An evaluation of the bihyperbolic function in the optimization of the backpropagation algorithm

The backpropagation algorithm is one of the most used tools for training artificial neural networks. However, this tool may be very slow in some practical applications. Many techniques have been discussed to speed up the performance of this algorithm and allow its use in an even broader range of app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research Jg. 21; H. 5; S. 835 - 854
Hauptverfasser: Miguez, Geraldo, Xavier, Adilson Elias, Maculan, Nelson
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.09.2014
Schlagworte:
ISSN:0969-6016, 1475-3995
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The backpropagation algorithm is one of the most used tools for training artificial neural networks. However, this tool may be very slow in some practical applications. Many techniques have been discussed to speed up the performance of this algorithm and allow its use in an even broader range of applications. Although the backpropagation algorithm has been used for decades, we present here a set of computational results that suggest that by replacing bihyperbolic functions the backpropagation algorithm performs better than the traditional sigmoid functions. To the best of our knowledge, this finding was never previously published in the open literature. The efficiency and discrimination capacity of the proposed methodology are shown through a set of computational experiments, and compared with the traditional problems of the literature.
AbstractList The backpropagation algorithm is one of the most used tools for training artificial neural networks. However, this tool may be very slow in some practical applications. Many techniques have been discussed to speed up the performance of this algorithm and allow its use in an even broader range of applications. Although the backpropagation algorithm has been used for decades, we present here a set of computational results that suggest that by replacing bihyperbolic functions the backpropagation algorithm performs better than the traditional sigmoid functions. To the best of our knowledge, this finding was never previously published in the open literature. The efficiency and discrimination capacity of the proposed methodology are shown through a set of computational experiments, and compared with the traditional problems of the literature.
Author Miguez, Geraldo
Maculan, Nelson
Xavier, Adilson Elias
Author_xml – sequence: 1
  givenname: Geraldo
  surname: Miguez
  fullname: Miguez, Geraldo
  email: geraldomiguez@gmail.com
  organization: Federal University of Rio de Janeiro, PESC-COPPE, Rio de Janeiro, Brazil
– sequence: 2
  givenname: Adilson Elias
  surname: Xavier
  fullname: Xavier, Adilson Elias
  email: adilson@cos.ufrj.br
  organization: Federal University of Rio de Janeiro, PESC-COPPE, Rio de Janeiro, Brazil
– sequence: 3
  givenname: Nelson
  surname: Maculan
  fullname: Maculan, Nelson
  email: maculan@cos.ufrj.br
  organization: Federal University of Rio de Janeiro, PESC-COPPE, Rio de Janeiro, Brazil
BookMark eNp9kN9LHDEQx4MoeGpf_AsWfJHC2pnbTXL7KEfPClK12B_4EuZi4kX3NmuSbXv-9a63baEizsvAzOczDN8dttn4xjC2j3CEfX1wyYcjHIMcb7ARlpLnRVXxTTaCSlS5ABTbbCfGOwBAjnLE1HGTmZ9Ud5ScbzJvs7Qw2dwtVq0Jc187ndmu0eula9ZL3ya3dI__C6Tv2-Bbuh3GVN_64NJiuce2LNXRvPvTd9nX2cer6af87PzkdHp8lusSinFeSctvtJ7MSwtARIWUBEjjCYdCW6SS5rrkRqAEYUuouK1kUd4gcotcm6rYZYfD3f6Lh87EpJYualPX1BjfRYVcSJggAO_Rgxfone9C03_XU30opZwI7Kn3A6WDjzEYq9rglhRWCkE9Z62es1brrHsYXsDapXUSKZCrX1dwUH652qzeOK5Or86__HXywXExmd__HAr3SshCcvX984m6ns3Et8vpD3VRPAFcnaOv
CitedBy_id crossref_primary_10_3390_rs10071111
Cites_doi 10.1631/jzus.C1200008
10.1109/TLA.2009.5349049
10.1109/IJCNN.1992.287133
10.1016/0893-6080(89)90020-8
10.1016/S0893-6080(02)00032-1
10.1016/j.neucom.2011.08.026
10.1007/BF02551274
10.2306/scienceasia1513-1874.2013.39.294
10.1109/IJCNN.2002.1005526
10.1109/ICASSP.2013.6638963
10.1016/j.neucom.2004.04.001
10.1073/pnas.81.10.3088
10.3390/jsan1030299
10.1109/IJCNN.1992.227257
10.1080/01431160802549278
10.1109/SHUSER.2012.6268818
10.1073/pnas.87.23.9193
10.1117/12.135110
10.7551/mitpress/5236.001.0001
10.1109/INES.2013.6632792
10.1109/IJCNN.1989.118505
10.1109/TII.2012.2187914
10.1109/34.107014
10.1016/j.procs.2013.05.076
10.1109/IJCNN.1991.155275
10.1109/72.572104
10.1109/PEAM.2012.6612460
10.1016/j.neunet.2013.11.002
ContentType Journal Article
Copyright 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.
Copyright © 2014 International Federation of Operational Research Societies
Copyright_xml – notice: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.
– notice: Copyright © 2014 International Federation of Operational Research Societies
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/itor.12072
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1475-3995
EndPage 854
ExternalDocumentID 3395412291
10_1111_itor_12072
ITOR12072
ark_67375_WNG_ZFF6VQCX_P
Genre article
Feature
GroupedDBID --K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OC
1XV
29J
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A04
AABNI
AAEDT
AAESR
AAHQN
AALRI
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABSOO
ABWVN
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACVFH
ACXQS
ACYXJ
ADBBV
ADCNI
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUPX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFPUW
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AHBTC
AHQJS
AIDQK
AIDYY
AIURR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EBA
EBO
EBR
EBS
EBU
EJD
EMK
F00
F01
F5P
FDB
FEDTE
FGOYB
FIRID
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LG8
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
NQ-
O66
O9-
OIG
P2P
P2W
P2Y
P4C
PQQKQ
Q.N
Q11
QB0
QWB
R.K
R2-
ROL
RPZ
RX1
SEW
SUPJJ
TH9
UB1
UHS
W8V
W99
WBKPD
WEBCB
WIH
WII
WOHZO
WQZ
WSUWO
WXSBR
XG1
ZL0
ZZTAW
~IA
~WP
9DU
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4032-97f5dcc8b4f00aaa377a01a28503cf1a4abc45e61706f4095f9734d115f15ce93
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340545700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0969-6016
IngestDate Sun Nov 09 09:33:46 EST 2025
Fri Jul 25 03:21:13 EDT 2025
Sat Nov 29 07:57:49 EST 2025
Tue Nov 18 22:39:07 EST 2025
Tue Sep 09 05:10:24 EDT 2025
Sun Sep 21 06:17:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4032-97f5dcc8b4f00aaa377a01a28503cf1a4abc45e61706f4095f9734d115f15ce93
Notes ark:/67375/WNG-ZFF6VQCX-P
istex:1C02B9F1A109043CA5549BED5DC7A6F8EFF10AA7
ArticleID:ITOR12072
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1551747861
PQPubID 45259
PageCount 20
ParticipantIDs proquest_miscellaneous_1567081005
proquest_journals_1551747861
crossref_primary_10_1111_itor_12072
crossref_citationtrail_10_1111_itor_12072
wiley_primary_10_1111_itor_12072_ITOR12072
istex_primary_ark_67375_WNG_ZFF6VQCX_P
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International transactions in operational research
PublicationTitleAlternate Intl. Trans. in Op. Res
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Rocha Neto, A.R., Barreto, G.A., 2009. On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: a comparative analysis. IEEE Transactions on Latin America 7, 4, 487-496.
Ng, S.C., Cheung, C.C., Leung, S.H., Luk, A., 2003. Fast convergence for backpropagation network with magnified gradient function. Proceedings of the International Joint Conference Neural Networks 3, 1903-1908.
Hunter, D., Yu, H., Pukish, M.S., Kolbusz, J., Wilamowski, B.M., 2012. Selection of proper neural network sizes and architectures-a comparative study. IEEE Transactions on Industrial Informatics 8, 2, 228-240.
Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of control, Signals and Systems 2, 303-314.
Ngaopitakkul, A., Jettanasen, C., 2012. Selection of proper activation functions in back-propagation neural networks algorithm for identifying the phase fault appearance in transformer windings. International Journal of Innovative Computing, Information and Control 8, 6, 4299-4318.
LeCun, Y., Simard, P.Y., Pearlmutter, B., 1992. Automatic learning rate maximization by on-line estimation of the Hessian's eigenvectors. Advances in Neural Information Processing Systems 5, 50-58.
Hornik, K., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366.
Wolberg, W.H., 1991. Wisconsin Breast Cancer Database, UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA, USA. Available at http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original).
Bache, K., Lichman, M., 2013. UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA, USA. Available at http://archive.ics.uci.edu/ml .
Taha, I., Ghosh, J., 1996. Characterization of the Wisconsin breast cancer database using a hybrid symbolic-connectionist system. Technical Report, University of Texas, Austin, TX.
Fernández-Delgado, M., Cernadas, E., Barro, S., Ribeiro, J., Neves, J., 2013. Direct kernel perceptron (DKP): ultra-fast kernel elm-based classification with non-iterative closed-form weight calculation. Neural Networks 50, 60-71.
Hecht-Nielsen, R., 1989. Theory of the backpropagation neural network. International Joint Conference on Neural Networks, Washington, DC, pp. 593-605.
Setiono, R., Liu, H., 1997. Neural-network feature selector. IEEE Transactions on Neural Networks 8, 3, 654-662.
Haykin, S., 2001. Neural Networks: A Comprehensive Foundation (2nd edn). Prentice-Hall, Englewood Cliffs, NJ.
Stathakis, D., 2009. How many hidden layers and nodes? International Journal of Remote Sensing 30, 8, 2133-2147.
Gori, M., Tesi, A., 1992. On the problem of local minima in backpropagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 1, 76-86.
Trucheteta, F., Lénib, P.E., Fougerollea, Y., 2013. New representations for multidimensional functions based on Kolmogorov superposition theorem. Applications on Image Processing Conference Proceedings Saint Petersburg, Russia, Vol. 1, pp. 8-18.
Shafie, A.S., Mohtar, S.M., Ahmad, N., 2012. Backpropagation neural network with new improved error function and activation function for classification problem. IEEE Symposium on Humanities, Science and Engineering Research 1, 1359-1364.
Chandra, P., Singh, Y., 2004. An activation function adapting training algorithm for sigmoidal feed forward networks. Neurocomputing 61, 429-437.
Chimieski, B.F., Fagundes, R.D.R., 2013. Association and classification data mining algorithms comparison over medical datasets. Journal of Health Information 5, 2, 44-51.
Schiffmann, W., Joost, M., Werner, R., 1994. Optimization of the backpropagation algorithm for training multilayer perceptrons. Technical Report, University of Koblenz, Institute of Physics, Koblenz, Germany.
Wolberg, W.H., Mangasarian, O.L., 1990. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences 87, 9193-9196.
Hopfield, J.J., 1984. Neurons with graded response have collective computational properties like those of two-states neurons. Proceedings of the National Academy of Sciences 81, 3088-3092.
Liu, Y., Yang, J., Li, L., Wu, W., 2012. Negative effects of sufficiently small initial weights on back-propagation neural networks. Journal of Zhejiang University Science C 13, 8, 585-592.
Xavier, A.E., 2005. Uma Função de Ativação para Redes Neurais Artificiais Mais Flexível e Poderosa e Mais Rápida. Learning and Nonlinear Models-Revista da Sociedade Brasileira de Redes Neurais (SBRN) 1, 5, 276-282.
Singh, S., Gupta, P.R., 2011. Breast cancer detection and classification using neural network. International Journal of Advanced Engineering Sciences and Technologies 6, 1, 4-9.
Bao, G., Zeng, Z., 2012. Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions. Neurocomputing 77, 101-107.
Mangasarian, O.L., Wolberg, W.H., 1990. Cancer diagnosis via linear programming. SIAM News 23, 5, 1-18.
Mustafa, H.M.H., Abdulhamid, Z.M., 2012. On simulation of brain based learning paradigms (neural networks approach). Elixir Education Technology 52, 11331-11337.
Grossberg, S., 1982. Studies of Mind and Brain, Boston Studies in the Philosophy of Science. D. Reidel Publishing, Boston, MA.
Yang, S., Ting, T.O., Man, K.L., Guan, S., 2013. Investigation of neural networks for function approximation. First International Conference on Information Technology and Quantitative Management (ITQM2013), Procedia Computer Science 17, 586-594.
Lin, F., Yu, X.H., Gregor, S., Irons, R., 1995. Time series forecasting with neural networks. Complexity International 2, 1-10.
Pawar, P.S., Patil, D., 2012. Breast cancer detection using backpropagation neural network with comparison between different neuron. 2nd IEEE International Conference on Parallel, Distributed and Grid Computing, Solan, India, Vol. 1, pp. 170-173.
Rocha Neto, A.R., Barreto, G.A., Cortez, P.C., Mota, H., 2006. SINPATCO: Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral. XVI Congresso Brasileiro de Automática Bahia, Brazil, Vol. 1, pp. 929-934.
Sathyaa, D.J., Geethab, K., 2013. Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm. ScienceAsia 39, 294-306.
Nkwogu, D.N., Allen, A.R., 2012. Adaptive sampling for WSAN control applications using artificial neural networks. Journal of Sensor and Actuator Networks 1, 299-320.
Draghici, S., 2002. On the capabilities of neural networks using limited precision weights. Neural Networks 15, 395-414.
Azmi, M.S.B.M., Cob, Z.C., 2010. Breast cancer prediction based on backpropagation algorithm. Proceedings of 2010 IEEE Student Conference on Research and Development (SCOReD 2010), Putrajaya, Malaysia, Vol. 1, pp. 164-168.
Rumelhart, D.E., McClelland, J.L., eds, 1986. Parallel Distributed Processing: Explorations, Microstructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA.
Otair, M.A., Salameh, W.A., 2005. Speeding up back-propagation neural networks. Proceedings of the 2005 Informing Science and IT Education Joint Conference, Flagstaff, AZ, Vol. 1, pp. 167-173.
1989; 2
1991; 2
2002; 15
1991; 1
2004; 61
1984; 81
1989; 1
2013; 1
2012
2002; 1
1996
1994
1992; 14
2006; 1
1991
1995; 2
2012; 13
2013; 5
2011; 6
2012; 77
2012; 52
1997; 8
1986; 1
1990; 87
2009; 30
1990; 23
2010; 1
2013; 39
2013; 17
2012; 1
2001
1990
2013; 50
1987
2003; 3
1986
2005; 1
2009; 7
1982
2013
1992; 1
1989
2012; 8
1992; 4
1992; 5
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
Haykin S. (e_1_2_5_13_1) 2001
Bache K. (e_1_2_5_4_1) 2013
Mangasarian O.L. (e_1_2_5_29_1) 1990; 23
Pawar P.S. (e_1_2_5_36_1) 2012; 1
Ngaopitakkul A. (e_1_2_5_33_1) 2012; 8
e_1_2_5_42_1
Hecht‐Nielsen R. (e_1_2_5_15_1) 1989
e_1_2_5_38_1
Rocha Neto A.R. (e_1_2_5_40_1) 2006; 1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_5_1
Chimieski B.F. (e_1_2_5_7_1) 2013; 5
Taha I. (e_1_2_5_49_1) 1996
e_1_2_5_19_1
Xavier A.E. (e_1_2_5_55_1) 2005; 1
e_1_2_5_30_1
Singh S. (e_1_2_5_47_1) 2011; 6
Abdrabou E. (e_1_2_5_2_1) 2012
e_1_2_5_51_1
Otair M.A. (e_1_2_5_35_1) 2005; 1
e_1_2_5_28_1
Schiffmann W. (e_1_2_5_43_1) 1994
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
Lin F. (e_1_2_5_27_1) 1995; 2
Grossberg S. (e_1_2_5_12_1) 1982
e_1_2_5_20_1
Williams R.J. (e_1_2_5_52_1) 1986
Wolberg W.H. (e_1_2_5_53_1) 1991
e_1_2_5_14_1
e_1_2_5_39_1
Mustafa H.M.H. (e_1_2_5_31_1) 2012; 52
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_54_1
Trucheteta F. (e_1_2_5_50_1) 2013; 1
Ng S.C. (e_1_2_5_32_1) 2003; 3
Rumelhart D.E. (e_1_2_5_41_1) 1986
e_1_2_5_18_1
LeCun Y. (e_1_2_5_25_1) 1992; 5
Azmi M.S.B.M. (e_1_2_5_3_1) 2010; 1
References_xml – reference: Chandra, P., Singh, Y., 2004. An activation function adapting training algorithm for sigmoidal feed forward networks. Neurocomputing 61, 429-437.
– reference: Hopfield, J.J., 1984. Neurons with graded response have collective computational properties like those of two-states neurons. Proceedings of the National Academy of Sciences 81, 3088-3092.
– reference: Liu, Y., Yang, J., Li, L., Wu, W., 2012. Negative effects of sufficiently small initial weights on back-propagation neural networks. Journal of Zhejiang University Science C 13, 8, 585-592.
– reference: Singh, S., Gupta, P.R., 2011. Breast cancer detection and classification using neural network. International Journal of Advanced Engineering Sciences and Technologies 6, 1, 4-9.
– reference: Stathakis, D., 2009. How many hidden layers and nodes? International Journal of Remote Sensing 30, 8, 2133-2147.
– reference: Mustafa, H.M.H., Abdulhamid, Z.M., 2012. On simulation of brain based learning paradigms (neural networks approach). Elixir Education Technology 52, 11331-11337.
– reference: Trucheteta, F., Lénib, P.E., Fougerollea, Y., 2013. New representations for multidimensional functions based on Kolmogorov superposition theorem. Applications on Image Processing Conference Proceedings Saint Petersburg, Russia, Vol. 1, pp. 8-18.
– reference: Setiono, R., Liu, H., 1997. Neural-network feature selector. IEEE Transactions on Neural Networks 8, 3, 654-662.
– reference: Wolberg, W.H., Mangasarian, O.L., 1990. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences 87, 9193-9196.
– reference: Grossberg, S., 1982. Studies of Mind and Brain, Boston Studies in the Philosophy of Science. D. Reidel Publishing, Boston, MA.
– reference: Bache, K., Lichman, M., 2013. UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA, USA. Available at http://archive.ics.uci.edu/ml .
– reference: Chimieski, B.F., Fagundes, R.D.R., 2013. Association and classification data mining algorithms comparison over medical datasets. Journal of Health Information 5, 2, 44-51.
– reference: Yang, S., Ting, T.O., Man, K.L., Guan, S., 2013. Investigation of neural networks for function approximation. First International Conference on Information Technology and Quantitative Management (ITQM2013), Procedia Computer Science 17, 586-594.
– reference: Shafie, A.S., Mohtar, S.M., Ahmad, N., 2012. Backpropagation neural network with new improved error function and activation function for classification problem. IEEE Symposium on Humanities, Science and Engineering Research 1, 1359-1364.
– reference: Otair, M.A., Salameh, W.A., 2005. Speeding up back-propagation neural networks. Proceedings of the 2005 Informing Science and IT Education Joint Conference, Flagstaff, AZ, Vol. 1, pp. 167-173.
– reference: Azmi, M.S.B.M., Cob, Z.C., 2010. Breast cancer prediction based on backpropagation algorithm. Proceedings of 2010 IEEE Student Conference on Research and Development (SCOReD 2010), Putrajaya, Malaysia, Vol. 1, pp. 164-168.
– reference: Ng, S.C., Cheung, C.C., Leung, S.H., Luk, A., 2003. Fast convergence for backpropagation network with magnified gradient function. Proceedings of the International Joint Conference Neural Networks 3, 1903-1908.
– reference: Xavier, A.E., 2005. Uma Função de Ativação para Redes Neurais Artificiais Mais Flexível e Poderosa e Mais Rápida. Learning and Nonlinear Models-Revista da Sociedade Brasileira de Redes Neurais (SBRN) 1, 5, 276-282.
– reference: Haykin, S., 2001. Neural Networks: A Comprehensive Foundation (2nd edn). Prentice-Hall, Englewood Cliffs, NJ.
– reference: Rocha Neto, A.R., Barreto, G.A., 2009. On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: a comparative analysis. IEEE Transactions on Latin America 7, 4, 487-496.
– reference: Sathyaa, D.J., Geethab, K., 2013. Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm. ScienceAsia 39, 294-306.
– reference: Draghici, S., 2002. On the capabilities of neural networks using limited precision weights. Neural Networks 15, 395-414.
– reference: Rocha Neto, A.R., Barreto, G.A., Cortez, P.C., Mota, H., 2006. SINPATCO: Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral. XVI Congresso Brasileiro de Automática Bahia, Brazil, Vol. 1, pp. 929-934.
– reference: Rumelhart, D.E., McClelland, J.L., eds, 1986. Parallel Distributed Processing: Explorations, Microstructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA.
– reference: Lin, F., Yu, X.H., Gregor, S., Irons, R., 1995. Time series forecasting with neural networks. Complexity International 2, 1-10.
– reference: Taha, I., Ghosh, J., 1996. Characterization of the Wisconsin breast cancer database using a hybrid symbolic-connectionist system. Technical Report, University of Texas, Austin, TX.
– reference: Wolberg, W.H., 1991. Wisconsin Breast Cancer Database, UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA, USA. Available at http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original).
– reference: Schiffmann, W., Joost, M., Werner, R., 1994. Optimization of the backpropagation algorithm for training multilayer perceptrons. Technical Report, University of Koblenz, Institute of Physics, Koblenz, Germany.
– reference: Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of control, Signals and Systems 2, 303-314.
– reference: Fernández-Delgado, M., Cernadas, E., Barro, S., Ribeiro, J., Neves, J., 2013. Direct kernel perceptron (DKP): ultra-fast kernel elm-based classification with non-iterative closed-form weight calculation. Neural Networks 50, 60-71.
– reference: Mangasarian, O.L., Wolberg, W.H., 1990. Cancer diagnosis via linear programming. SIAM News 23, 5, 1-18.
– reference: Gori, M., Tesi, A., 1992. On the problem of local minima in backpropagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 1, 76-86.
– reference: Hornik, K., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366.
– reference: Bao, G., Zeng, Z., 2012. Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions. Neurocomputing 77, 101-107.
– reference: Ngaopitakkul, A., Jettanasen, C., 2012. Selection of proper activation functions in back-propagation neural networks algorithm for identifying the phase fault appearance in transformer windings. International Journal of Innovative Computing, Information and Control 8, 6, 4299-4318.
– reference: LeCun, Y., Simard, P.Y., Pearlmutter, B., 1992. Automatic learning rate maximization by on-line estimation of the Hessian's eigenvectors. Advances in Neural Information Processing Systems 5, 50-58.
– reference: Hunter, D., Yu, H., Pukish, M.S., Kolbusz, J., Wilamowski, B.M., 2012. Selection of proper neural network sizes and architectures-a comparative study. IEEE Transactions on Industrial Informatics 8, 2, 228-240.
– reference: Pawar, P.S., Patil, D., 2012. Breast cancer detection using backpropagation neural network with comparison between different neuron. 2nd IEEE International Conference on Parallel, Distributed and Grid Computing, Solan, India, Vol. 1, pp. 170-173.
– reference: Nkwogu, D.N., Allen, A.R., 2012. Adaptive sampling for WSAN control applications using artificial neural networks. Journal of Sensor and Actuator Networks 1, 299-320.
– reference: Hecht-Nielsen, R., 1989. Theory of the backpropagation neural network. International Joint Conference on Neural Networks, Washington, DC, pp. 593-605.
– volume: 61
  start-page: 429
  year: 2004
  end-page: 437
  article-title: An activation function adapting training algorithm for sigmoidal feed forward networks
  publication-title: Neurocomputing
– volume: 1
  start-page: 1
  year: 2013
  end-page: 6
– volume: 77
  start-page: 101
  year: 2012
  end-page: 107
  article-title: Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions
  publication-title: Neurocomputing
– volume: 6
  start-page: 4
  issue: 1
  year: 2011
  end-page: 9
  article-title: Breast cancer detection and classification using neural network
  publication-title: International Journal of Advanced Engineering Sciences and Technologies
– volume: 5
  start-page: 44
  issue: 2
  year: 2013
  end-page: 51
  article-title: Association and classification data mining algorithms comparison over medical datasets
  publication-title: Journal of Health Information
– volume: 15
  start-page: 395
  year: 2002
  end-page: 414
  article-title: On the capabilities of neural networks using limited precision weights
  publication-title: Neural Networks
– volume: 2
  start-page: 1
  year: 1995
  end-page: 10
  article-title: Time series forecasting with neural networks
  publication-title: Complexity International
– year: 2001
– year: 1989
– volume: 7
  start-page: 487
  issue: 4
  year: 2009
  end-page: 496
  article-title: On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: a comparative analysis
  publication-title: IEEE Transactions on Latin America
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 14
  start-page: 76
  issue: 1
  year: 1992
  end-page: 86
  article-title: On the problem of local minima in backpropagation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 30
  start-page: 2133
  issue: 8
  year: 2009
  end-page: 2147
  article-title: How many hidden layers and nodes?
  publication-title: International Journal of Remote Sensing
– start-page: 593
  year: 1989
  end-page: 605
– year: 1990
– volume: 1
  start-page: 765
  year: 1991
  end-page: 770
– volume: 52
  start-page: 11331
  year: 2012
  end-page: 11337
  article-title: On simulation of brain based learning paradigms (neural networks approach)
  publication-title: Elixir Education Technology
– year: 1994
– start-page: 3539
  year: 2012
  end-page: 3550
– year: 1982
– volume: 1
  start-page: 1359
  year: 2012
  end-page: 1364
  article-title: Backpropagation neural network with new improved error function and activation function for classification problem
  publication-title: IEEE Symposium on Humanities, Science and Engineering Research
– volume: 23
  start-page: 1
  issue: 5
  year: 1990
  end-page: 18
  article-title: Cancer diagnosis via linear programming
  publication-title: SIAM News
– volume: 3
  start-page: 1903
  year: 2003
  end-page: 1908
  article-title: Fast convergence for backpropagation network with magnified gradient function
  publication-title: Proceedings of the International Joint Conference Neural Networks
– volume: 1
  year: 1986
– volume: 1
  start-page: 6724
  year: 2013
  end-page: 6728
– volume: 8
  start-page: 228
  issue: 2
  year: 2012
  end-page: 240
  article-title: Selection of proper neural network sizes and architectures—a comparative study
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 4
  start-page: 578
  year: 1992
  end-page: 581
– volume: 1
  start-page: 167
  year: 2005
  end-page: 173
  article-title: Speeding up back‐propagation neural networks
  publication-title: Proceedings of the 2005 Informing Science and IT Education Joint Conference
– start-page: 11
  year: 1987
  end-page: 13
– volume: 8
  start-page: 654
  issue: 3
  year: 1997
  end-page: 662
  article-title: Neural‐network feature selector
  publication-title: IEEE Transactions on Neural Networks
– start-page: 423
  year: 1986
  end-page: 443
– volume: 17
  start-page: 586
  year: 2013
  end-page: 594
  article-title: Investigation of neural networks for function approximation
  publication-title: Procedia Computer Science
– volume: 50
  start-page: 60
  year: 2013
  end-page: 71
  article-title: Direct kernel perceptron (DKP): ultra‐fast kernel elm‐based classification with non‐iterative closed‐form weight calculation
  publication-title: Neural Networks
– volume: 1
  start-page: 8
  year: 2013
  end-page: 18
  article-title: New representations for multidimensional functions based on Kolmogorov superposition theorem
  publication-title: Applications on Image Processing Conference Proceedings Saint Petersburg, Russia
– start-page: 297
  year: 2012
  end-page: 310
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, Signals and Systems
– volume: 81
  start-page: 3088
  year: 1984
  end-page: 3092
  article-title: Neurons with graded response have collective computational properties like those of two‐states neurons
  publication-title: Proceedings of the National Academy of Sciences
– volume: 1
  start-page: 1
  year: 2012
  end-page: 4
– volume: 1
  start-page: 519
  year: 2002
  end-page: 523
– year: 1996
– volume: 2
  start-page: 946
  year: 1991
– volume: 1
  start-page: 299
  year: 2012
  end-page: 320
  article-title: Adaptive sampling for WSAN control applications using artificial neural networks
  publication-title: Journal of Sensor and Actuator Networks
– volume: 13
  start-page: 585
  issue: 8
  year: 2012
  end-page: 592
  article-title: Negative effects of sufficiently small initial weights on back‐propagation neural networks
  publication-title: Journal of Zhejiang University Science C
– volume: 1
  start-page: 11
  year: 2013
– volume: 87
  start-page: 9193
  year: 1990
  end-page: 9196
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences
– volume: 1
  start-page: 929
  year: 2006
  end-page: 934
  article-title: SINPATCO: Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
  publication-title: XVI Congresso Brasileiro de Automática
– volume: 1
  start-page: 214
  year: 1992
  end-page: 219
– volume: 5
  start-page: 50
  year: 1992
  end-page: 58
  article-title: Automatic learning rate maximization by on‐line estimation of the Hessian's eigenvectors
  publication-title: Advances in Neural Information Processing Systems
– volume: 8
  start-page: 4299
  issue: 6
  year: 2012
  end-page: 4318
  article-title: Selection of proper activation functions in back‐propagation neural networks algorithm for identifying the phase fault appearance in transformer windings
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 1
  start-page: 276
  issue: 5
  year: 2005
  end-page: 282
  article-title: Uma Função de Ativação para Redes Neurais Artificiais Mais Flexível e Poderosa e Mais Rápida
  publication-title: Learning and Nonlinear Models—Revista da Sociedade Brasileira de Redes Neurais (SBRN)
– year: 1991
– volume: 39
  start-page: 294
  year: 2013
  end-page: 306
  article-title: Mass classification in breast DCE‐MR images using an artificial neural network trained via a bee colony optimization algorithm
  publication-title: ScienceAsia
– volume: 1
  start-page: 170
  year: 2012
  end-page: 173
  article-title: Breast cancer detection using backpropagation neural network with comparison between different neuron
  publication-title: 2nd IEEE International Conference on Parallel, Distributed and Grid Computing
– volume: 1
  start-page: 164
  year: 2010
  end-page: 168
  article-title: Breast cancer prediction based on backpropagation algorithm
  publication-title: Proceedings of 2010 IEEE Student Conference on Research and Development (SCOReD 2010)
– volume: 1
  start-page: 214
  year: 1989
  end-page: 219
– year: 2013
– ident: e_1_2_5_28_1
  doi: 10.1631/jzus.C1200008
– ident: e_1_2_5_39_1
  doi: 10.1109/TLA.2009.5349049
– volume: 3
  start-page: 1903
  year: 2003
  ident: e_1_2_5_32_1
  article-title: Fast convergence for backpropagation network with magnified gradient function
  publication-title: Proceedings of the International Joint Conference Neural Networks
– volume: 1
  start-page: 929
  year: 2006
  ident: e_1_2_5_40_1
  article-title: SINPATCO: Sistema Inteligente para Diagnóstico de Patologias da Coluna Vertebral
  publication-title: XVI Congresso Brasileiro de Automática
– volume-title: Wisconsin Breast Cancer Database, UCI Machine Learning Repository
  year: 1991
  ident: e_1_2_5_53_1
– ident: e_1_2_5_57_1
  doi: 10.1109/IJCNN.1992.287133
– ident: e_1_2_5_17_1
  doi: 10.1016/0893-6080(89)90020-8
– volume: 1
  start-page: 167
  year: 2005
  ident: e_1_2_5_35_1
  article-title: Speeding up back‐propagation neural networks
  publication-title: Proceedings of the 2005 Informing Science and IT Education Joint Conference
– ident: e_1_2_5_9_1
  doi: 10.1016/S0893-6080(02)00032-1
– volume: 1
  start-page: 276
  issue: 5
  year: 2005
  ident: e_1_2_5_55_1
  article-title: Uma Função de Ativação para Redes Neurais Artificiais Mais Flexível e Poderosa e Mais Rápida
  publication-title: Learning and Nonlinear Models—Revista da Sociedade Brasileira de Redes Neurais (SBRN)
– ident: e_1_2_5_5_1
  doi: 10.1016/j.neucom.2011.08.026
– ident: e_1_2_5_8_1
  doi: 10.1007/BF02551274
– ident: e_1_2_5_42_1
  doi: 10.2306/scienceasia1513-1874.2013.39.294
– volume-title: Optimization of the backpropagation algorithm for training multilayer perceptrons
  year: 1994
  ident: e_1_2_5_43_1
– volume: 5
  start-page: 50
  year: 1992
  ident: e_1_2_5_25_1
  article-title: Automatic learning rate maximization by on‐line estimation of the Hessian's eigenvectors
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_5_20_1
  doi: 10.1109/IJCNN.2002.1005526
– ident: e_1_2_5_44_1
  doi: 10.1109/ICASSP.2013.6638963
– ident: e_1_2_5_6_1
  doi: 10.1016/j.neucom.2004.04.001
– volume-title: UCI Machine Learning Repository
  year: 2013
  ident: e_1_2_5_4_1
– ident: e_1_2_5_38_1
– ident: e_1_2_5_16_1
  doi: 10.1073/pnas.81.10.3088
– volume: 8
  start-page: 4299
  issue: 6
  year: 2012
  ident: e_1_2_5_33_1
  article-title: Selection of proper activation functions in back‐propagation neural networks algorithm for identifying the phase fault appearance in transformer windings
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 1
  start-page: 170
  year: 2012
  ident: e_1_2_5_36_1
  article-title: Breast cancer detection using backpropagation neural network with comparison between different neuron
  publication-title: 2nd IEEE International Conference on Parallel, Distributed and Grid Computing
– ident: e_1_2_5_34_1
  doi: 10.3390/jsan1030299
– ident: e_1_2_5_24_1
– ident: e_1_2_5_19_1
  doi: 10.1109/IJCNN.1992.227257
– ident: e_1_2_5_48_1
  doi: 10.1080/01431160802549278
– volume: 5
  start-page: 44
  issue: 2
  year: 2013
  ident: e_1_2_5_7_1
  article-title: Association and classification data mining algorithms comparison over medical datasets
  publication-title: Journal of Health Information
– ident: e_1_2_5_46_1
  doi: 10.1109/SHUSER.2012.6268818
– ident: e_1_2_5_54_1
  doi: 10.1073/pnas.87.23.9193
– ident: e_1_2_5_21_1
  doi: 10.1117/12.135110
– ident: e_1_2_5_23_1
– volume: 2
  start-page: 1
  year: 1995
  ident: e_1_2_5_27_1
  article-title: Time series forecasting with neural networks
  publication-title: Complexity International
– volume: 23
  start-page: 1
  issue: 5
  year: 1990
  ident: e_1_2_5_29_1
  article-title: Cancer diagnosis via linear programming
  publication-title: SIAM News
– volume-title: Parallel Distributed Processing: Explorations, Microstructure of Cognition
  year: 1986
  ident: e_1_2_5_41_1
  doi: 10.7551/mitpress/5236.001.0001
– ident: e_1_2_5_51_1
  doi: 10.1109/INES.2013.6632792
– ident: e_1_2_5_37_1
– ident: e_1_2_5_22_1
  doi: 10.1109/IJCNN.1989.118505
– start-page: 297
  volume-title: Artificial Intelligence Methods and Techniques for Business and Engineering Applications
  year: 2012
  ident: e_1_2_5_2_1
– volume: 1
  start-page: 164
  year: 2010
  ident: e_1_2_5_3_1
  article-title: Breast cancer prediction based on backpropagation algorithm
  publication-title: Proceedings of 2010 IEEE Student Conference on Research and Development (SCOReD 2010)
– ident: e_1_2_5_18_1
  doi: 10.1109/TII.2012.2187914
– volume: 52
  start-page: 11331
  year: 2012
  ident: e_1_2_5_31_1
  article-title: On simulation of brain based learning paradigms (neural networks approach)
  publication-title: Elixir Education Technology
– ident: e_1_2_5_11_1
  doi: 10.1109/34.107014
– volume-title: Characterization of the Wisconsin breast cancer database using a hybrid symbolic‐connectionist system
  year: 1996
  ident: e_1_2_5_49_1
– start-page: 423
  volume-title: Parallel Distributed Processing
  year: 1986
  ident: e_1_2_5_52_1
– ident: e_1_2_5_14_1
– ident: e_1_2_5_30_1
– ident: e_1_2_5_58_1
  doi: 10.1016/j.procs.2013.05.076
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 2001
  ident: e_1_2_5_13_1
– start-page: 593
  volume-title: Theory of the backpropagation neural network
  year: 1989
  ident: e_1_2_5_15_1
– ident: e_1_2_5_26_1
  doi: 10.1109/IJCNN.1991.155275
– ident: e_1_2_5_45_1
  doi: 10.1109/72.572104
– ident: e_1_2_5_56_1
  doi: 10.1109/PEAM.2012.6612460
– volume-title: Studies of Mind and Brain, Boston Studies in the Philosophy of Science
  year: 1982
  ident: e_1_2_5_12_1
– ident: e_1_2_5_10_1
  doi: 10.1016/j.neunet.2013.11.002
– volume: 1
  start-page: 8
  year: 2013
  ident: e_1_2_5_50_1
  article-title: New representations for multidimensional functions based on Kolmogorov superposition theorem
  publication-title: Applications on Image Processing Conference Proceedings Saint Petersburg, Russia
– volume: 6
  start-page: 4
  issue: 1
  year: 2011
  ident: e_1_2_5_47_1
  article-title: Breast cancer detection and classification using neural network
  publication-title: International Journal of Advanced Engineering Sciences and Technologies
SSID ssj0001517
Score 1.946132
Snippet The backpropagation algorithm is one of the most used tools for training artificial neural networks. However, this tool may be very slow in some practical...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 835
SubjectTerms activation function
Algorithms
Back propagation
backpropagation algorithm
bihyperbolic function
Computation
Discrimination
machine learning
Mathematical analysis
Mathematical models
Neural networks
Operational research
Operations research
Optimization
pattern recognition
Studies
Title An evaluation of the bihyperbolic function in the optimization of the backpropagation algorithm
URI https://api.istex.fr/ark:/67375/WNG-ZFF6VQCX-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fitor.12072
https://www.proquest.com/docview/1551747861
https://www.proquest.com/docview/1567081005
Volume 21
WOSCitedRecordID wos000340545700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1475-3995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001517
  issn: 0969-6016
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD-Me4fog5tXh9U5Koqg0NGPNEnBlzFXFeQ6x6YXX0KSNttlWyu9d-Kf70n6sTsYwvCtJCeQ5nzkl_bkdwBeG80iw1WEGpBpQApCA86lQXdPVchlGKmkcMUm2HTKZ7PscA3e93dhWn6I4YOb9QwXr62DS7VYcXI0-GY3ikOGAXgco-GSEYw_HOUnX4ZIjLuZuy6d0SywtCMdPanN5LkefWNDGtu1_XMDba5iVrfp5Bv_N91NeNiBTX-vtY5HsFZWE7jX57pPYKOv6eB3Lj6BBysEhY9B7FX-NR-4Xxsf8aKv5md4em2UpRT27cboOueV66wxBl12lzuHAVKf46ti7Gqb5cVp3cyXZ5dP4CQ_ON7_FHQlGQJNwiQOMmbSQmuuiAlDKWXCGOpTxjwNE20iSaTSJC0tyzs1eHRMTcYSUiDsNFGqyyzZglFVV-VT8IkxmSmUkpLGhHLKizBRPMEWS6lGmAdve70I3fGV27IZF6I_t9glFW5JPXg1yP5qWTpulXrj1DuIyObc5rWxVPyYfhQ_85x-_7Y_E4cebPf6F51LL4TFlrbYAI08eDl0ozPaPyyyKusrK0MZYiyMbB68c9bwj-mIz8dfj9zTs7sIP4f7CNpIm-e2DaNlc1W-gHX9ezlfNDudC_wFBLULJw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9QwFH-MO9H5w6anYnVqRREUKu01adIfx1zd8DznuOnhLyFJm-3Y1kp3k_35vqRfdgMRxN9K8gJt3pd8kr58HsBro1lkuIpQA5IGJCdJwLk06O5UhVyGkYpzV2yCTad8Pk8P2twcexem4YfoD9ysZ7h4bR3cHkiveDlafP0-GocMI_CQoB3RAQw_HGZHkz4U43Lm7kunSRpY3pGWn9Sm8lyPvrEiDe3kXt2Am6ug1a062eZ_vu892Gjhpr_d2Md9WCvKEdzust1HsNlVdfBbJx_B3RWKwgcgtkv_mhHcr4yPiNFXixPcv9bKkgr7dml0nYvSdVYYhc7b6539AKlP8VsxejXN8uy4qhfLk_OHcJTtznb2grYoQ6BJGI-DlBmaa80VMWEopYwZQ43KMadhrE0kiVSa0MLyvCcGN4_UpCwmOQJPE1FdpPEjGJRVWTwGnxiTmlwpKZMxSXjC8zBWPMYWS6pGmAdvO8UI3TKW28IZZ6LbudgpFW5KPXjVy_5seDr-KPXG6bcXkfWpzWxjVHyffhQ_siz59nVnLg482OoMQLROfSEsurTlBpLIg5d9N7qj_cciy6K6tDIJQ5SFsc2Dd84c_vI6Yn_25dA9PfkX4RdwZ2_2eSIm-9NPT2EdIRxpst62YLCsL4tncEv_Wi4u6uetP_wG-CEPFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-kJ0UfbD0Vo7VGFEEhklz2K4-lNVos51laPXxZdjdZe7RNSnoV_3xnNx-9ggjiW9idhc3O_GZnk9nfALyyhidW6AQ1oGhECsIiIZRFuFMdCxUnOi18sQk-nYr5PJt1uTnuLkzLDzF8cHPI8P7aAby8KOwKytHim3fJJObogUeEZgxxOdo7zI8PBleM25m_L52xLHK8Ix0_qUvluR59Y0caucX9dSPcXA1a_a6Tb_znfDfhXhduhjutfdyHW2U1hvU-230MG31Vh7AD-RjurlAUPgC5U4XXjOBhbUOMGEO9OMHza6MdqXDotkbfuah8Z41e6Ly73jkMUOYU3xW9V9uszn7UzWJ5cv4QjvP3R7sfo64oQ2RInE6ijFtaGCM0sXGslEo5R42qiaBxamyiiNKG0NLxvDOLh0dqM56SAgNPm1BTZukjWKvqqnwMIbE2s4XWSrEJYYKJIk61SLHFkaoRHsCbXjHSdIzlrnDGmexPLm5JpV_SAF4OshctT8cfpV57_Q4iqjl1mW2cym_TD_J7nrOvX3bnchbAVm8AsgP1pXTRpSs3wJIAXgzdCEf3j0VVZX3lZBjHKAt9WwBvvTn8ZTpy_-jzoX968i_Cz2F9tpfLg_3pp6dwByM40ia9bcHasrkqn8Ft83O5uGy2Ozj8Bm33DpI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+the+bihyperbolic+function+in+the+optimization+of+the+backpropagation+algorithm&rft.jtitle=International+transactions+in+operational+research&rft.au=Miguez%2C+Geraldo&rft.au=Xavier%2C+Adilson+Elias&rft.au=Maculan%2C+Nelson&rft.date=2014-09-01&rft.issn=0969-6016&rft.eissn=1475-3995&rft.volume=21&rft.issue=5&rft.spage=835&rft.epage=854&rft_id=info:doi/10.1111%2Fitor.12072&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-6016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-6016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-6016&client=summon