Hierarchical distillation for image compressive sensing reconstruction

Compressive sensing (CS) is an effective algorithm for reconstructing images from a small sample of data. CS models combining traditional optimisation‐based CS methods and deep learning have been used to improve image reconstruction performance. However, if the sample ratio is very low, the performa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics letters Ročník 57; číslo 22; s. 851 - 853
Hlavní autoři: Lee, Bokyeung, Ku, Bonhwa, Kim, Wanjin, Ko, Hanseok
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage John Wiley & Sons, Inc 01.10.2021
Wiley
Témata:
ISSN:0013-5194, 1350-911X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Compressive sensing (CS) is an effective algorithm for reconstructing images from a small sample of data. CS models combining traditional optimisation‐based CS methods and deep learning have been used to improve image reconstruction performance. However, if the sample ratio is very low, the performance of the CS method combined with deep learning will be unsatisfactory. In this letter, a deep learning‐based CS model incorporating hierarchical knowledge distillation to improve image reconstruction even at varied sample ratios. Compared to the state‐of‐art methods with all compressive sensing ratios, the proposed method improved performance by an average of 0.26 dB without additional trainable parameters.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0013-5194
1350-911X
DOI:10.1049/ell2.12284