdi86X-pg5cw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcmmLRdBtOG1o0xS9sJKRBsJ46PrFC1WlpxKJRb5L8QKWuntIwrH4HPyCfBz0lb9YI07WYljhz52e_93vPz7yH0gwviuOA6yiizERM6jSSXNPK-hHI6S40ISTRXOR-NsutrcdHm5sBdmIYfYhVwg50R9DVscAhINw4nA5JMXS7IEY8DG-g280gDKjdMBqN1iMWDnySwZhK4X-SxA1kSlDJxvP58wyQF5v5NpBpMTW_nP39yF71rMSY-bRbFe_TKTj-gOoecb5y38UkMRdCqOZ6Ui1sMFFW1nIPmw2feHwV7hk-rm1nt3_7GHtfivqyqO102sUM8LBtqDt8spzif3T89PC4PAlZDzD-iy975uNuP2oILkWYxZZGhHn1QQxPLhSRpolOruIw9InBU8tSYmBtuvUdFskRpmRptKDnRmWMnNmWW0z20NZ1N7SeEqXA2M4AviGHKKuFcRhVVXhDaMOc66Ptyzos_Da9GEc7DmShgzoowZx30E8Sx6gFc2OHBrL4p2q1V6IR4HW0Jcx7cxZopwrj2Nth7VlY6ozroMIjohXGK7mBMQuvzv3T-ht70x8O8yAejX1_QWwKlgUNu4D7aWtR39it6rf8uynl9EBbmM_Mu5u8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQIMSFRYAoqyU4IQVS24njI1AqEKHqge0WeS2RSlulLVz5BL6RL8F20qJekBA3K3HkaOyZeTMePwNwTBkylFEZJJjogDAZB5xyHNhYQhiZxIr5IprHlLZayfMza1e1Oe4sTMkPMU24Oc3w9topuB4oUwacxJFkynyETmno2UAXSETrblEj0v5JsVjwE3nWTOTOF1nsgCYEpYSd_Xw-45I8c_8sUvWuprn6z59cAysVxoTn5aJYB3O6twGK1NV8w7TKT0J3CVp3CJ_y0Qt0FFUFHzrLBxs2HnX-DJ53O_3Cvn2FFtfCa97tjmVe5g7hXV5Sc9hm3oNp__3r43OyETAdYrgJHppX95fXQXXhQiBJiEmgsEUfWOFIU8ZRHMlYC8pDiwgM5jRWKqSKahtRoSQSksdKKozqMjGkrmOiKd4C871-T28DiJnRiXL4AikitGDGJFhgYSdCKmJMDRxNZJ4NSl6NzO-HE5Y5mWVeZjVw4aZj2sNxYfsH_aKTVaqVyQhZG60RMRbchZIIRKi0PthGVpobJWrgxE_RL-Nklzf3yLd2_tL5ECy1G80svWnd7oJl5G4G9qWBe2B-VIz1PliUb6N8WBz4dfkNMMvmBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Language+Models+With+Contrastive+Decoding+Algorithm+for+Hallucination+Mitigation+in+Low%E2%80%90Resource+Languages&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Hongying%2C+Zan&rft.au=Javed%2C+Arifa&rft.au=Abdullah%2C+Muhammad&rft.au=Rashid%2C+Javed&rft.date=2025-08-01&rft.issn=2468-2322&rft.eissn=2468-2322&rft.volume=10&rft.issue=4&rft.spage=1104&rft.epage=1117&rft_id=info:doi/10.1049%2Fcit2.70004&rft.externalDBID=10.1049%252Fcit2.70004&rft.externalDocID=CIT270004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon