Thin, soft, garment‐integrated triboelectric nanogenerators for energy harvesting and human machine interfaces
The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions, since TENGs enable to convert body motions induced mechanical energy into electrical signals. The development of thin, soft, and garment‐integra...
Gespeichert in:
| Veröffentlicht in: | EcoMat (Beijing, China) Jg. 3; H. 4 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.08.2021
Wiley |
| Schlagworte: | |
| ISSN: | 2567-3173, 2567-3173 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions, since TENGs enable to convert body motions induced mechanical energy into electrical signals. The development of thin, soft, and garment‐integrated TENGs would be an important solution for the power management in wearable electronics as well as self‐powered sensors. Here, we report materials, device designs, processing routes for garment‐integrated TENGs (G‐TENGs) and demonstrations of the G‐TENGs in wearable energy harvesting and human‐machine interfaces. The G‐TENGs adopt a simple layout with two soft silicone layers and one graphene‐coated fabric layer, exhibiting great flexibility, air‐permeability, and robust durability. Furthermore, the G‐TENGs present outstanding electrical characteristics with open‐circuit voltage and short‐current outputs as great as 213.75 V and 3.11 μA, under a constant frequency and stress of 3 Hz and 5.6 kPa, respectively. The excellent mechanical properties of the G‐TENGs allow them tolerating toward over 1000 cycles of bending, stretching and twisting, and maintaining unchanged electrical outputs after these deformations. The stable electrical outputs and the excellent mechanical performance of the G‐TENGs provide a high potential in self‐powered sensors, energy harvesting, human‐machine interfaces and many others.
Thin, flexible, garment‐based triboelectric nanogenerators were developed for energy harvesting and motion sensing. By optimizing the mechanical properties of the device, the air‐permeable TENGs have exhibited excellent electrical performance. The simple fabrication process offers a new strategy of high‐throughput, large‐area, and low‐cost self‐powered electronics for energy harvesting and human machine interfaces. |
|---|---|
| AbstractList | Abstract The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions, since TENGs enable to convert body motions induced mechanical energy into electrical signals. The development of thin, soft, and garment‐integrated TENGs would be an important solution for the power management in wearable electronics as well as self‐powered sensors. Here, we report materials, device designs, processing routes for garment‐integrated TENGs (G‐TENGs) and demonstrations of the G‐TENGs in wearable energy harvesting and human‐machine interfaces. The G‐TENGs adopt a simple layout with two soft silicone layers and one graphene‐coated fabric layer, exhibiting great flexibility, air‐permeability, and robust durability. Furthermore, the G‐TENGs present outstanding electrical characteristics with open‐circuit voltage and short‐current outputs as great as 213.75 V and 3.11 μA, under a constant frequency and stress of 3 Hz and 5.6 kPa, respectively. The excellent mechanical properties of the G‐TENGs allow them tolerating toward over 1000 cycles of bending, stretching and twisting, and maintaining unchanged electrical outputs after these deformations. The stable electrical outputs and the excellent mechanical performance of the G‐TENGs provide a high potential in self‐powered sensors, energy harvesting, human‐machine interfaces and many others. The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions, since TENGs enable to convert body motions induced mechanical energy into electrical signals. The development of thin, soft, and garment‐integrated TENGs would be an important solution for the power management in wearable electronics as well as self‐powered sensors. Here, we report materials, device designs, processing routes for garment‐integrated TENGs (G‐TENGs) and demonstrations of the G‐TENGs in wearable energy harvesting and human‐machine interfaces. The G‐TENGs adopt a simple layout with two soft silicone layers and one graphene‐coated fabric layer, exhibiting great flexibility, air‐permeability, and robust durability. Furthermore, the G‐TENGs present outstanding electrical characteristics with open‐circuit voltage and short‐current outputs as great as 213.75 V and 3.11 μA, under a constant frequency and stress of 3 Hz and 5.6 kPa, respectively. The excellent mechanical properties of the G‐TENGs allow them tolerating toward over 1000 cycles of bending, stretching and twisting, and maintaining unchanged electrical outputs after these deformations. The stable electrical outputs and the excellent mechanical performance of the G‐TENGs provide a high potential in self‐powered sensors, energy harvesting, human‐machine interfaces and many others. The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions, since TENGs enable to convert body motions induced mechanical energy into electrical signals. The development of thin, soft, and garment‐integrated TENGs would be an important solution for the power management in wearable electronics as well as self‐powered sensors. Here, we report materials, device designs, processing routes for garment‐integrated TENGs (G‐TENGs) and demonstrations of the G‐TENGs in wearable energy harvesting and human‐machine interfaces. The G‐TENGs adopt a simple layout with two soft silicone layers and one graphene‐coated fabric layer, exhibiting great flexibility, air‐permeability, and robust durability. Furthermore, the G‐TENGs present outstanding electrical characteristics with open‐circuit voltage and short‐current outputs as great as 213.75 V and 3.11 μA, under a constant frequency and stress of 3 Hz and 5.6 kPa, respectively. The excellent mechanical properties of the G‐TENGs allow them tolerating toward over 1000 cycles of bending, stretching and twisting, and maintaining unchanged electrical outputs after these deformations. The stable electrical outputs and the excellent mechanical performance of the G‐TENGs provide a high potential in self‐powered sensors, energy harvesting, human‐machine interfaces and many others. Thin, flexible, garment‐based triboelectric nanogenerators were developed for energy harvesting and motion sensing. By optimizing the mechanical properties of the device, the air‐permeable TENGs have exhibited excellent electrical performance. The simple fabrication process offers a new strategy of high‐throughput, large‐area, and low‐cost self‐powered electronics for energy harvesting and human machine interfaces. The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions, since TENGs enable to convert body motions induced mechanical energy into electrical signals. The development of thin, soft, and garment‐integrated TENGs would be an important solution for the power management in wearable electronics as well as self‐powered sensors. Here, we report materials, device designs, processing routes for garment‐integrated TENGs (G‐TENGs) and demonstrations of the G‐TENGs in wearable energy harvesting and human‐machine interfaces. The G‐TENGs adopt a simple layout with two soft silicone layers and one graphene‐coated fabric layer, exhibiting great flexibility, air‐permeability, and robust durability. Furthermore, the G‐TENGs present outstanding electrical characteristics with open‐circuit voltage and short‐current outputs as great as 213.75 V and 3.11 μA, under a constant frequency and stress of 3 Hz and 5.6 kPa, respectively. The excellent mechanical properties of the G‐TENGs allow them tolerating toward over 1000 cycles of bending, stretching and twisting, and maintaining unchanged electrical outputs after these deformations. The stable electrical outputs and the excellent mechanical performance of the G‐TENGs provide a high potential in self‐powered sensors, energy harvesting, human‐machine interfaces and many others. image |
| Author | Yu, Xinge Wong, Tszhung Zhao, Ling Gao, Zhan Yao, Kuanming Li, Dengfeng Liu, Yiming Zhou, Jingkun Huang, Ya Song, Enming He, Jiahui Jia, Huiling Yiu, Chunki Huang, Xingcan Wu, Mengge |
| Author_xml | – sequence: 1 givenname: Yiming orcidid: 0000-0003-0134-1934 surname: Liu fullname: Liu, Yiming organization: City University of Hong Kong – sequence: 2 givenname: Chunki surname: Yiu fullname: Yiu, Chunki organization: City University of Hong Kong – sequence: 3 givenname: Huiling surname: Jia fullname: Jia, Huiling organization: City University of Hong Kong – sequence: 4 givenname: Tszhung surname: Wong fullname: Wong, Tszhung organization: City University of Hong Kong – sequence: 5 givenname: Kuanming surname: Yao fullname: Yao, Kuanming organization: City University of Hong Kong – sequence: 6 givenname: Ya surname: Huang fullname: Huang, Ya organization: City University of Hong Kong – sequence: 7 givenname: Jingkun surname: Zhou fullname: Zhou, Jingkun organization: City University of Hong Kong – sequence: 8 givenname: Xingcan surname: Huang fullname: Huang, Xingcan organization: City University of Hong Kong – sequence: 9 givenname: Ling surname: Zhao fullname: Zhao, Ling organization: City University of Hong Kong – sequence: 10 givenname: Dengfeng surname: Li fullname: Li, Dengfeng organization: City University of Hong Kong – sequence: 11 givenname: Mengge surname: Wu fullname: Wu, Mengge organization: City University of Hong Kong – sequence: 12 givenname: Zhan surname: Gao fullname: Gao, Zhan organization: City University of Hong Kong – sequence: 13 givenname: Jiahui surname: He fullname: He, Jiahui organization: City University of Hong Kong – sequence: 14 givenname: Enming surname: Song fullname: Song, Enming organization: City University of Hong Kong – sequence: 15 givenname: Xinge orcidid: 0000-0003-0522-1171 surname: Yu fullname: Yu, Xinge email: xingeyu@cityu.edu.hk organization: City University of Hong Kong |
| BookMark | eNp9kc9u1DAQxi1UJErphSewxA11i_8lTo6oKrRSUS_lbE2ccdarxF4cL2hvPALPyJPgNBVCCHHyePx9v_Hoe0lOQgxIyGvOLjlj4h3GSVxywYV8Rk5FVeuN5Fqe_FG_IOfzvGNFXDElFD8l-4etDxd0ji5f0AHShCH__P7Dh4xDgow9zcl3EUe0pbA0QIgDBixvMc3UxUSX23CkW0hfcc4-DBRCT7eHCQKdwBY-0oWXHFicX5HnDsYZz5_OM_L5w_XD1c3m7v7j7dX7u41VTMoNuEboWjVd2ylnrZK9quvGtk4LbDRUQtm-lVCX1QRTmvWtZoJ3LTItLDglz8jtyu0j7Mw--QnS0UTw5rER02AgZW9HNHXVKdW1gqMUqgXWyLrQNbd9w5BbUVhvVtY-xS-HsqTZxUMK5ftmmV83SvKqqN6uKpviPCd0v6dyZpaAzBKQeQyoiNlfYuszZB9DTuDHf1v4avnmRzz-B26u7z-J1fML2jalQg |
| CitedBy_id | crossref_primary_10_1002_eom2_12493 crossref_primary_10_1016_j_matt_2024_09_009 crossref_primary_10_1002_smll_202501722 crossref_primary_10_1016_j_cej_2023_143664 crossref_primary_10_1016_j_fmre_2022_01_021 crossref_primary_10_3389_fmats_2021_769071 crossref_primary_10_1007_s40684_024_00688_8 crossref_primary_10_1002_eom2_12448 crossref_primary_10_1016_j_cej_2022_138741 crossref_primary_10_1080_00405000_2023_2289943 crossref_primary_10_3390_s23042021 crossref_primary_10_1016_j_jcis_2024_01_170 crossref_primary_10_1007_s11814_024_00227_w crossref_primary_10_1002_admt_202501299 crossref_primary_10_1039_D2RA01088G crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_1016_j_commatsci_2025_114067 crossref_primary_10_1016_j_apsusc_2022_155522 crossref_primary_10_1016_j_nanoen_2021_106791 crossref_primary_10_1016_j_nanoen_2022_107442 crossref_primary_10_1016_j_nanoen_2023_108797 |
| Cites_doi | 10.1002/adma.201504150 10.1021/acsami.0c16973 10.1021/nn4007708 10.1002/aelm.201901174 10.1002/smll.201800987 10.1002/adma.201000775 10.1016/j.nanoen.2014.11.050 10.1021/am504110u 10.1039/c2cs35043b 10.1038/s41467-020-16642-6 10.1007/s12274-014-0453-8 10.1038/s41467-019-11597-9 10.1038/srep02597 10.1016/j.mtphys.2020.100199 10.1007/s12274-017-1609-0 10.1016/j.cplett.2010.02.063 10.1021/nn4050408 10.1021/nl102661q 10.1002/adma.201606703 10.1021/nn507221f 10.3390/coatings10080711 10.1002/adfm.201804533 10.4108/ICST.PERVASIVEHEALTH2009.6033 10.1063/1.4766921 10.1002/admt.201900744 10.1038/s41586-019-1687-0 10.1002/adfm.201604462 10.1109/THMS.2014.2302794 10.1002/adma.202001466 10.1016/j.nanoen.2017.07.022 10.1002/aenm.201802906 10.1002/admt.201700249 10.1002/adma.201504299 10.1002/adfm.201806379 10.1038/s41467-018-06759-0 10.1002/adma.201504366 10.3390/s19112562 10.1038/nnano.2008.314 10.1016/j.nanoen.2018.10.036 10.1021/nl4001053 10.1002/smll.201300146 10.1088/0964-1726/18/12/125006 10.1109/JSEN.2018.2877978 10.1016/j.robot.2014.06.001 10.34133/2020/1085417 10.1021/acsnano.7b04898 10.1126/sciadv.aba9624 10.1002/adma.201902549 10.1038/nature16521 10.1109/TPEL.2002.802194 10.1016/j.nanoen.2020.105590 10.1016/j.nanoen.2013.03.001 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
| DOI | 10.1002/eom2.12123 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2567-3173 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_65b44b921e3249a08364cd71cd80e1c2 10_1002_eom2_12123 EOM212123 |
| Genre | article |
| GrantInformation_xml | – fundername: Research Grants Council of Hong Kong Special Administrative Region funderid: 21210820 – fundername: Shenzhen Science and Technology Innovation Commission funderid: JCYJ20200109110201713 – fundername: City University of Hong Kong funderid: 9667199; 9610423: 9667221 |
| GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY BANNL CITATION IEP PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c4033-af827648b9b4fcc43d4668c9f72e87a524cd93a625620470d97021b9e072caf43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669911900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2567-3173 |
| IngestDate | Mon Nov 10 04:30:10 EST 2025 Fri Jul 25 11:48:32 EDT 2025 Sat Nov 29 04:06:55 EST 2025 Tue Nov 18 19:39:44 EST 2025 Wed Jan 22 16:57:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4033-af827648b9b4fcc43d4668c9f72e87a524cd93a625620470d97021b9e072caf43 |
| Notes | Funding information Yiming Liu, Chunki Yiu, Huiling Jia, and Tszhung Wong contributed equally to this work. Shenzhen Science and Technology Innovation Commission, Grant/Award Number: JCYJ20200109110201713; Research Grants Council of Hong Kong Special Administrative Region, Grant/Award Number: 21210820; City University of Hong Kong, Grant/Award Numbers: 9667199, 9610423: 9667221 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0134-1934 0000-0003-0522-1171 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12123 |
| PQID | 2562684315 |
| PQPubID | 5066170 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_65b44b921e3249a08364cd71cd80e1c2 proquest_journals_2562684315 crossref_primary_10_1002_eom2_12123 crossref_citationtrail_10_1002_eom2_12123 wiley_primary_10_1002_eom2_12123_EOM212123 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 20210801 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
| PublicationTitle | EcoMat (Beijing, China) |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2002; 17 2010; 10 2015; 14 2019; 9 2019; 4 2013; 3 2012; 101 2013; 2 2019; 55 2019; 10 2017; 27 2020; 81 2010; 489 2016; 529 2009 2019; 19 2020; 13 2020; 12 2017; 29 2020; 11 2020; 32 2020; 10 2013; 7 2014; 62 2015; 9 2014; 44 2013; 9 2018; 19 2010; 22 2020; 6 2018; 9 2016; 7 2018; 3 2020; 2020 2017; 39 2013; 13 2017; 11 2019; 575 2019; 29 2009; 4 2016; 28 2018; 11 2014; 7 2014; 6 2018; 14 2009; 18 2012; 41 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Han H (e_1_2_7_13_1) 2019; 19 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 Chen F (e_1_2_7_9_1) 2018; 19 e_1_2_7_21_1 e_1_2_7_37_1 e_1_2_7_39_1 Niu S (e_1_2_7_31_1) 2014; 62 Yiu C (e_1_2_7_14_1) 2020; 10 Zi Y (e_1_2_7_35_1) 2016; 7 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 He J (e_1_2_7_25_1) 2020; 81 |
| References_xml | – volume: 19 start-page: 8441 issue: 19 year: 2018 end-page: 8451 article-title: WristCam: a wearable sensor for hand trajectory gesture recognition and intelligent human–robot interaction publication-title: IEEE Sensors J – volume: 6 start-page: 14695 issue: 16 year: 2014 end-page: 14701 article-title: Woven structured triboelectric nanogenerator for wearable devices publication-title: ACS Appl Mater Interfaces – year: 2009 – volume: 575 start-page: 473 issue: 7783 year: 2019 end-page: 479 article-title: Skin‐integrated wireless haptic interfaces for virtual and augmented reality publication-title: Nature – volume: 28 start-page: 4283 issue: 22 year: 2016 end-page: 4305 article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics publication-title: Adv Mater – volume: 13 year: 2020 article-title: Epidermal electronics for respiration monitoring via thermo‐sensitive measuring publication-title: Mater Today Phys – volume: 29 issue: 2 year: 2019 article-title: Textile‐based triboelectric nanogenerators for self‐powered wearable electronics publication-title: Adv Funct Mater – volume: 101 issue: 19 year: 2012 article-title: Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric publication-title: Appl Phys Lett – volume: 19 start-page: 2562 issue: 11 year: 2019 article-title: Gyroscope‐based continuous human hand gesture recognition for multi‐modal wearable input device for human machine interaction publication-title: Sensors – volume: 62 start-page: 1425 issue: 10 year: 2014 end-page: 1439 article-title: Human–robot interaction based on wearable IMU sensor and laser range finder publication-title: Robot Auton Syst – volume: 9 start-page: 3501 issue: 4 year: 2015 end-page: 3509 article-title: Nanopatterned textile‐based wearable triboelectric nanogenerator publication-title: ACS Nano – volume: 7 start-page: 1 issue: 1 year: 2016 end-page: 8 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nat Commun – volume: 3 start-page: 2597 year: 2013 article-title: Standardization of surface potential measurements of graphene domains publication-title: Sci Rep – volume: 55 start-page: 401 year: 2019 end-page: 423 article-title: Recent progress on textile‐based triboelectric nanogenerators publication-title: Nano Energy – volume: 28 start-page: 4203 issue: 22 year: 2016 end-page: 4218 article-title: Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials publication-title: Adv Mater – volume: 29 issue: 41 year: 2019 article-title: Self‐powered tactile sensor array systems based on the triboelectric effect publication-title: Adv Funct Mater – volume: 4 start-page: 34 issue: 1 year: 2009 end-page: 39 article-title: Power generation with laterally packaged piezoelectric fine wires publication-title: Nat Nanotechnol – volume: 10 start-page: 4863 issue: 12 year: 2010 end-page: 4868 article-title: Graphene‐based supercapacitor with an ultrahigh energy density publication-title: Nano Lett – volume: 18 issue: 12 year: 2009 article-title: On thermoelectric and pyroelectric energy harvesting publication-title: Smart Mater Struct – volume: 4 issue: 12 year: 2019 article-title: Skin‐integrated graphene‐embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing publication-title: Adv Mater Technol – volume: 529 start-page: 509 issue: 7587 year: 2016 end-page: 514 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature – volume: 7 start-page: 11263 issue: 12 year: 2013 end-page: 11271 article-title: Motion charged battery as sustainable flexible‐power‐unit publication-title: ACS Nano – volume: 32 issue: 32 year: 2020 article-title: A self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare publication-title: Adv Mater – volume: 6 issue: 26 year: 2020 article-title: A breathable, biodegradable, antibacterial, and self‐powered electronic skin based on all‐nanofiber triboelectric nanogenerators publication-title: Sci Adv – volume: 7 start-page: 917 issue: 6 year: 2014 end-page: 928 article-title: Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting publication-title: Nano Res – volume: 13 start-page: 847 issue: 2 year: 2013 end-page: 853 article-title: Toward large‐scale energy harvesting by a nanoparticle‐enhanced triboelectric nanogenerator publication-title: Nano Lett – volume: 27 issue: 1 year: 2017 article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing publication-title: Adv Funct Mater – volume: 10 start-page: 711 issue: 8 year: 2020 article-title: Skin‐like strain sensors enabled by elastomer composites for human–machine interfaces publication-title: CoatingsTech – volume: 2020 start-page: 1 year: 2020 end-page: 11 article-title: Electronic skin from high‐throughput fabrication of intrinsically stretchable Lead Zirconate Titanate elastomer publication-title: Research – volume: 32 issue: 5 year: 2020 article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv Mater – volume: 28 start-page: 4373 issue: 22 year: 2016 end-page: 4395 article-title: Monitoring of vital signs with flexible and wearable medical devices publication-title: Adv Mater – volume: 9 issue: 1 year: 2019 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv Energy Mater – volume: 11 start-page: 101 issue: 1 year: 2018 end-page: 113 article-title: Triboelectric nanogenerators with gold‐thin‐film‐coated conductive textile as floating electrode for scavenging wind energy publication-title: Nano Res – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 11 article-title: Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e‐textiles for power and sensing publication-title: Nat Commun – volume: 44 start-page: 293 issue: 2 year: 2014 end-page: 299 article-title: A hand gesture recognition framework and wearable gesture‐based interaction prototype for mobile devices publication-title: IEEE Trans Human‐Mach Syst – volume: 12 start-page: 54991 issue: 49 year: 2020 end-page: 54999 article-title: Transfer‐free PZT thin films for flexible Nanogenerators derived from a single‐step modified sol–gel process on 2D mica publication-title: ACS Appl Mater Interfaces – volume: 6 issue: 1 year: 2020 article-title: Thin, skin‐integrated, stretchable triboelectric nanogenerators for tactile sensing publication-title: Adv Electron Mater – volume: 14 issue: 29 year: 2018 article-title: Thermally driven transport and relaxation switching self‐powered electromagnetic energy conversion publication-title: Small – volume: 3 issue: 2 year: 2018 article-title: Organic/inorganic hybrid stretchable piezoelectric Nanogenerators for self‐powered wearable electronics publication-title: Adv Mater Technol – volume: 41 start-page: 4688 issue: 13 year: 2012 end-page: 4707 article-title: Graphene and its derivatives: switching ON and OFF publication-title: Chem Soc Rev – volume: 14 start-page: 126 year: 2015 end-page: 138 article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications publication-title: Nano Energy – volume: 17 start-page: 669 issue: 5 year: 2002 end-page: 676 article-title: Adaptive piezoelectric energy harvesting circuit for wireless remote power supply publication-title: IEEE Trans Power Electron – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 9 article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics publication-title: Nat Commun – volume: 81 year: 2020 article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics publication-title: Nano Energy – volume: 39 start-page: 429 year: 2017 end-page: 436 article-title: Bioinspired stretchable triboelectric nanogenerator as energy‐harvesting skin for self‐powered electronics publication-title: Nano Energy – volume: 7 start-page: 3713 issue: 4 year: 2013 end-page: 3719 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano – volume: 489 start-page: 229 issue: 4–6 year: 2010 end-page: 236 article-title: Electrostatics of graphene: charge distribution and capacitance publication-title: Chem Phys Lett – volume: 22 start-page: 3558 issue: 32 year: 2010 end-page: 3563 article-title: The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films publication-title: Adv Mater – volume: 9 start-page: 3398 issue: 20 year: 2013 end-page: 3404 article-title: Transient, biocompatible electronics and energy harvesters based on ZnO publication-title: Small – volume: 62 start-page: 641 issue: 2 year: 2014 end-page: 647 article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage publication-title: IEEE Electron Device Lett – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: Skin‐touch‐actuated textile‐based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting publication-title: Nat Commun – volume: 11 start-page: 9614 issue: 10 year: 2017 end-page: 9635 article-title: Lab‐on‐skin: a review of flexible and stretchable electronics for wearable health monitoring publication-title: ACS Nano – volume: 2 start-page: 856 issue: 5 year: 2013 end-page: 862 article-title: Triboelectric nanogenerator built inside shoe insole for harvesting walking energy publication-title: Nano Energy – volume: 29 issue: 17 year: 2017 article-title: Service behavior of multifunctional triboelectric nanogenerators publication-title: Adv Mater – ident: e_1_2_7_2_1 doi: 10.1002/adma.201504150 – ident: e_1_2_7_20_1 doi: 10.1021/acsami.0c16973 – ident: e_1_2_7_37_1 doi: 10.1021/nn4007708 – ident: e_1_2_7_16_1 doi: 10.1002/aelm.201901174 – ident: e_1_2_7_28_1 doi: 10.1002/smll.201800987 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201000775 – ident: e_1_2_7_21_1 doi: 10.1016/j.nanoen.2014.11.050 – ident: e_1_2_7_46_1 doi: 10.1021/am504110u – ident: e_1_2_7_50_1 doi: 10.1039/c2cs35043b – ident: e_1_2_7_26_1 doi: 10.1038/s41467-020-16642-6 – ident: e_1_2_7_48_1 doi: 10.1007/s12274-014-0453-8 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-019-11597-9 – ident: e_1_2_7_52_1 doi: 10.1038/srep02597 – ident: e_1_2_7_7_1 doi: 10.1016/j.mtphys.2020.100199 – ident: e_1_2_7_45_1 doi: 10.1007/s12274-017-1609-0 – ident: e_1_2_7_53_1 doi: 10.1016/j.cplett.2010.02.063 – ident: e_1_2_7_30_1 doi: 10.1021/nn4050408 – ident: e_1_2_7_54_1 doi: 10.1021/nl102661q – ident: e_1_2_7_44_1 doi: 10.1002/adma.201606703 – ident: e_1_2_7_38_1 doi: 10.1021/nn507221f – volume: 10 start-page: 711 issue: 8 year: 2020 ident: e_1_2_7_14_1 article-title: Skin‐like strain sensors enabled by elastomer composites for human–machine interfaces publication-title: CoatingsTech doi: 10.3390/coatings10080711 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.201804533 – ident: e_1_2_7_6_1 doi: 10.4108/ICST.PERVASIVEHEALTH2009.6033 – ident: e_1_2_7_49_1 doi: 10.1063/1.4766921 – ident: e_1_2_7_51_1 doi: 10.1002/admt.201900744 – ident: e_1_2_7_10_1 doi: 10.1038/s41586-019-1687-0 – volume: 7 start-page: 1 issue: 1 year: 2016 ident: e_1_2_7_35_1 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nat Commun – ident: e_1_2_7_42_1 doi: 10.1002/adfm.201604462 – ident: e_1_2_7_12_1 doi: 10.1109/THMS.2014.2302794 – ident: e_1_2_7_5_1 doi: 10.1002/adma.202001466 – ident: e_1_2_7_32_1 doi: 10.1016/j.nanoen.2017.07.022 – ident: e_1_2_7_34_1 doi: 10.1002/aenm.201802906 – ident: e_1_2_7_18_1 doi: 10.1002/admt.201700249 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201504299 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201806379 – ident: e_1_2_7_39_1 doi: 10.1038/s41467-018-06759-0 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201504366 – volume: 19 start-page: 2562 issue: 11 year: 2019 ident: e_1_2_7_13_1 article-title: Gyroscope‐based continuous human hand gesture recognition for multi‐modal wearable input device for human machine interaction publication-title: Sensors doi: 10.3390/s19112562 – ident: e_1_2_7_17_1 doi: 10.1038/nnano.2008.314 – ident: e_1_2_7_40_1 doi: 10.1016/j.nanoen.2018.10.036 – ident: e_1_2_7_36_1 doi: 10.1021/nl4001053 – ident: e_1_2_7_47_1 doi: 10.1002/smll.201300146 – ident: e_1_2_7_29_1 doi: 10.1088/0964-1726/18/12/125006 – volume: 19 start-page: 8441 issue: 19 year: 2018 ident: e_1_2_7_9_1 article-title: WristCam: a wearable sensor for hand trajectory gesture recognition and intelligent human–robot interaction publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2877978 – ident: e_1_2_7_11_1 doi: 10.1016/j.robot.2014.06.001 – ident: e_1_2_7_15_1 doi: 10.34133/2020/1085417 – ident: e_1_2_7_8_1 doi: 10.1021/acsnano.7b04898 – ident: e_1_2_7_27_1 doi: 10.1126/sciadv.aba9624 – volume: 62 start-page: 641 issue: 2 year: 2014 ident: e_1_2_7_31_1 article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage publication-title: IEEE Electron Device Lett – ident: e_1_2_7_55_1 doi: 10.1002/adma.201902549 – ident: e_1_2_7_3_1 doi: 10.1038/nature16521 – ident: e_1_2_7_19_1 doi: 10.1109/TPEL.2002.802194 – volume: 81 start-page: 105590 year: 2020 ident: e_1_2_7_25_1 article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105590 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2013.03.001 |
| SSID | ssj0002504241 |
| Score | 2.3433383 |
| Snippet | The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive attentions,... Abstract The applications of triboelectric nanogenerators (TENGs) in wearable electronics for energy harvesting and motion sensing have raised extensive... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Circuits Electrodes Electronics Energy Energy harvesting Garments garment‐integrated electronics Graphene human machine interfaces Interfaces Man-machine interfaces Mechanical properties Nanogenerators Permeability Power management Sensors Silicones textile electronics Textiles triboelectric nanogenerators Wearable technology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsQwEMeDLB70IH7i-kVAL4pl2zRtkqOKiwddPSh4C2mSrgtuu3TVs4_gM_okZtJadkH04q2E0KaTaWbaTH9_hI5sCLt1Kg1YnMI2o0kC7sJ4kNgsdx4VmUx7ZP41Gwz446O4m5H6gpqwGg9cG66XJhmlmSCRdaFfKIApU21YpA0PbaT96uuuN_MyBWswgLlcbGp5pKRnyzEBlAKJ5yKQB_XPZZezOaoPMv1VtNJkh_isHtUaWrDFOlqeYQZuoAkobZ7iqVs-T_FQVfB17_P9o8U-GAwaVmUtbzPSuFBFOfRsadDVwS5Hxdb_74efVOUZG8UQq8Jgr9aHx7640mI4X5VDvdYmeuhf3l9cBY1sQqApKLOpnBOWUp6JjOZa09jQNOVa5IxYzlRCnP1ErNyLD7DoWWgEc4E-EzZkRKucxluoU5SF3UY4MiG3HNqFoUqzjIRKGxMaRYzOCeui429TSt0wxUHa4lnWNGQiwezSm72LDtu-k5qk8WOvc5iRtgfQr32D8wnZ-IT8yye6aO97PmXzSE4l3G7KXb6UdNGJn-NfhiEvb2-IP9r5jwHtoiUCtTC-cHAPdV6qV7uPFvXby2haHXjX_QLhkvL1 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdH7cKhPbTlo2KBVpboBURE4jixfUKlWtQDbFEFEjfLsZ0tEiTbLO2ZR-gz9knq8XpTkBAXbpFlWbZm7BnZk98f4JNL8bVOlwnPS3xmtEUifBhPClfV3qMyW5mAzD_h47G4vJRn8cJtFssqF2diOKhta_CO_MCHZgST5FlxOP2ZoGoUvq5GCY2XsISkMjaApaPR-Ox7f8uCgC4fo3ouKT1w7Q1FpALNH0SiAOx_kGXez1VDsDl--9xpvoM3Mc0kn-d-sQIvXLMKr-_BB9dgipKd-2Tmz-F9MtEdXhP-vfvT8yMsQTGsdq6Tc2VIo5t2EiDVKNBDfLJLXPhxkPzQXYB1NBOiG0uC7B-5CVWajuB4XY2FX-twcTw6__I1ifoLiWEo8aZrQXnJRCUrVhvDcsvKUhhZc-oE1wVlxspcl7jmlPHUSu4zhkq6lFOja5a_h0HTNm4DSGZT4QS2S8u04RVNtbE2tZpaU1M-hN2FLZSJcHLUyLhWc6wyVWg3Few2hJ2-73SO5Hi01xGatO-BGO3Q0HYTFXelKouKsUrSzPm8Umokdfs18cxYkbrM0CFsL6ys4t6eqf8mHsJecJInpqFG305p-Np8eqwteEWxXCbUFm7D4Lb75T7Asvl9ezXrPka__gewPwMm priority: 102 providerName: ProQuest |
| Title | Thin, soft, garment‐integrated triboelectric nanogenerators for energy harvesting and human machine interfaces |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12123 https://www.proquest.com/docview/2562684315 https://doaj.org/article/65b44b921e3249a08364cd71cd80e1c2 |
| Volume | 3 |
| WOSCitedRecordID | wos000669911900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: PATMY dateStart: 20210801 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: KB. dateStart: 20210801 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: PIMPY dateStart: 20210801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: WIN dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2567-3173 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504241 issn: 2567-3173 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPSssCFtwrBsrIEmxADU0cJ7YlNgyaigo6RAhEWVm-ZahEkypTWPMIPCNPgo-TSVsJISE2UWI5ke8-Oba_H-CJT3G1TpcJz0tcZnRFIsI0nhTe1KFFZc7YiMx_yxcLcXQkqw14sT4L0_MhRocb9ow4XmMH12a1dw4N9e0JRTYCza_AVpblAoUbKKtGDwvCuWiUrgzTOjrjeD7ySene-euXZqQI7r9kbV60WeOks3_z_5J7C24MxiZ52beO27Dhmztw_QKC8C6conDnLlmF0XiXLHWHzsJfP36OFAlHUBKr7dVyji1pdNMuI6oaZXpIMHmJj8cHyRfdRWRHsyS6cSSK_5GTuFfTE_xeV-P2r3vwcX_-4dXrZFBhSCxDoTddC8pLJow0rLaW5Y6VpbCy5tQLrgvKrJO5Dv9RiLbnqZM82A1G-pRTq2uWb8Nm0zb-PpDMpcILDJeOacsNTbV1LnWaOltTPoGn65pQdkCUo1LGV9XDlanCUlSxFCfweIx72oM5_hhrhhU6xkCYdgxou6Ua-qYqC8OYkTTzwbqUGnndIU88s06kPrN0Ajvr5qCGHr5SmN1SBPOrmMCzWPF_SYaavzuk8e7Bv0R-CNcobqGJ-w13YPOs--YfwVX7_ex41U1ja5_C1my-qN5PozMhXN_Mnoew6uCw-hyePh0sfgNG4wez |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJw4LeIpQUs8SOBGjVxvLF94FCgVavuLj0sUjm5ju0slWiyZAsVNx6BJ-GheBI83iS0EuqtB26RZY0S-_PMxB5_H8AzF-Npnc4inmZ4zGgHkfBhPBq4vPCISmxuAmX-kI_H4uBA7i_Br_YuDJZVtj4xOGpbGdwj3_ChGYlJ0qStoNxz30_9_9n89e47P5nPKd3emrzdiRoJgcgwVCnThaA8YyKXOSuMYallWSaMLDh1gusBZcbKVGdoPWY8tpL7oJdLF3NqdMFSb_fF7EuEKlV4mttIdlyBZZHJjPZgeX9zMvrY7eogIZiPiR0PKt1w1TFFCgeanot8QSDgXFZ7NjcOwW371v82LLfhZpNGk80F7u_Akivvwo0z5Ir3YIaSpOtk7uPMOpnqGrdBf__42fFjWIJiX9VCB-jIkFKX1TSQcKMAEfHJPHHhYiT5pOtARlJOiS4tCbKG5DhUoTqC9uoCC9tW4MOljMJ96JVV6R4ASWwsnMB2aZk2PKexNtbGVlNrCsr78LKde2Ua8nXUAPmsFrTRVCFOVMBJH552fWcLypF_9nqDEOp6IE14aKjqqWq8jsoGOWO5pInzebPUyETuv4knxorYJYb2Ya1FlWp811z9hVQfXgVQXvAaauv9iIanhxfbegLXdiajoRrujvdW4TrF0qBQR7kGvZP6q3sEV823k6N5_bhZUwQOLxvCfwDBRF2p |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE4lL9WLC1gCTiAGm3iOLFzQKjQrqjaLnsoUjkZx3aWSjRZsgXEjUfo8_RxeBI8zg-thHrrgVtkWU6cfJ6ZjMffB_DMhrhbp9KAxyluM5okEM6NB4nNC4eoyOTaU-bv8fFYHB5mkwU4687CYFllZxO9oTaVxhz50LlmJCaJo2RYtGURk63R69nXABWkcKe1k9NoILJrf_5wv2_zVztb7ls_p3S0ffD2XdAqDASaoYiZKgTlKRN5lrNCaxYblqZCZwWnVnCVUKZNFqsUbx4yHpqMO5-YZzbkVKuCxW7ca7CEHHHOKCxNNg_2P_YZHiQHc_6x50SlQ1sdU6RzoPEFL-jFAi5EuOfjZO_oRrf_51d0B5bb8JpsNuvhLizY8h7cOke6eB9mKFW6QebO_2yQqaoxPfr712nPm2EIioBVjT7QkSalKqupJ-dGYSLignxi_YFJ8lnVnqSknBJVGuLlDsmxr061BMerCyx4W4EPVzLlVVgsq9I-ABKZUFiB7ZlhSvOchkobExpFjS4oH8CLDgdSt6TsqA3yRTZ00lQiZqTHzACe9n1nDRXJP3u9QTj1PZA-3DdU9VS21kimSc5YntHIung6U8hQ7ubEI21EaCNNB7DeIUy2Nm0u_8JrAC89QC95DLn9fp_6q4eXj_UEbjiQyr2d8e4a3KRYMeTLK9dh8aT-Zh_Bdf395GheP26XF4FPVw3XP8zVZl8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin%2C+soft%2C+garment%E2%80%90integrated+triboelectric+nanogenerators+for+energy+harvesting+and+human+machine+interfaces&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Liu%2C+Yiming&rft.au=Yiu%2C+Chunki&rft.au=Jia%2C+Huiling&rft.au=Wong%2C+Tszhung&rft.date=2021-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=3&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12123&rft.externalDBID=10.1002%252Feom2.12123&rft.externalDocID=EOM212123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |