A review on learning to solve combinatorial optimisation problems in manufacturing
An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since t...
Gespeichert in:
| Veröffentlicht in: | IET collaborative intelligent manufacturing Jg. 5; H. 1 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wuhan
John Wiley & Sons, Inc
01.03.2023
Wiley |
| Schlagworte: | |
| ISSN: | 2516-8398, 2516-8398 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state‐of‐the‐art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges. |
|---|---|
| AbstractList | Abstract An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state‐of‐the‐art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges. An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state‐of‐the‐art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges. |
| Author | Zhang, Cong Cao, Zhiguang Ma, Yining Le, Zhang Wu, Yaoxin Song, Wen Zhang, Jie |
| Author_xml | – sequence: 1 givenname: Cong orcidid: 0000-0002-8434-1181 surname: Zhang fullname: Zhang, Cong organization: Nanyang Technological University – sequence: 2 givenname: Yaoxin surname: Wu fullname: Wu, Yaoxin organization: Nanyang Technological University – sequence: 3 givenname: Yining orcidid: 0000-0002-6639-8547 surname: Ma fullname: Ma, Yining organization: National University of Singapore – sequence: 4 givenname: Wen surname: Song fullname: Song, Wen email: wensong@email.sdu.edu.cn organization: Shandong University – sequence: 5 givenname: Zhang surname: Le fullname: Le, Zhang organization: University of Electronic Science and Technology of China (UESTC) – sequence: 6 givenname: Zhiguang surname: Cao fullname: Cao, Zhiguang organization: Singapore Institute of Manufacturing Technology (SIMTech), ASTAR – sequence: 7 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Nanyang Technological University |
| BookMark | eNp9kV9LHDEUxUOxULW-9BME-ias3vyZZOZRFrULSqG0z-Emk5EsM8k2ySp-e8edUopInxIOv3Nyb84JOYopekK-MLhgILtLFyZ-wTho_oEc84apVSu69uif-ydyVsoWAGZF8FYfkx9XNPvH4J9oinT0mGOID7QmWtL46KlLkw0Ra8oBR5p2NUyhYA0zvMvJjn4qNEQ6YdwP6Oo-z-7P5OOAY_Fnf85T8uvm-uf62-ru--1mfXW3chIEX2nrO9TotYWmkd43Td_3ynnFOy28FDgAKq5Yo9seUCvLdGel7VvQCjo3iFOyWXL7hFuzy2HC_GwSBnMQUn4wmGtwozeNEIwpxdHyQfZSIUgtORNONdhraeesr0vWvNXvvS_VbNM-x3l8I6DjvGPA2EydL5TLqZTsh7-vMjCvFZjXCsyhghmGN7AL9fB1NWMY37ewxfIURv_8n3Cz3tzzxfMC0XSZkw |
| CitedBy_id | crossref_primary_10_3390_biomimetics8060478 crossref_primary_10_37251_ijome_v3i1_1616 crossref_primary_10_1049_cim2_12121 crossref_primary_10_1109_TITS_2023_3334976 crossref_primary_10_1007_s10462_024_11059_9 crossref_primary_10_3390_app132011516 crossref_primary_10_1109_ACCESS_2024_3357969 crossref_primary_10_3390_logistics9010013 crossref_primary_10_1016_j_ejor_2025_08_029 crossref_primary_10_1016_j_swevo_2024_101605 crossref_primary_10_1049_cim2_12105 crossref_primary_10_3390_app13137439 crossref_primary_10_1016_j_cie_2025_110856 crossref_primary_10_1016_j_neunet_2025_107446 crossref_primary_10_1109_ACCESS_2024_3522020 |
| Cites_doi | 10.1016/j.ejor.2016.07.009 10.1016/s0305‐0548(03)00158‐8 10.1609/icaps.v30i1.6685 10.1038/sj.jors.2600781 10.1109/tits.2022.3207011 10.1016/j.ejtl.2020.100008 10.1609/aaai.v32i1.11798 10.1049/cim2.12015 10.1016/s0377‐2217(98)00113‐1 10.1109/4235.996017 10.1111/itor.12199 10.1016/j.cor.2021.105400 10.1609/aaai.v36i9.21262 10.1016/j.ejor.2020.07.063 10.1016/j.engappai.2021.104603 10.24963/ijcai.2022/662 10.1109/SMC52423.2021.9658956 10.1080/00207543.2011.611539 10.1007/978-3-030-78230-6_25 10.1109/IROS51168.2021.9635914 10.1038/nature14236 10.1080/00207543.2021.1943037 10.1109/tnnls.2021.3105905 10.1145/3447548.3467135 10.1109/tetci.2021.3098354 10.1002/1520‐6750(198706)34:3<307::aid‐nav3220340302>3.0.co;2‐d 10.1109/ICDE51399.2021.00283 10.2478/emj‐2018‐0009 10.3390/su12093760 10.1109/tii.2022.3189725 10.1609/aaai.v35i13.17430 10.1109/ICMLA51294.2020.00013 10.23919/csms.2021.0027 10.1007/978-0-387-77778-8_10 10.1109/tevc.2021.3065707 10.1609/socs.v12i1.18556 10.1609/aaai.v30i1.10295 10.1016/j.cor.2014.08.005 10.1109/SSCI47803.2020.9308538 10.1287/opre.13.4.517 10.1016/j.jmsy.2018.02.004 10.1145/3414685.3417796 10.1109/tcyb.2021.3111082 10.1109/CEC.2006.1688440 10.1109/tevc.2007.892759 10.1109/tii.2019.2908210 10.1016/j.trip.2021.100425 10.1016/j.ejor.2007.08.048 10.1109/CEC.2007.4424789 10.1609/aaai.v36i8.20899 10.1609/aaai.v35i1.16155 10.1016/j.ejor.2019.03.040 10.1049/cim2.12004 10.1016/j.tre.2021.102496 10.1080/00207543.2021.1973138 10.1609/aaai.v36i9.21214 10.1007/978-3-031-08011-1_14 10.1016/s0377‐2217(99)00486‐5 10.1109/tii.2020.3031409 10.1016/j.cie.2022.108122 10.1561/2200000071 10.1007/s00291‐020‐00615‐8 10.1109/tnnls.2021.3068828 10.1162/evco_a_00044 10.1016/j.knosys.2021.107683 10.1109/CEC.2016.7744244 10.1287/opre.48.5.801.12407 10.1007/s10845‐021‐01847‐3 10.1007/0-306-48056-5_16 10.1080/00207543.2019.1581954 10.1002/net.3230190602 10.1002/net.3230110211 10.1109/tcyb.2021.3089179 10.1109/tits.2021.3105232 10.1145/3459637.3481933 10.1016/j.trc.2020.102861 10.1109/BigDataService.2017.18 10.1016/j.eswa.2014.04.043 10.1007/s10479‐009‐0657‐6 10.1016/j.ejor.2017.08.035 10.1287/opre.1120.1048 10.1038/nature14539 10.1007/978-3-642-01799-5_6 10.1609/aaai.v36i9.21236 10.1016/j.ejor.2021.06.021 10.1016/j.procir.2022.05.117 10.1287/ijoc.11.1.15 10.1109/IJCNN52387.2021.9534083 10.1287/opre.8.2.219 10.1609/aaai.v35i5.16484 10.1109/tcyb.2020.2977661 10.1016/j.knosys.2021.107526 10.1109/tits.2019.2909109 10.1134/s0361768819080036 10.1609/aaai.v35i8.16916 10.1109/tcyb.2021.3121542 10.1109/access.2020.3004964 10.1155/2021/6653586 10.1609/aaai.v33i01.33014731 10.1016/j.eswa.2020.114060 10.1287/mnsc.6.1.80 10.1016/j.eswa.2016.07.005 10.1007/s11432‐021‐3348‐6 10.1109/tits.2020.3003163 10.1016/s0305‐0548(00)00109‐x 10.1007/bf00992696 10.1109/tits.2021.3056120 10.1108/k‐09‐2013‐0201 10.1109/RO-MAN46459.2019.8956393 10.1287/ijoc.1060.0202 10.1002/2475‐8876.12059 10.1080/00207543.2020.1870013 10.1007/s11750‐017‐0451‐6 10.1109/tnnls.2022.3148435 10.1007/s13676‐014‐0074‐0 10.1007/s00170‐019‐03988‐5 10.1016/j.ejor.2022.01.034 10.1109/CEC.2016.7744093 10.14488/bjopm.2020.011 10.1007/s41019‐021‐00155‐3 10.1016/j.cie.2021.107604 10.1007/978-3-319-92198-3_7 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1049/cim2.12072 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2516-8398 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_53311662ab2f4d46a0474213c65ad74b 10_1049_cim2_12072 CIM212072 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: A*STAR Cyber‐Physical Production System, CPPS – Towards Contextual and Intelligent Response Research Program funderid: A19C1a0018 – fundername: Model Factory@SIMTech – fundername: National Natural Science Foundation of China funderid: 62102228 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2021QF063 – fundername: A*Star Career Development Fund funderid: C222812027 |
| GroupedDBID | 0R~ 1OC 24P AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADBBV ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA ITC K7- M43 M7S M~E OCL OK1 PIMPY PTHSS RIE ROL RUI AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4032-7be9a7ae7b0554ee55ddd6ce62973e43af0a6261578d0a76b179b4bd807609cf3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943186000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2516-8398 |
| IngestDate | Fri Oct 03 12:34:09 EDT 2025 Wed Aug 13 04:21:38 EDT 2025 Wed Oct 29 21:25:50 EDT 2025 Tue Nov 18 22:41:39 EST 2025 Wed Jan 22 16:23:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4032-7be9a7ae7b0554ee55ddd6ce62973e43af0a6261578d0a76b179b4bd807609cf3 |
| Notes | Cong Zhang, Yaoxin Wu, and Yining Ma are equal contribution. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6639-8547 0000-0002-8434-1181 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcim2.12072 |
| PQID | 3092291011 |
| PQPubID | 6853488 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_53311662ab2f4d46a0474213c65ad74b proquest_journals_3092291011 crossref_primary_10_1049_cim2_12072 crossref_citationtrail_10_1049_cim2_12072 wiley_primary_10_1049_cim2_12072_CIM212072 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 20230301 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Wuhan |
| PublicationPlace_xml | – name: Wuhan |
| PublicationTitle | IET collaborative intelligent manufacturing |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2022; 298 1987; 34 1965; 13 1997; 48 2019; 15 2020; 17 2021; 160 2016; 30 1960; 8 2009; 195 2020; 12 2021; 166 2018; 48 1959; 6 1992; 8 2004; 31 2019; 20 2018; 1 2000; 127 2022; 36 2018; 32 2019; 277 2012; 20 2022; 168 2021; 2021 2007; 19 2021; 43 2015; 521 2019; 32 2015; 53 2002; 6 2019; 104 2020; 39 1997 1994 2020; 33 2014; 41 2021; 52 2007; 11 2017; 257 2014; 43 1999 2022; 235 2012; 50 2021; 59 2021; 134 2020; 30 2019; 45 2015; 518 2010; 175 1999; 113 2020; 22 2021; 60 2022; 109 2018; 11 2018; 10 2022; 107 2016; 23 2022; 19 1981; 11 2021; 25 2017; 6 2012; 60 2021; 23 2000; 48 2020; 121 2019; 57 2022; 65 2020; 8 2021; 35 2017; 30 2021; 34 2021; 33 2021; 233 2020; 51 2020; 9 1999; 11 2018; 265 2021; 6 2021; 3 2012 2011 2017; 25 2009 2008 2007 2006 2003 2021; 1 2022; 157 2021; 12 2002; 29 2021; 11 2022 2022; 60 2021 2020 2019 2018 2016; 63 2017 2016 2015 2022; 302 1989; 19 2021; 290 e_1_2_11_70_1 e_1_2_11_93_1 Zhang C. (e_1_2_11_15_1) 2020 e_1_2_11_186_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_29_1 Kwon Y.D. (e_1_2_11_96_1) 2021 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_102_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_89_1 e_1_2_11_43_1 Brockman G. (e_1_2_11_85_1) 2016 e_1_2_11_159_1 e_1_2_11_113_1 e_1_2_11_174_1 Kim M. (e_1_2_11_13_1) 2021; 34 e_1_2_11_151_1 Vaswani A. (e_1_2_11_98_1) 2017 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 Haykin S. (e_1_2_11_187_1) 1994 e_1_2_11_190_1 e_1_2_11_80_1 e_1_2_11_88_1 Cappart Q. (e_1_2_11_40_1) 2021 e_1_2_11_42_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 Chen X. (e_1_2_11_12_1) 2019; 32 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_188_1 e_1_2_11_104_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_165_1 e_1_2_11_142_1 Karalias N. (e_1_2_11_141_1) 2020; 33 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 Ma Y. (e_1_2_11_163_1) 2021; 34 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 Kwon Y.D. (e_1_2_11_11_1) 2020 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 Garmendia A.I. (e_1_2_11_38_1) 2022 e_1_2_11_10_1 Zeng Y. (e_1_2_11_95_1) 2022 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_33_1 e_1_2_11_128_1 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_120_1 Vaswani A. (e_1_2_11_99_1) 2017; 30 Verma R. (e_1_2_11_66_1) 2020 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_67_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 Wang R. (e_1_2_11_17_1) 2021; 34 e_1_2_11_154_1 e_1_2_11_131_1 Gupta P. (e_1_2_11_25_1) 2020; 33 e_1_2_11_182_1 Zhang J. (e_1_2_11_105_1) 2021 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_118_1 Sui J. (e_1_2_11_164_1) 2021 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_167_1 Hu H. (e_1_2_11_20_1) 2017 e_1_2_11_193_1 Zhang J. (e_1_2_11_35_1) 2022 e_1_2_11_47_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_117_1 e_1_2_11_59_1 Iklassov Z. (e_1_2_11_94_1) 2022 e_1_2_11_178_1 Kwon Y.D. (e_1_2_11_181_1) 2021; 34 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_170_1 Kotary J. (e_1_2_11_37_1) 2021 e_1_2_11_183_1 e_1_2_11_119_1 e_1_2_11_73_1 Wang Z. (e_1_2_11_61_1) 2016 Kan A.R. (e_1_2_11_63_1) 2012 Xin L. (e_1_2_11_135_1) 2021 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 Tassel P. (e_1_2_11_84_1) 2021 e_1_2_11_160_1 Wu Y. (e_1_2_11_24_1) 2021; 34 e_1_2_11_194_1 e_1_2_11_46_1 e_1_2_11_69_1 Schulman J. (e_1_2_11_58_1) 2017 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_171_1 Yang Y. (e_1_2_11_44_1) 2020 e_1_2_11_91_1 e_1_2_11_184_1 e_1_2_11_30_1 Joshi C.K. (e_1_2_11_192_1) 2020 e_1_2_11_53_1 e_1_2_11_76_1 Choromanski K. (e_1_2_11_191_1) 2020 Sutton R.S. (e_1_2_11_54_1) 2018 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_169_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 Bogyrbayeva A. (e_1_2_11_34_1) 2022 e_1_2_11_161_1 Park J. (e_1_2_11_65_1) 2021 e_1_2_11_195_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 e_1_2_11_111_1 e_1_2_11_134_1 Wu H. (e_1_2_11_144_1) 2019 e_1_2_11_157_1 e_1_2_11_172_1 Mnih V. (e_1_2_11_57_1) 2016 Duan J. (e_1_2_11_50_1) 2022 e_1_2_11_90_1 Li S. (e_1_2_11_136_1) 2021; 34 e_1_2_11_185_1 Helsgaun K. (e_1_2_11_177_1) 2017 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 Ma Y. (e_1_2_11_71_1) 2021 e_1_2_11_162_1 Dulac‐Arnold G. (e_1_2_11_121_1) 2015 e_1_2_11_196_1 e_1_2_11_86_1 Devlin J. (e_1_2_11_189_1) 2018 e_1_2_11_109_1 e_1_2_11_158_1 e_1_2_11_112_1 e_1_2_11_150_1 e_1_2_11_173_1 Laterre A. (e_1_2_11_103_1) 2018 |
| References_xml | – start-page: 1 year: 2021 end-page: 12 article-title: Deep reinforcement learning based optimization algorithm for permutation flow‐shop scheduling publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – start-page: 6351 year: 2017 end-page: 6361 – start-page: 2692 year: 2015 end-page: 2700 – year: 2015 article-title: Deep reinforcement learning in large discrete action spaces publication-title: arXiv preprint arXiv:151207679 – volume: 265 start-page: 843 issue: 3 year: 2018 end-page: 859 article-title: A simulated annealing algorithm for the capacitated vehicle routing problem with two‐dimensional loading constraints publication-title: Eur. J. Oper. Res. – start-page: 62 year: 2018 end-page: 71 – volume: 195 start-page: 791 issue: 3 year: 2009 end-page: 802 article-title: A variable neighborhood search heuristic for periodic routing problems publication-title: Eur. J. Oper. Res. – year: 2022 article-title: Hybrid intelligence for dynamic job‐shop scheduling with deep reinforcement learning and attention mechanism publication-title: arXiv preprint arXiv:220100548 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – year: 2017 article-title: Proximal policy optimization algorithms publication-title: arXiv preprint arXiv:170706347 – start-page: 221 year: 2008 end-page: 237 – start-page: 9861 year: 2018 end-page: 9871 – start-page: 558 year: 2021 end-page: 563 – volume: 50 start-page: 4255 issue: 15 year: 2012 end-page: 4270 article-title: A comparison of priority rules for the job shop scheduling problem under different flow time‐and tardiness‐related objective functions publication-title: Int. J. Prod. Res. – volume: 30 start-page: 6000 year: 2017 end-page: 6010 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2021 end-page: 8 – volume: 60 start-page: 1 issue: 16 year: 2021 end-page: 18 article-title: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing publication-title: Int. J. Prod. Res. – volume: 36 start-page: 9980 issue: 9 year: 2022 end-page: 9988 article-title: MAPDP: cooperative multi‐agent reinforcement learning to solve pickup and delivery problems publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 11 start-page: 221 issue: 2 year: 1981 end-page: 227 article-title: Complexity of vehicle routing and scheduling problems publication-title: Networks – start-page: 3590 year: 2016 end-page: 3597 – start-page: 1 year: 2022 end-page: 14 article-title: Meta‐learning‐based deep reinforcement learning for multiobjective optimization problems publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 19 start-page: 1600 issue: 2 year: 2022 end-page: 1610 article-title: Flexible job shop scheduling via graph neural network and deep reinforcement learning publication-title: IEEE Trans. Ind. Inf. – volume: 29 start-page: 1129 issue: 9 year: 2002 end-page: 1141 article-title: Perturbation heuristics for the pickup and delivery traveling salesman problem publication-title: Comput. Oper. Res. – volume: 3 start-page: 4 issue: 1 year: 2021 end-page: 12 article-title: Industry 4.0 in the logistics field: a bibliometric analysis publication-title: IET Collab. Intell. Manuf. – volume: 23 start-page: 2306 issue: 3 year: 2021 end-page: 2315 article-title: Heterogeneous attentions for solving pickup and delivery problem via deep reinforcement learning publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 33 start-page: 1621 year: 2020 end-page: 1632 – volume: 20 start-page: 3806 issue: 10 year: 2019 end-page: 3817 article-title: Online vehicle routing with neural combinatorial optimization and deep reinforcement learning publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 6 start-page: 51 issue: 1 year: 2017 end-page: 79 article-title: Vehicle routing problems for city logistics publication-title: EURO J. Transport. Logist. – volume: 34 start-page: 10418 year: 2021 end-page: 10430 article-title: Learning collaborative policies to solve NP‐hard routing problems publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 article-title: Solving a new 3D bin packing problem with deep reinforcement learning method publication-title: arXiv preprint arXiv:170805930 – volume: 8 start-page: 219 issue: 2 year: 1960 end-page: 223 article-title: On the job‐shop scheduling problem publication-title: Oper. Res. – year: 2021 article-title: Combinatorial optimization and reasoning with graph neural networks publication-title: arXiv preprint arXiv:210209544 – volume: 8 start-page: 120388 year: 2020 end-page: 120416 article-title: Learning combinatorial optimization on graphs: a survey with applications to networking publication-title: IEEE Access – start-page: 5002 year: 2021 end-page: 5008 – volume: 6 start-page: 119 issue: 2 year: 2021 end-page: 141 article-title: Graph learning for combinatorial optimization: a survey of state‐of‐the‐art publication-title: Data Sci. Eng. – volume: 32 year: 2018 – start-page: 177 year: 2009 end-page: 201 – volume: 34 start-page: 26198 year: 2021 end-page: 26211 article-title: Learning to delegate for large‐scale vehicle routing publication-title: Adv. Neural Inf. Process. Syst. – year: 2022 – volume: 30 year: 2016 – volume: 17 start-page: 4861 issue: 7 year: 2020 end-page: 4871 article-title: Step‐wise deep learning models for solving routing problems publication-title: IEEE Trans. Ind. Inf. – volume: 51 start-page: 3103 issue: 6 year: 2020 end-page: 3114 article-title: Deep reinforcement learning for multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 121 year: 2020 article-title: Multi‐vehicle routing problems with soft time windows: a multi‐agent reinforcement learning approach publication-title: Transport. Res. C Emerg. Technol. – volume: 59 start-page: 3360 issue: 11 year: 2021 end-page: 3377 article-title: Learning to schedule job‐shop problems: representation and policy learning using graph neural network and reinforcement learning publication-title: Int. J. Prod. Res. – volume: 13 start-page: 517 issue: 4 year: 1965 end-page: 546 article-title: An additive algorithm for solving linear programs with zero‐one variables publication-title: Oper. Res. – year: 2019 – volume: 11 year: 2021 article-title: Deep reinforcement learning in transportation research: a review publication-title: Transp. Res. Interdiscip. Perspect. – year: 2022 article-title: Learning to solve vehicle routing problems: a survey publication-title: arXiv preprint arXiv:220502453 – start-page: 1 year: 2021 end-page: 25 article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review publication-title: J. Intell. Manuf. – volume: 17 start-page: 1 issue: 1 year: 2020 end-page: 13 article-title: Solving a periodic capacitated vehicle routing problem using simulated annealing algorithm for a manufacturing company publication-title: Braz. J. Oper. Prod. Manag. – year: 2021 article-title: Schedulenet: learn to solve multi‐agent scheduling problems with reinforcement learning publication-title: arXiv preprint arXiv:210603051 – volume: 35 start-page: 3677 issue: 5 year: 2021 end-page: 3687 article-title: Combining reinforcement learning and constraint programming for combinatorial optimization publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 233 year: 2021 article-title: Deep reinforcement learning for transportation network combinatorial optimization: a survey publication-title: Knowl. Base Syst. – volume: 48 start-page: 170 year: 2018 end-page: 179 article-title: A survey of the advancing use and development of machine learning in smart manufacturing publication-title: J. Manuf. Syst. – volume: 57 start-page: 3290 issue: 10 year: 2019 end-page: 3310 article-title: Learning dispatching rules using random forest in flexible job shop scheduling problems publication-title: Int. J. Prod. Res. – start-page: 19 year: 2020 end-page: 24 – start-page: 2454 year: 2016 end-page: 2461 – volume: 34 start-page: 7472 year: 2021 end-page: 7483 – volume: 31 start-page: 1985 issue: 12 year: 2004 end-page: 2002 article-title: A simple and effective evolutionary algorithm for the vehicle routing problem publication-title: Comput. Oper. Res. – volume: 12 issue: 9 year: 2020 article-title: A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics publication-title: Sustainability – volume: 134 year: 2021 article-title: Reinforcement learning for combinatorial optimization: a survey publication-title: Comput. Oper. Res. – volume: 8 start-page: 229 issue: 3 year: 1992 end-page: 256 article-title: Simple statistical gradient‐following algorithms for connectionist reinforcement learning publication-title: Mach. Learn. – volume: 63 start-page: 208 year: 2016 end-page: 221 article-title: Champ: creating heuristics via many parameters for online bin packing publication-title: Expert Syst. Appl. – volume: 33 start-page: 6659 year: 2020 end-page: 6672 article-title: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2022 end-page: 12 article-title: Learning to solve multiple‐TSP with time window and rejections via deep reinforcement learning publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 60 start-page: 4316 issue: 13 year: 2022 end-page: 4341 article-title: Deep reinforcement learning in production systems: a systematic literature review publication-title: Int. J. Prod. Res. – volume: 32 start-page: 6281 year: 2019 end-page: 6292 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 257 issue: 4 year: 2021 end-page: 270 article-title: A review of reinforcement learning based intelligent optimization for manufacturing scheduling publication-title: Complex Syst. Model. Simulat. – volume: 298 start-page: 939 issue: 3 year: 2022 end-page: 952 article-title: Deep Q‐learning for same‐day delivery with vehicles and drones publication-title: Eur. J. Oper. Res. – volume: 3 start-page: 131 issue: 2 year: 2021 end-page: 146 article-title: Machine learning‐based scheduling: a bibliometric perspective publication-title: IET Collab. Intell. Manuf. – volume: 19 start-page: 618 issue: 4 year: 2007 end-page: 632 article-title: Variable neighborhood search for the pickup and delivery traveling salesman problem with LIFO loading publication-title: Inf. J. Comput. – volume: 277 start-page: 903 issue: 3 year: 2019 end-page: 917 article-title: Product packing and stacking under uncertainty: a robust approach publication-title: Eur. J. Oper. Res. – volume: 34 start-page: 5138 year: 2021 end-page: 5149 article-title: Matrix encoding networks for neural combinatorial optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 621 issue: 6 year: 1989 end-page: 636 article-title: The prize collecting traveling salesman problem publication-title: Networks – volume: 25 start-page: 651 issue: 4 year: 2021 end-page: 665 article-title: Surrogate‐assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 109 year: 2022 article-title: Learning variable ordering heuristics for solving constraint satisfaction problems publication-title: Eng. Appl. Artif. Intell. – volume: 53 start-page: 234 year: 2015 end-page: 249 article-title: An iterated local search heuristic for the split delivery vehicle routing problem publication-title: Comput. Oper. Res. – volume: 34 start-page: 5138 year: 2021 end-page: 5149 – volume: 290 start-page: 405 issue: 2 year: 2021 end-page: 421 article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon publication-title: Eur. J. Oper. Res. – start-page: 30 year: 1997 end-page: 38 – volume: 9 issue: 2 year: 2020 article-title: On modeling stochastic dynamic vehicle routing problems publication-title: EURO J. Transport. Logist. – volume: 302 start-page: 874 issue: 3 year: 2022 end-page: 891 article-title: An algorithm selection approach for the flexible job shop scheduling problem: choosing constraint programming solvers through machine learning publication-title: Eur. J. Oper. Res. – start-page: 4393 year: 2021 end-page: 4402 – start-page: 1301 year: 2021 end-page: 1316 – start-page: 1928 year: 2016 end-page: 1937 – volume: 60 start-page: 611 issue: 3 year: 2012 end-page: 624 article-title: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems publication-title: Oper. Res. – year: 2021 article-title: End‐to‐end constrained optimization learning: a survey publication-title: arXiv preprint arXiv:210316378 – volume: 34 year: 2021 article-title: A bi‐level framework for learning to solve combinatorial optimization on graphs publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 394 year: 2020 end-page: 402 article-title: Deep reinforcement learning approach to solve dynamic vehicle routing problem with stochastic customers publication-title: Proc. Int. Conf. Autom. Plan. Sched. – volume: 45 start-page: 448 issue: 8 year: 2019 end-page: 457 article-title: On online algorithms for bin, strip, and box packing, and their worst‐case and average‐case analysis publication-title: Program. Comput. Software – start-page: 1185 year: 2011 end-page: 1192 – volume: 48 start-page: 657 issue: 6 year: 1997 article-title: Meta‐heuristics theory and applications publication-title: J. Oper. Res. Soc. – volume: 33 start-page: 5057 issue: 9 year: 2021 end-page: 5069 article-title: Learning improvement heuristics for solving routing problems publication-title: IEEE Transact. Neural Networks Learn. Syst. – start-page: 457 year: 2003 end-page: 474 – start-page: 80 year: 2017 end-page: 89 – volume: 1 start-page: 419 issue: 4 year: 2018 end-page: 430 article-title: Machine learning for combinatorial optimization of brace placement of steel frames publication-title: Japan Architect. Rev. – start-page: 575 year: 2019 end-page: 589 – volume: 25 start-page: 207 issue: 2 year: 2017 end-page: 236 article-title: On learning and branching: a survey publication-title: Top – volume: 166 year: 2021 article-title: Machine learning and data mining in manufacturing publication-title: Expert Syst. Appl. – volume: 52 start-page: 11107 issue: 10 year: 2021 end-page: 11120 article-title: Reinforcement learning with multiple relational attention for solving vehicle routing problems publication-title: IEEE Trans. Cybern. – volume: 160 year: 2021 article-title: Recent dynamic vehicle routing problems: a survey publication-title: Comput. Ind. Eng. – volume: 168 year: 2022 article-title: On‐line three‐dimensional packing problems: a review of off‐line and on‐line solution approaches publication-title: Comput. Ind. Eng. – start-page: 1157 year: 2006 end-page: 1163 – year: 2021 – volume: 235 year: 2022 article-title: One model packs thousands of items with recurrent conditional query learning publication-title: Knowl. Base Syst. – volume: 104 start-page: 1889 issue: 5 year: 2019 end-page: 1902 article-title: A review of machine learning for the optimization of production processes publication-title: Int. J. Adv. Manuf. Technol. – volume: 39 start-page: 1 issue: 6 year: 2020 end-page: 15 article-title: Tap‐net: transport‐and‐pack using reinforcement learning publication-title: ACM Trans. Graph. – volume: 41 start-page: 6876 issue: 15 year: 2014 end-page: 6889 article-title: A unified hyper‐heuristic framework for solving bin packing problems publication-title: Expert Syst. Appl. – year: 2018 – year: 1994 – volume: 2021 start-page: 1 year: 2021 end-page: 15 article-title: A flexible reinforced bin packing framework with automatic slack selection publication-title: Math. Probl. Eng. – start-page: 1 year: 2021 end-page: 12 article-title: Learning to solve 3‐D bin packing problem via deep reinforcement learning and constraint programming publication-title: IEEE Trans. Cybern. – start-page: 465 year: 2020 end-page: 480 – year: 2016 article-title: Openai gym publication-title: arXiv preprint arXiv:160601540 – volume: 23 start-page: 11528 issue: 8 year: 2021 end-page: 11538 article-title: Deep reinforcement learning for the electric vehicle routing problem with time windows publication-title: IEEE Trans. Intell. Transport. Syst. – start-page: 1386 year: 2019 end-page: 1394 – volume: 34 start-page: 11096 year: 2021 end-page: 11107 – volume: 34 start-page: 307 issue: 3 year: 1987 end-page: 318 article-title: The orienteering problem publication-title: Nav. Res. Logist. – year: 2020 article-title: Rethinking attention with performers publication-title: arXiv preprint arXiv:200914794 – volume: 48 start-page: 801 issue: 5 year: 2000 end-page: 810 article-title: A lower bound for the split delivery vehicle routing problem publication-title: Oper. Res. – start-page: 1995 year: 2016 end-page: 2003 – start-page: 1 year: 2021 end-page: 14 article-title: Solving dynamic traveling salesman problems with deep reinforcement learning publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 113 start-page: 390 issue: 2 year: 1999 end-page: 434 article-title: Deterministic job‐shop scheduling: past, present and future publication-title: Eur. J. Oper. Res. – volume: 65 start-page: 1 issue: 1 year: 2022 end-page: 17 article-title: Learning practically feasible policies for online 3D bin packing publication-title: Sci. China Inf. Sci. – start-page: 1017 year: 1999 end-page: 1023 – volume: 107 start-page: 1112 year: 2022 end-page: 1119 article-title: Towards standardising reinforcement learning approaches for production scheduling problems publication-title: Procedia CIRP – year: 2021 article-title: A reinforcement learning environment for job‐shop scheduling publication-title: arXiv preprint arXiv:210403760 – start-page: 392 year: 2021 end-page: 409 – volume: 15 start-page: 4276 issue: 7 year: 2019 end-page: 4284 article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network publication-title: IEEE Trans. Ind. Inf. – start-page: 2511 year: 2021 end-page: 2522 – volume: 34 start-page: 23609 year: 2021 end-page: 23620 article-title: A hierarchical reinforcement learning based optimization framework for large‐scale dynamic pickup and delivery problems publication-title: Adv. Neural Inf. Process. Syst. – start-page: 190 year: 2022 end-page: 213 – year: 2018 article-title: Bert: pre‐training of deep bidirectional transformers for language understanding publication-title: arXiv preprint arXiv:181004805 – year: 2020 article-title: Learning TSP requires rethinking generalization publication-title: arXiv preprint arXiv:200607054 – volume: 257 start-page: 118 issue: 1 year: 2017 end-page: 132 article-title: The pickup and delivery traveling salesman problem with handling costs publication-title: Eur. J. Oper. Res. – volume: 52 start-page: 13572 issue: 12 year: 2021 end-page: 13585 article-title: Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing problem publication-title: IEEE Trans. Cybern. – start-page: 822 year: 2020 end-page: 828 – volume: 11 start-page: 219 issue: 3‐4 year: 2018 end-page: 354 article-title: An introduction to deep reinforcement learning publication-title: Found. Trends Mach. Learn. – year: 2022 article-title: A survey for solving mixed integer programming via machine learning publication-title: arXiv preprint arXiv:220302878 – year: 2018 article-title: Ranked reward: enabling self‐play reinforcement learning for combinatorial optimization publication-title: arXiv preprint arXiv:180701672 – year: 2022 article-title: Learning to generalize dispatching rules on the job shop scheduling publication-title: arXiv preprint arXiv:220604423 – start-page: 741 year: 2021 end-page: 749 – year: 2012 – start-page: 3441 year: 2021 end-page: 3451 – volume: 43 start-page: 1 issue: 3 year: 2021 end-page: 40 article-title: A machine learning‐based branch and price algorithm for a sampled vehicle routing problem publication-title: OR Spectr. – volume: 157 year: 2022 article-title: Dynamic stochastic electric vehicle routing with safe reinforcement learning publication-title: Transport. Res. E Logist. Transport. Rev. – volume: 33 start-page: 21188 year: 2020 end-page: 21198 – volume: 12 start-page: 97 issue: 1 year: 2021 end-page: 105 article-title: SOLO: search online, learn offline for combinatorial optimization problems publication-title: Proc. Int. Symp. Comb. Search – volume: 34 start-page: 6278 year: 2021 end-page: 6289 article-title: Learning large neighborhood search policy for integer programming publication-title: Adv. Neural Inf. Process. Syst. – volume: 175 start-page: 367 issue: 1 year: 2010 end-page: 407 article-title: Variable neighbourhood search: methods and applications publication-title: Ann. Oper. Res. – year: 2020 article-title: A generalized reinforcement learning algorithm for online 3D bin‐packing publication-title: arXiv preprint arXiv:200700463 – volume: 6 start-page: 80 issue: 1 year: 1959 end-page: 91 article-title: The truck dispatching problem publication-title: Manag. Sci. – volume: 11 start-page: 15 issue: 1 year: 1999 end-page: 34 article-title: Neural networks for combinatorial optimization: a review of more than a decade of research publication-title: Inf. J. Comput. – volume: 127 start-page: 317 issue: 2 year: 2000 end-page: 331 article-title: The disjunctive graph machine representation of the job shop scheduling problem publication-title: Eur. J. Oper. Res. – start-page: 1 year: 2019 end-page: 7 – volume: 33 start-page: 18087 year: 2020 end-page: 18097 article-title: Hybrid models for learning to branch publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 – year: 2022 article-title: A data‐driven column generation algorithm for bin packing problem in manufacturing industry publication-title: arXiv preprint arXiv:220212466 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II publication-title: IEEE Trans. Evol. Comput. – start-page: 2530 year: 2007 end-page: 2537 – volume: 20 start-page: 63 issue: 1 year: 2012 end-page: 89 article-title: Automating the packing heuristic design process with genetic programming publication-title: Evol. Comput. – volume: 43 start-page: 1500 issue: 9/10 year: 2014 end-page: 1511 article-title: A genetic programming hyper‐heuristic for the multidimensional knapsack problem publication-title: Kybernetes – volume: 30 start-page: 5998 year: 2017 end-page: 6008 – start-page: 941 year: 2019 end-page: 950 – volume: 518 start-page: 529 issue: 7540 year: 2015 end-page: 533 article-title: Human‐level control through deep reinforcement learning publication-title: Nature – year: 2021 article-title: Attend2pack: bin packing through deep reinforcement learning with attention publication-title: arXiv preprint arXiv:210704333 – year: 2017 – volume: 22 start-page: 7208 issue: 11 year: 2020 end-page: 7218 article-title: A hybrid of deep reinforcement learning and local search for the vehicle routing problems publication-title: IEEE Trans. Intell. Transport. Syst. – year: 2022 article-title: Neural combinatorial optimization: a new player in the field publication-title: arXiv preprint arXiv:220501356 – year: 2020 article-title: A survey on reinforcement learning for combinatorial optimization publication-title: arXiv preprint arXiv:200812248 – volume: 10 start-page: 29 issue: 2 year: 2018 end-page: 40 article-title: Fast truck‐packing of 3D boxes publication-title: Eng. Manag. Prod. Serv. – volume: 23 start-page: 551 issue: 3 year: 2016 end-page: 591 article-title: A research survey: review of flexible job shop scheduling techniques publication-title: Int. Trans. Oper. Res. – ident: e_1_2_11_129_1 doi: 10.1016/j.ejor.2016.07.009 – ident: e_1_2_11_5_1 – volume: 34 start-page: 10418 year: 2021 ident: e_1_2_11_13_1 article-title: Learning collaborative policies to solve NP‐hard routing problems publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_130_1 doi: 10.1016/s0305‐0548(03)00158‐8 – ident: e_1_2_11_154_1 doi: 10.1609/icaps.v30i1.6685 – ident: e_1_2_11_79_1 doi: 10.1038/sj.jors.2600781 – ident: e_1_2_11_169_1 doi: 10.1109/tits.2022.3207011 – ident: e_1_2_11_76_1 doi: 10.1016/j.ejtl.2020.100008 – ident: e_1_2_11_147_1 – ident: e_1_2_11_122_1 doi: 10.1609/aaai.v32i1.11798 – ident: e_1_2_11_132_1 doi: 10.1049/cim2.12015 – ident: e_1_2_11_86_1 doi: 10.1016/s0377‐2217(98)00113‐1 – year: 2017 ident: e_1_2_11_58_1 article-title: Proximal policy optimization algorithms publication-title: arXiv preprint arXiv:170706347 – year: 2022 ident: e_1_2_11_35_1 article-title: A survey for solving mixed integer programming via machine learning publication-title: arXiv preprint arXiv:220302878 – ident: e_1_2_11_182_1 doi: 10.1109/4235.996017 – ident: e_1_2_11_90_1 doi: 10.1111/itor.12199 – ident: e_1_2_11_42_1 doi: 10.1016/j.cor.2021.105400 – ident: e_1_2_11_26_1 doi: 10.1609/aaai.v36i9.21262 – ident: e_1_2_11_2_1 doi: 10.1016/j.ejor.2020.07.063 – ident: e_1_2_11_32_1 doi: 10.1016/j.engappai.2021.104603 – start-page: 5998 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_11_98_1 – ident: e_1_2_11_73_1 doi: 10.24963/ijcai.2022/662 – ident: e_1_2_11_160_1 doi: 10.1109/SMC52423.2021.9658956 – ident: e_1_2_11_82_1 doi: 10.1080/00207543.2011.611539 – volume: 32 start-page: 6281 year: 2019 ident: e_1_2_11_12_1 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: e_1_2_11_44_1 article-title: A survey on reinforcement learning for combinatorial optimization publication-title: arXiv preprint arXiv:200812248 – ident: e_1_2_11_31_1 doi: 10.1007/978-3-030-78230-6_25 – start-page: 5138 volume-title: Advances in Neural Information Processing Systems year: 2021 ident: e_1_2_11_96_1 – start-page: 1301 volume-title: Asian Conference on Machine Learning year: 2021 ident: e_1_2_11_164_1 – ident: e_1_2_11_108_1 doi: 10.1109/IROS51168.2021.9635914 – ident: e_1_2_11_23_1 – ident: e_1_2_11_59_1 doi: 10.1038/nature14236 – year: 2020 ident: e_1_2_11_66_1 article-title: A generalized reinforcement learning algorithm for online 3D bin‐packing publication-title: arXiv preprint arXiv:200700463 – ident: e_1_2_11_29_1 – ident: e_1_2_11_18_1 doi: 10.1080/00207543.2021.1943037 – ident: e_1_2_11_158_1 doi: 10.1109/tnnls.2021.3105905 – ident: e_1_2_11_16_1 doi: 10.1145/3447548.3467135 – ident: e_1_2_11_97_1 doi: 10.1109/tetci.2021.3098354 – ident: e_1_2_11_7_1 – ident: e_1_2_11_178_1 doi: 10.1002/1520‐6750(198706)34:3<307::aid‐nav3220340302>3.0.co;2‐d – ident: e_1_2_11_193_1 – year: 2022 ident: e_1_2_11_95_1 article-title: Hybrid intelligence for dynamic job‐shop scheduling with deep reinforcement learning and attention mechanism publication-title: arXiv preprint arXiv:220100548 – ident: e_1_2_11_123_1 – ident: e_1_2_11_162_1 doi: 10.1109/ICDE51399.2021.00283 – year: 2017 ident: e_1_2_11_20_1 article-title: Solving a new 3D bin packing problem with deep reinforcement learning method publication-title: arXiv preprint arXiv:170805930 – ident: e_1_2_11_104_1 – ident: e_1_2_11_100_1 doi: 10.2478/emj‐2018‐0009 – ident: e_1_2_11_133_1 doi: 10.3390/su12093760 – ident: e_1_2_11_92_1 doi: 10.1109/tii.2022.3189725 – ident: e_1_2_11_149_1 doi: 10.1609/aaai.v35i13.17430 – ident: e_1_2_11_152_1 doi: 10.1109/ICMLA51294.2020.00013 – ident: e_1_2_11_142_1 – ident: e_1_2_11_46_1 doi: 10.23919/csms.2021.0027 – volume: 34 start-page: 23609 year: 2021 ident: e_1_2_11_163_1 article-title: A hierarchical reinforcement learning based optimization framework for large‐scale dynamic pickup and delivery problems publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_185_1 doi: 10.1007/978-0-387-77778-8_10 – ident: e_1_2_11_88_1 doi: 10.1109/tevc.2021.3065707 – ident: e_1_2_11_161_1 doi: 10.1609/socs.v12i1.18556 – ident: e_1_2_11_60_1 doi: 10.1609/aaai.v30i1.10295 – volume: 33 start-page: 6659 year: 2020 ident: e_1_2_11_141_1 article-title: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_9_1 – year: 2021 ident: e_1_2_11_37_1 article-title: End‐to‐end constrained optimization learning: a survey publication-title: arXiv preprint arXiv:210316378 – ident: e_1_2_11_140_1 – ident: e_1_2_11_180_1 doi: 10.1016/j.cor.2014.08.005 – start-page: 21188 volume-title: Advances in Neural Information Processing Systems year: 2020 ident: e_1_2_11_11_1 – ident: e_1_2_11_115_1 doi: 10.1109/SSCI47803.2020.9308538 – ident: e_1_2_11_78_1 doi: 10.1287/opre.13.4.517 – ident: e_1_2_11_14_1 – start-page: 11096 volume-title: Advances in Neural Information Processing Systems year: 2021 ident: e_1_2_11_71_1 – ident: e_1_2_11_51_1 doi: 10.1016/j.jmsy.2018.02.004 – ident: e_1_2_11_68_1 doi: 10.1145/3414685.3417796 – ident: e_1_2_11_75_1 doi: 10.1109/tcyb.2021.3111082 – ident: e_1_2_11_167_1 doi: 10.1109/CEC.2006.1688440 – year: 2018 ident: e_1_2_11_189_1 article-title: Bert: pre‐training of deep bidirectional transformers for language understanding publication-title: arXiv preprint arXiv:181004805 – ident: e_1_2_11_137_1 – year: 2021 ident: e_1_2_11_40_1 article-title: Combinatorial optimization and reasoning with graph neural networks publication-title: arXiv preprint arXiv:210209544 – ident: e_1_2_11_183_1 doi: 10.1109/tevc.2007.892759 – ident: e_1_2_11_89_1 doi: 10.1109/tii.2019.2908210 – ident: e_1_2_11_48_1 doi: 10.1016/j.trip.2021.100425 – ident: e_1_2_11_128_1 doi: 10.1016/j.ejor.2007.08.048 – volume: 34 start-page: 26198 year: 2021 ident: e_1_2_11_136_1 article-title: Learning to delegate for large‐scale vehicle routing publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_120_1 doi: 10.1109/CEC.2007.4424789 – ident: e_1_2_11_175_1 – ident: e_1_2_11_8_1 – ident: e_1_2_11_195_1 doi: 10.1609/aaai.v36i8.20899 – start-page: 575 volume-title: International Symposium on Intelligence Computation and Applications year: 2019 ident: e_1_2_11_144_1 – ident: e_1_2_11_166_1 – year: 2015 ident: e_1_2_11_121_1 article-title: Deep reinforcement learning in large discrete action spaces publication-title: arXiv preprint arXiv:151207679 – ident: e_1_2_11_22_1 doi: 10.1609/aaai.v35i1.16155 – ident: e_1_2_11_101_1 doi: 10.1016/j.ejor.2019.03.040 – ident: e_1_2_11_33_1 doi: 10.1049/cim2.12004 – ident: e_1_2_11_188_1 doi: 10.1016/j.tre.2021.102496 – ident: e_1_2_11_45_1 doi: 10.1080/00207543.2021.1973138 – ident: e_1_2_11_194_1 doi: 10.1609/aaai.v36i9.21214 – year: 2022 ident: e_1_2_11_94_1 article-title: Learning to generalize dispatching rules on the job shop scheduling publication-title: arXiv preprint arXiv:220604423 – ident: e_1_2_11_134_1 doi: 10.1007/978-3-031-08011-1_14 – ident: e_1_2_11_64_1 doi: 10.1016/s0377‐2217(99)00486‐5 – ident: e_1_2_11_72_1 – ident: e_1_2_11_148_1 doi: 10.1109/tii.2020.3031409 – ident: e_1_2_11_36_1 doi: 10.1016/j.cie.2022.108122 – ident: e_1_2_11_62_1 doi: 10.1561/2200000071 – ident: e_1_2_11_173_1 doi: 10.1007/s00291‐020‐00615‐8 – ident: e_1_2_11_3_1 doi: 10.1109/tnnls.2021.3068828 – ident: e_1_2_11_116_1 doi: 10.1162/evco_a_00044 – ident: e_1_2_11_67_1 doi: 10.1016/j.knosys.2021.107683 – ident: e_1_2_11_87_1 doi: 10.1109/CEC.2016.7744244 – ident: e_1_2_11_146_1 doi: 10.1287/opre.48.5.801.12407 – ident: e_1_2_11_10_1 – ident: e_1_2_11_47_1 doi: 10.1007/s10845‐021‐01847‐3 – ident: e_1_2_11_111_1 doi: 10.1007/0-306-48056-5_16 – volume: 33 start-page: 18087 year: 2020 ident: e_1_2_11_25_1 article-title: Hybrid models for learning to branch publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: e_1_2_11_85_1 article-title: Openai gym publication-title: arXiv preprint arXiv:160601540 – ident: e_1_2_11_93_1 doi: 10.1080/00207543.2019.1581954 – year: 2021 ident: e_1_2_11_84_1 article-title: A reinforcement learning environment for job‐shop scheduling publication-title: arXiv preprint arXiv:210403760 – ident: e_1_2_11_179_1 doi: 10.1002/net.3230190602 – ident: e_1_2_11_126_1 doi: 10.1002/net.3230110211 – ident: e_1_2_11_155_1 doi: 10.1109/tcyb.2021.3089179 – ident: e_1_2_11_157_1 doi: 10.1109/tits.2021.3105232 – ident: e_1_2_11_6_1 – volume: 30 start-page: 6000 year: 2017 ident: e_1_2_11_99_1 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_109_1 doi: 10.1145/3459637.3481933 – ident: e_1_2_11_151_1 doi: 10.1016/j.trc.2020.102861 – volume-title: Neural Networks: A Comprehensive Foundation year: 1994 ident: e_1_2_11_187_1 – ident: e_1_2_11_112_1 doi: 10.1109/BigDataService.2017.18 – ident: e_1_2_11_113_1 doi: 10.1016/j.eswa.2014.04.043 – volume: 34 year: 2021 ident: e_1_2_11_17_1 article-title: A bi‐level framework for learning to solve combinatorial optimization on graphs publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_70_1 doi: 10.1007/s10479‐009‐0657‐6 – year: 2021 ident: e_1_2_11_105_1 article-title: Attend2pack: bin packing through deep reinforcement learning with attention publication-title: arXiv preprint arXiv:210704333 – ident: e_1_2_11_127_1 doi: 10.1016/j.ejor.2017.08.035 – ident: e_1_2_11_19_1 – volume-title: An Extension of the Lin‐Kernighan‐Helsgaun TSP Solver for Constrained Traveling Salesman and Vehicle Routing Problems year: 2017 ident: e_1_2_11_177_1 – ident: e_1_2_11_131_1 doi: 10.1287/opre.1120.1048 – ident: e_1_2_11_55_1 doi: 10.1038/nature14539 – ident: e_1_2_11_118_1 doi: 10.1007/978-3-642-01799-5_6 – ident: e_1_2_11_170_1 doi: 10.1609/aaai.v36i9.21236 – ident: e_1_2_11_74_1 – ident: e_1_2_11_165_1 doi: 10.1016/j.ejor.2021.06.021 – start-page: 1928 volume-title: International Conference on Machine Learning year: 2016 ident: e_1_2_11_57_1 – ident: e_1_2_11_81_1 doi: 10.1016/j.procir.2022.05.117 – ident: e_1_2_11_4_1 doi: 10.1287/ijoc.11.1.15 – start-page: 1621 volume-title: Advances in Neural Information Processing Systems year: 2020 ident: e_1_2_11_15_1 – ident: e_1_2_11_159_1 doi: 10.1109/IJCNN52387.2021.9534083 – year: 2020 ident: e_1_2_11_191_1 article-title: Rethinking attention with performers publication-title: arXiv preprint arXiv:200914794 – ident: e_1_2_11_77_1 doi: 10.1287/opre.8.2.219 – ident: e_1_2_11_190_1 – ident: e_1_2_11_30_1 doi: 10.1609/aaai.v35i5.16484 – year: 2020 ident: e_1_2_11_192_1 article-title: Learning TSP requires rethinking generalization publication-title: arXiv preprint arXiv:200607054 – ident: e_1_2_11_196_1 – ident: e_1_2_11_153_1 doi: 10.1109/tcyb.2020.2977661 – ident: e_1_2_11_43_1 doi: 10.1016/j.knosys.2021.107526 – ident: e_1_2_11_145_1 doi: 10.1109/tits.2019.2909109 – ident: e_1_2_11_102_1 doi: 10.1134/s0361768819080036 – ident: e_1_2_11_139_1 doi: 10.1609/aaai.v35i8.16916 – ident: e_1_2_11_21_1 doi: 10.1109/tcyb.2021.3121542 – ident: e_1_2_11_39_1 doi: 10.1109/access.2020.3004964 – ident: e_1_2_11_69_1 doi: 10.1155/2021/6653586 – ident: e_1_2_11_138_1 doi: 10.1609/aaai.v33i01.33014731 – year: 2022 ident: e_1_2_11_50_1 article-title: A data‐driven column generation algorithm for bin packing problem in manufacturing industry publication-title: arXiv preprint arXiv:220212466 – ident: e_1_2_11_53_1 doi: 10.1016/j.eswa.2020.114060 – ident: e_1_2_11_176_1 doi: 10.1287/mnsc.6.1.80 – ident: e_1_2_11_143_1 – ident: e_1_2_11_124_1 – year: 2022 ident: e_1_2_11_34_1 article-title: Learning to solve vehicle routing problems: a survey publication-title: arXiv preprint arXiv:220502453 – ident: e_1_2_11_28_1 – ident: e_1_2_11_119_1 doi: 10.1016/j.eswa.2016.07.005 – ident: e_1_2_11_110_1 doi: 10.1007/s11432‐021‐3348‐6 – ident: e_1_2_11_150_1 doi: 10.1109/tits.2020.3003163 – start-page: 7472 volume-title: Advances in Neural Information Processing Systems year: 2021 ident: e_1_2_11_135_1 – year: 2018 ident: e_1_2_11_103_1 article-title: Ranked reward: enabling self‐play reinforcement learning for combinatorial optimization publication-title: arXiv preprint arXiv:180701672 – ident: e_1_2_11_172_1 doi: 10.1016/s0305‐0548(00)00109‐x – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: e_1_2_11_54_1 – ident: e_1_2_11_56_1 doi: 10.1007/bf00992696 – ident: e_1_2_11_156_1 doi: 10.1109/tits.2021.3056120 – ident: e_1_2_11_117_1 doi: 10.1108/k‐09‐2013‐0201 – year: 2021 ident: e_1_2_11_65_1 article-title: Schedulenet: learn to solve multi‐agent scheduling problems with reinforcement learning publication-title: arXiv preprint arXiv:210603051 – ident: e_1_2_11_107_1 doi: 10.1109/RO-MAN46459.2019.8956393 – ident: e_1_2_11_171_1 doi: 10.1287/ijoc.1060.0202 – ident: e_1_2_11_106_1 – ident: e_1_2_11_27_1 – ident: e_1_2_11_80_1 doi: 10.1002/2475‐8876.12059 – start-page: 1995 volume-title: International Conference on Machine Learning year: 2016 ident: e_1_2_11_61_1 – volume: 34 start-page: 6278 year: 2021 ident: e_1_2_11_24_1 article-title: Learning large neighborhood search policy for integer programming publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 5138 year: 2021 ident: e_1_2_11_181_1 article-title: Matrix encoding networks for neural combinatorial optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_83_1 doi: 10.1080/00207543.2020.1870013 – ident: e_1_2_11_174_1 doi: 10.1007/s11750‐017‐0451‐6 – ident: e_1_2_11_168_1 doi: 10.1109/tnnls.2022.3148435 – volume-title: Machine Scheduling Problems: Classification, Complexity and Computations year: 2012 ident: e_1_2_11_63_1 – ident: e_1_2_11_125_1 doi: 10.1007/s13676‐014‐0074‐0 – ident: e_1_2_11_52_1 doi: 10.1007/s00170‐019‐03988‐5 – ident: e_1_2_11_91_1 doi: 10.1016/j.ejor.2022.01.034 – ident: e_1_2_11_184_1 doi: 10.1109/CEC.2016.7744093 – ident: e_1_2_11_49_1 doi: 10.14488/bjopm.2020.011 – ident: e_1_2_11_41_1 doi: 10.1007/s41019‐021‐00155‐3 – year: 2022 ident: e_1_2_11_38_1 article-title: Neural combinatorial optimization: a new player in the field publication-title: arXiv preprint arXiv:220501356 – ident: e_1_2_11_186_1 doi: 10.1016/j.cie.2021.107604 – ident: e_1_2_11_114_1 doi: 10.1007/978-3-319-92198-3_7 |
| SSID | ssj0002513287 |
| Score | 2.458917 |
| SecondaryResourceType | review_article |
| Snippet | An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human... Abstract An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial intelligence bin packing Combinatorial analysis combinatorial optimisation Deep learning deep reinforcement learning Economic development Graph representations Heuristic Industrial development Integer programming job shop scheduling Job shops Machine learning Manufacturing manufacturing systems Neural networks Production scheduling Scheduling vehicle routing |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxGA1SPOhBXLFaJaAXhbGTZZYca7HowSKi0FvIVinYGen2-_2SmZYWRC_eZoYcwre-j0neQ-g6t8JC51HgASUiTomNBOdZZHOuYia4zbUKYhNZv58PBuJlTerLnwmr6IErw7UBjhCSplRpOuSWpyrmMM0RZtJE2YxrX30B9awNU74GQ9dmMAss-Ui5aJvRmN4RGmd0owMFov4NdLmOUUOT6e2jvRod4k61qwO05YpDtLvGGXiEXju4um6CywLXmg8feFZiCKKFwxBAMOv6SRoCC5dQEMb1gR1ca8dM8ajAY1XM_Z2GcEnxGL33Ht66j1EtjBAZHjNAxNoJlSmX6RjQgHNJYq1NjUu9EJXjTA1jBYMKgWy0scpSDVmnuba5_w0nzJCdoEZRFu4UYUjfxDgxZADjAEsZ4dKEaSjg8JbkRDXRzdJY0tSs4V684lOGv9dcSG9YGQzbRFertV8VV8aPq-69zVcrPL91-ABel7XX5V9eb6LW0mOyTrqpZLGgFOAPIU10G7z4yzZk9-mZhqez_9jQOdrxQvTV6bQWaswmc3eBts1iNppOLkNwfgNC8uXJ priority: 102 providerName: Directory of Open Access Journals – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC6i8WAOGo3ixgcNeklgdPox09MnUVESgiKSgLemXysL7ozZXf39qe7tXRWCF28zQzHTTL2-6kd9AAeNVx4zj0ENGFUIRn2hhJCFb4QpuRK-sSaRTcirq-b2Vl3nCbdx3lY5i4kpUPvOxTnyI14qxjC3UXr88LeIrFFxdTVTaCzAR8oYjXb-SxbzORbM3RwrgllXUqGO3GDIDikrJXuVh1K7_lcY8yVSTanmYvW9g_wMKxlkkpOpVazBh9Cuw6cXrQe_wM0JmZ5aIV1LMnXEHZl0BG3xKRD8HJbMsSBH-yQdxpVh3vdDMgXNmAxaMjTtYzwakc46bsCfi_PfZz-KzK9QOFFyBNY2KCNNkLZEUBFCVXnvaxfqyGcVBDf90mC9Q9GpfWlkbdF5rbC-iat5yvX5Jiy2XRu2gGAUqFxQfY5oECGZU6GuuMU8gHdVQ00Pvs3-tna5-XjkwLjXaRFcKB01o5NmerA_l32Yttz4r9RpVNpcIrbJTg-60Z3OXqcRy1Ja18xY1hde1KYUEu2Ru7oyXgrbg52ZHnX23bF-VmIPviczeGMY-uznJUtXX99-1zYsR6b66fa1HVicjB7DLiy5p8lgPNpLdvsPl8H0mw priority: 102 providerName: ProQuest |
| Title | A review on learning to solve combinatorial optimisation problems in manufacturing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcim2.12072 https://www.proquest.com/docview/3092291011 https://doaj.org/article/53311662ab2f4d46a0474213c65ad74b |
| Volume | 5 |
| WOSCitedRecordID | wos000943186000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2516-8398 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: P5Z dateStart: 20210301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: K7- dateStart: 20210301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: M7S dateStart: 20210301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: BENPR dateStart: 20210301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: PIMPY dateStart: 20210301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: WIN dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2516-8398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513287 issn: 2516-8398 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6U1gd98C6u1iWgLwqjk8skE_ClLS0u0mWoitWXkNuWBXdGdrf9_Z5kZtcWRBBfQjKTYULOOTlfbucDeFUHHdDzWJSA1YVgNBRaCFWEWtiSaxFqZzPZhJpO6_Nz3ezA-81dmD4-xHbBLVlGHq-TgVvXs5AgqEUh-vmCvaWsVDgA71HK60TcwESzXWFBz81ZZsjDnCwQCdSb-KRCv_v9-Q2PlAP330Cb1zFrdjon9_6vuffh7gA2yUGvHQ9gJ7YP4c61EISP4OyA9LdXSNeSgULigqw7gjp5FQn-BafOaWKOeko6HF8Ww_kfMlDRrMi8JQvbXqYrEvnO42P4cnL8-ehDMfAsFF6UHAG2i9oqG5UrEVzEWFUhBOmjTLxWUXA7Ky3Oeygadyitkg6N2AkX6rSrp_2MP4HdtmvjUyA4GlQ-6hlHVIjQzOsoK-7QH2CpqqkdwetNXxs_BCFPXBg_TN4MF9qkfjK5n0bwclv3Zx9644-1DpPItjVSuOz8oFtemMH6DGJaSqVk1rGZCELaUijUS-5lZYMSbgT7G4GbwYZXhpeaMURTlI7gTRbtX5phjianLOee_Uvl53A78df3h9r2YXe9vIwv4Ja_Ws9Xy3HW5zHsHR5Pm7NxXi7A9KMqxumI6idMm-o7vm8mp803LH2dTH8BIcb87w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgk4QHmJhUItUQ5FCk1sJ44PCJVC1dW2q6oqUm_Gr61WYpOyuy3iT_EbGTvJtpVQbz1wSyLLSuJvZj4_Zj6AjdJJh5FH4whomXCauURyLhJXcp0yyV1pdBSbEMNheXIiD5fgT5cLE45Vdj4xOmpX27BGvsVSSSnGtiz7dPYzCapRYXe1k9BoYDHwv3_hlG32sf8Fx_cdpbtfj3f2klZVILE8ZUgnjZdaaC9MiqHU-zx3zhXWF0HFyXOmR6lGlp8hlF2qRWEQsoYbV4Y9LGlHDPu9A3c5K0Wo1T8QyWJNB7kCwxlIVwWVyy07ntAPGU0FvRb3ojzANU57lRnH0Lb76H_7KavwsCXRZLtB_WNY8tUTeHCltOJTONomTVYOqSvSSmOcknlN0NYuPMHPM-MqLDig_ZEa_eakPddEWomdGRlXZKKr85D6EXM5n8G3W_mo57Bc1ZV_AQS9XG69HDFku0g5rfRFzgzGObzLy0z3YLMbXWXb4upB4-OHipv8XKqABBWR0IO3i7ZnTUmRf7b6HECyaBHKgMcH9fRUtV5FIVfPsqKg2tARd7zQKRdob8wWuXaCmx6sdbhRrW-aqUvQ9OB9hN0Nr6F2-gc0Xr28ua91uLd3fLCv9vvDwSu4T5ELNkf11mB5Pj33r2HFXszHs-mbaDMEvt82Hv8CxK9RPA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9SRfTBb_G0akBfFNZuktlk81irh0U9DlHoW8jXlgNvt9xd-_c7yebOFkQQ37LLLBsyX79JMjOEvG6DDuh5LHLA6go4C5UGUFVowdZCQ2idzc0m1GzWnpzoebmbk3JhxvoQuw23pBnZXicFj2ehGwNOSEUy_WLJ3zFeK7TA16FRLAk1h_luiwVdt-C5RR6OZIVQoN0WKAV98PvzKy4pV-6_Ajcvg9bsdaZ3_3O-98idAjfp4Sgf98m12D8gty8VIXxIvh3SMX-FDj0tTSRO6WagKJUXkeJvMHhOoTlKKh3QwizLDSBamtGs6aKnS9ufpySJnPX4iPyYfvx-9KkqnRYqD7VAiO2itspG5WqEFzE2TQhB-ihTZ6sIwna1xciHoXqH2irpUI0duNCmcz3tO_GY7PVDH58Qivag8VF3AnEhgjOvo2yEQ4-AT03L7IS82S628aUMeeqG8dPk43DQJq2Tyes0Ia92tGdj8Y0_Ur1PPNtRpILZ-cWwOjVF_wyiWsak5NbxDgJIW4NCyRReNjYocBOyv-W4KVq8NqLWnCOeYmxC3mbe_mUa5uj4K8-jp_9C_JLcnH-Ymi_Hs8_PyK3UzH684bZP9jar8_ic3PAXm8V69SLL9i_Ba_hG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+learning+to+solve+combinatorial+optimisation+problems+in+manufacturing&rft.jtitle=IET+collaborative+intelligent+manufacturing&rft.au=Zhang%2C+Cong&rft.au=Wu%2C+Yaoxin&rft.au=Ma%2C+Yining&rft.au=Song%2C+Wen&rft.date=2023-03-01&rft.issn=2516-8398&rft.eissn=2516-8398&rft.volume=5&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fcim2.12072&rft.externalDBID=10.1049%252Fcim2.12072&rft.externalDocID=CIM212072 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-8398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-8398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-8398&client=summon |