A review on learning to solve combinatorial optimisation problems in manufacturing

An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET collaborative intelligent manufacturing Jg. 5; H. 1
Hauptverfasser: Zhang, Cong, Wu, Yaoxin, Ma, Yining, Song, Wen, Le, Zhang, Cao, Zhiguang, Zhang, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wuhan John Wiley & Sons, Inc 01.03.2023
Wiley
Schlagworte:
ISSN:2516-8398, 2516-8398
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state‐of‐the‐art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges.
AbstractList Abstract An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state‐of‐the‐art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges.
An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human society, the modern manufacturing system is becoming increasingly complex, posing new challenges to both academia and industry. Ever since the beginning of industrialisation, leaps in manufacturing technology have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, and computational science. Recently, machine learning (ML) technology, one of the crucial subjects of artificial intelligence, has made remarkable progress in many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates new ideas for addressing challenging problems in manufacturing systems. We collect the literature targeting three aspects: scheduling, packing, and routing, which correspond to three pivotal cooperative production links of today's manufacturing system, that is, production, packing, and logistics respectively. For each aspect, we first present and discuss the state‐of‐the‐art research. Then we summarise and analyse the development trends and point out future research opportunities and challenges.
Author Zhang, Cong
Cao, Zhiguang
Ma, Yining
Le, Zhang
Wu, Yaoxin
Song, Wen
Zhang, Jie
Author_xml – sequence: 1
  givenname: Cong
  orcidid: 0000-0002-8434-1181
  surname: Zhang
  fullname: Zhang, Cong
  organization: Nanyang Technological University
– sequence: 2
  givenname: Yaoxin
  surname: Wu
  fullname: Wu, Yaoxin
  organization: Nanyang Technological University
– sequence: 3
  givenname: Yining
  orcidid: 0000-0002-6639-8547
  surname: Ma
  fullname: Ma, Yining
  organization: National University of Singapore
– sequence: 4
  givenname: Wen
  surname: Song
  fullname: Song, Wen
  email: wensong@email.sdu.edu.cn
  organization: Shandong University
– sequence: 5
  givenname: Zhang
  surname: Le
  fullname: Le, Zhang
  organization: University of Electronic Science and Technology of China (UESTC)
– sequence: 6
  givenname: Zhiguang
  surname: Cao
  fullname: Cao, Zhiguang
  organization: Singapore Institute of Manufacturing Technology (SIMTech), ASTAR
– sequence: 7
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Nanyang Technological University
BookMark eNp9kV9LHDEUxUOxULW-9BME-ias3vyZZOZRFrULSqG0z-Emk5EsM8k2ySp-e8edUopInxIOv3Nyb84JOYopekK-MLhgILtLFyZ-wTho_oEc84apVSu69uif-ydyVsoWAGZF8FYfkx9XNPvH4J9oinT0mGOID7QmWtL46KlLkw0Ra8oBR5p2NUyhYA0zvMvJjn4qNEQ6YdwP6Oo-z-7P5OOAY_Fnf85T8uvm-uf62-ru--1mfXW3chIEX2nrO9TotYWmkd43Td_3ynnFOy28FDgAKq5Yo9seUCvLdGel7VvQCjo3iFOyWXL7hFuzy2HC_GwSBnMQUn4wmGtwozeNEIwpxdHyQfZSIUgtORNONdhraeesr0vWvNXvvS_VbNM-x3l8I6DjvGPA2EydL5TLqZTsh7-vMjCvFZjXCsyhghmGN7AL9fB1NWMY37ewxfIURv_8n3Cz3tzzxfMC0XSZkw
CitedBy_id crossref_primary_10_3390_biomimetics8060478
crossref_primary_10_37251_ijome_v3i1_1616
crossref_primary_10_1049_cim2_12121
crossref_primary_10_1109_TITS_2023_3334976
crossref_primary_10_1007_s10462_024_11059_9
crossref_primary_10_3390_app132011516
crossref_primary_10_1109_ACCESS_2024_3357969
crossref_primary_10_3390_logistics9010013
crossref_primary_10_1016_j_ejor_2025_08_029
crossref_primary_10_1016_j_swevo_2024_101605
crossref_primary_10_1049_cim2_12105
crossref_primary_10_3390_app13137439
crossref_primary_10_1016_j_cie_2025_110856
crossref_primary_10_1016_j_neunet_2025_107446
crossref_primary_10_1109_ACCESS_2024_3522020
Cites_doi 10.1016/j.ejor.2016.07.009
10.1016/s0305‐0548(03)00158‐8
10.1609/icaps.v30i1.6685
10.1038/sj.jors.2600781
10.1109/tits.2022.3207011
10.1016/j.ejtl.2020.100008
10.1609/aaai.v32i1.11798
10.1049/cim2.12015
10.1016/s0377‐2217(98)00113‐1
10.1109/4235.996017
10.1111/itor.12199
10.1016/j.cor.2021.105400
10.1609/aaai.v36i9.21262
10.1016/j.ejor.2020.07.063
10.1016/j.engappai.2021.104603
10.24963/ijcai.2022/662
10.1109/SMC52423.2021.9658956
10.1080/00207543.2011.611539
10.1007/978-3-030-78230-6_25
10.1109/IROS51168.2021.9635914
10.1038/nature14236
10.1080/00207543.2021.1943037
10.1109/tnnls.2021.3105905
10.1145/3447548.3467135
10.1109/tetci.2021.3098354
10.1002/1520‐6750(198706)34:3<307::aid‐nav3220340302>3.0.co;2‐d
10.1109/ICDE51399.2021.00283
10.2478/emj‐2018‐0009
10.3390/su12093760
10.1109/tii.2022.3189725
10.1609/aaai.v35i13.17430
10.1109/ICMLA51294.2020.00013
10.23919/csms.2021.0027
10.1007/978-0-387-77778-8_10
10.1109/tevc.2021.3065707
10.1609/socs.v12i1.18556
10.1609/aaai.v30i1.10295
10.1016/j.cor.2014.08.005
10.1109/SSCI47803.2020.9308538
10.1287/opre.13.4.517
10.1016/j.jmsy.2018.02.004
10.1145/3414685.3417796
10.1109/tcyb.2021.3111082
10.1109/CEC.2006.1688440
10.1109/tevc.2007.892759
10.1109/tii.2019.2908210
10.1016/j.trip.2021.100425
10.1016/j.ejor.2007.08.048
10.1109/CEC.2007.4424789
10.1609/aaai.v36i8.20899
10.1609/aaai.v35i1.16155
10.1016/j.ejor.2019.03.040
10.1049/cim2.12004
10.1016/j.tre.2021.102496
10.1080/00207543.2021.1973138
10.1609/aaai.v36i9.21214
10.1007/978-3-031-08011-1_14
10.1016/s0377‐2217(99)00486‐5
10.1109/tii.2020.3031409
10.1016/j.cie.2022.108122
10.1561/2200000071
10.1007/s00291‐020‐00615‐8
10.1109/tnnls.2021.3068828
10.1162/evco_a_00044
10.1016/j.knosys.2021.107683
10.1109/CEC.2016.7744244
10.1287/opre.48.5.801.12407
10.1007/s10845‐021‐01847‐3
10.1007/0-306-48056-5_16
10.1080/00207543.2019.1581954
10.1002/net.3230190602
10.1002/net.3230110211
10.1109/tcyb.2021.3089179
10.1109/tits.2021.3105232
10.1145/3459637.3481933
10.1016/j.trc.2020.102861
10.1109/BigDataService.2017.18
10.1016/j.eswa.2014.04.043
10.1007/s10479‐009‐0657‐6
10.1016/j.ejor.2017.08.035
10.1287/opre.1120.1048
10.1038/nature14539
10.1007/978-3-642-01799-5_6
10.1609/aaai.v36i9.21236
10.1016/j.ejor.2021.06.021
10.1016/j.procir.2022.05.117
10.1287/ijoc.11.1.15
10.1109/IJCNN52387.2021.9534083
10.1287/opre.8.2.219
10.1609/aaai.v35i5.16484
10.1109/tcyb.2020.2977661
10.1016/j.knosys.2021.107526
10.1109/tits.2019.2909109
10.1134/s0361768819080036
10.1609/aaai.v35i8.16916
10.1109/tcyb.2021.3121542
10.1109/access.2020.3004964
10.1155/2021/6653586
10.1609/aaai.v33i01.33014731
10.1016/j.eswa.2020.114060
10.1287/mnsc.6.1.80
10.1016/j.eswa.2016.07.005
10.1007/s11432‐021‐3348‐6
10.1109/tits.2020.3003163
10.1016/s0305‐0548(00)00109‐x
10.1007/bf00992696
10.1109/tits.2021.3056120
10.1108/k‐09‐2013‐0201
10.1109/RO-MAN46459.2019.8956393
10.1287/ijoc.1060.0202
10.1002/2475‐8876.12059
10.1080/00207543.2020.1870013
10.1007/s11750‐017‐0451‐6
10.1109/tnnls.2022.3148435
10.1007/s13676‐014‐0074‐0
10.1007/s00170‐019‐03988‐5
10.1016/j.ejor.2022.01.034
10.1109/CEC.2016.7744093
10.14488/bjopm.2020.011
10.1007/s41019‐021‐00155‐3
10.1016/j.cie.2021.107604
10.1007/978-3-319-92198-3_7
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/cim2.12072
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2516-8398
EndPage n/a
ExternalDocumentID oai_doaj_org_article_53311662ab2f4d46a0474213c65ad74b
10_1049_cim2_12072
CIM212072
Genre reviewArticle
GrantInformation_xml – fundername: A*STAR Cyber‐Physical Production System, CPPS – Towards Contextual and Intelligent Response Research Program
  funderid: A19C1a0018
– fundername: Model Factory@SIMTech
– fundername: National Natural Science Foundation of China
  funderid: 62102228
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021QF063
– fundername: A*Star Career Development Fund
  funderid: C222812027
GroupedDBID 0R~
1OC
24P
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADBBV
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M43
M7S
M~E
OCL
OK1
PIMPY
PTHSS
RIE
ROL
RUI
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4032-7be9a7ae7b0554ee55ddd6ce62973e43af0a6261578d0a76b179b4bd807609cf3
IEDL.DBID 24P
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943186000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2516-8398
IngestDate Fri Oct 03 12:34:09 EDT 2025
Wed Aug 13 04:21:38 EDT 2025
Wed Oct 29 21:25:50 EDT 2025
Tue Nov 18 22:41:39 EST 2025
Wed Jan 22 16:23:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4032-7be9a7ae7b0554ee55ddd6ce62973e43af0a6261578d0a76b179b4bd807609cf3
Notes Cong Zhang, Yaoxin Wu, and Yining Ma are equal contribution.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6639-8547
0000-0002-8434-1181
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcim2.12072
PQID 3092291011
PQPubID 6853488
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_53311662ab2f4d46a0474213c65ad74b
proquest_journals_3092291011
crossref_primary_10_1049_cim2_12072
crossref_citationtrail_10_1049_cim2_12072
wiley_primary_10_1049_cim2_12072_CIM212072
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationTitle IET collaborative intelligent manufacturing
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2022; 298
1987; 34
1965; 13
1997; 48
2019; 15
2020; 17
2021; 160
2016; 30
1960; 8
2009; 195
2020; 12
2021; 166
2018; 48
1959; 6
1992; 8
2004; 31
2019; 20
2018; 1
2000; 127
2022; 36
2018; 32
2019; 277
2012; 20
2022; 168
2021; 2021
2007; 19
2021; 43
2015; 521
2019; 32
2015; 53
2002; 6
2019; 104
2020; 39
1997
1994
2020; 33
2014; 41
2021; 52
2007; 11
2017; 257
2014; 43
1999
2022; 235
2012; 50
2021; 59
2021; 134
2020; 30
2019; 45
2015; 518
2010; 175
1999; 113
2020; 22
2021; 60
2022; 109
2018; 11
2018; 10
2022; 107
2016; 23
2022; 19
1981; 11
2021; 25
2017; 6
2012; 60
2021; 23
2000; 48
2020; 121
2019; 57
2022; 65
2020; 8
2021; 35
2017; 30
2021; 34
2021; 33
2021; 233
2020; 51
2020; 9
1999; 11
2018; 265
2021; 6
2021; 3
2012
2011
2017; 25
2009
2008
2007
2006
2003
2021; 1
2022; 157
2021; 12
2002; 29
2021; 11
2022
2022; 60
2021
2020
2019
2018
2016; 63
2017
2016
2015
2022; 302
1989; 19
2021; 290
e_1_2_11_70_1
e_1_2_11_93_1
Zhang C. (e_1_2_11_15_1) 2020
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_29_1
Kwon Y.D. (e_1_2_11_96_1) 2021
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_89_1
e_1_2_11_43_1
Brockman G. (e_1_2_11_85_1) 2016
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_174_1
Kim M. (e_1_2_11_13_1) 2021; 34
e_1_2_11_151_1
Vaswani A. (e_1_2_11_98_1) 2017
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
Haykin S. (e_1_2_11_187_1) 1994
e_1_2_11_190_1
e_1_2_11_80_1
e_1_2_11_88_1
Cappart Q. (e_1_2_11_40_1) 2021
e_1_2_11_42_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
Chen X. (e_1_2_11_12_1) 2019; 32
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_188_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_165_1
e_1_2_11_142_1
Karalias N. (e_1_2_11_141_1) 2020; 33
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
Ma Y. (e_1_2_11_163_1) 2021; 34
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
Kwon Y.D. (e_1_2_11_11_1) 2020
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
Garmendia A.I. (e_1_2_11_38_1) 2022
e_1_2_11_10_1
Zeng Y. (e_1_2_11_95_1) 2022
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_33_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
Vaswani A. (e_1_2_11_99_1) 2017; 30
Verma R. (e_1_2_11_66_1) 2020
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_67_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
Wang R. (e_1_2_11_17_1) 2021; 34
e_1_2_11_154_1
e_1_2_11_131_1
Gupta P. (e_1_2_11_25_1) 2020; 33
e_1_2_11_182_1
Zhang J. (e_1_2_11_105_1) 2021
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_118_1
Sui J. (e_1_2_11_164_1) 2021
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_167_1
Hu H. (e_1_2_11_20_1) 2017
e_1_2_11_193_1
Zhang J. (e_1_2_11_35_1) 2022
e_1_2_11_47_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_117_1
e_1_2_11_59_1
Iklassov Z. (e_1_2_11_94_1) 2022
e_1_2_11_178_1
Kwon Y.D. (e_1_2_11_181_1) 2021; 34
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_170_1
Kotary J. (e_1_2_11_37_1) 2021
e_1_2_11_183_1
e_1_2_11_119_1
e_1_2_11_73_1
Wang Z. (e_1_2_11_61_1) 2016
Kan A.R. (e_1_2_11_63_1) 2012
Xin L. (e_1_2_11_135_1) 2021
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
Tassel P. (e_1_2_11_84_1) 2021
e_1_2_11_160_1
Wu Y. (e_1_2_11_24_1) 2021; 34
e_1_2_11_194_1
e_1_2_11_46_1
e_1_2_11_69_1
Schulman J. (e_1_2_11_58_1) 2017
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_171_1
Yang Y. (e_1_2_11_44_1) 2020
e_1_2_11_91_1
e_1_2_11_184_1
e_1_2_11_30_1
Joshi C.K. (e_1_2_11_192_1) 2020
e_1_2_11_53_1
e_1_2_11_76_1
Choromanski K. (e_1_2_11_191_1) 2020
Sutton R.S. (e_1_2_11_54_1) 2018
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
Bogyrbayeva A. (e_1_2_11_34_1) 2022
e_1_2_11_161_1
Park J. (e_1_2_11_65_1) 2021
e_1_2_11_195_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
e_1_2_11_111_1
e_1_2_11_134_1
Wu H. (e_1_2_11_144_1) 2019
e_1_2_11_157_1
e_1_2_11_172_1
Mnih V. (e_1_2_11_57_1) 2016
Duan J. (e_1_2_11_50_1) 2022
e_1_2_11_90_1
Li S. (e_1_2_11_136_1) 2021; 34
e_1_2_11_185_1
Helsgaun K. (e_1_2_11_177_1) 2017
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
Ma Y. (e_1_2_11_71_1) 2021
e_1_2_11_162_1
Dulac‐Arnold G. (e_1_2_11_121_1) 2015
e_1_2_11_196_1
e_1_2_11_86_1
Devlin J. (e_1_2_11_189_1) 2018
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
Laterre A. (e_1_2_11_103_1) 2018
References_xml – start-page: 1
  year: 2021
  end-page: 12
  article-title: Deep reinforcement learning based optimization algorithm for permutation flow‐shop scheduling
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– start-page: 6351
  year: 2017
  end-page: 6361
– start-page: 2692
  year: 2015
  end-page: 2700
– year: 2015
  article-title: Deep reinforcement learning in large discrete action spaces
  publication-title: arXiv preprint arXiv:151207679
– volume: 265
  start-page: 843
  issue: 3
  year: 2018
  end-page: 859
  article-title: A simulated annealing algorithm for the capacitated vehicle routing problem with two‐dimensional loading constraints
  publication-title: Eur. J. Oper. Res.
– start-page: 62
  year: 2018
  end-page: 71
– volume: 195
  start-page: 791
  issue: 3
  year: 2009
  end-page: 802
  article-title: A variable neighborhood search heuristic for periodic routing problems
  publication-title: Eur. J. Oper. Res.
– year: 2022
  article-title: Hybrid intelligence for dynamic job‐shop scheduling with deep reinforcement learning and attention mechanism
  publication-title: arXiv preprint arXiv:220100548
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– year: 2017
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv preprint arXiv:170706347
– start-page: 221
  year: 2008
  end-page: 237
– start-page: 9861
  year: 2018
  end-page: 9871
– start-page: 558
  year: 2021
  end-page: 563
– volume: 50
  start-page: 4255
  issue: 15
  year: 2012
  end-page: 4270
  article-title: A comparison of priority rules for the job shop scheduling problem under different flow time‐and tardiness‐related objective functions
  publication-title: Int. J. Prod. Res.
– volume: 30
  start-page: 6000
  year: 2017
  end-page: 6010
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2021
  end-page: 8
– volume: 60
  start-page: 1
  issue: 16
  year: 2021
  end-page: 18
  article-title: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing
  publication-title: Int. J. Prod. Res.
– volume: 36
  start-page: 9980
  issue: 9
  year: 2022
  end-page: 9988
  article-title: MAPDP: cooperative multi‐agent reinforcement learning to solve pickup and delivery problems
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 11
  start-page: 221
  issue: 2
  year: 1981
  end-page: 227
  article-title: Complexity of vehicle routing and scheduling problems
  publication-title: Networks
– start-page: 3590
  year: 2016
  end-page: 3597
– start-page: 1
  year: 2022
  end-page: 14
  article-title: Meta‐learning‐based deep reinforcement learning for multiobjective optimization problems
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 19
  start-page: 1600
  issue: 2
  year: 2022
  end-page: 1610
  article-title: Flexible job shop scheduling via graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 29
  start-page: 1129
  issue: 9
  year: 2002
  end-page: 1141
  article-title: Perturbation heuristics for the pickup and delivery traveling salesman problem
  publication-title: Comput. Oper. Res.
– volume: 3
  start-page: 4
  issue: 1
  year: 2021
  end-page: 12
  article-title: Industry 4.0 in the logistics field: a bibliometric analysis
  publication-title: IET Collab. Intell. Manuf.
– volume: 23
  start-page: 2306
  issue: 3
  year: 2021
  end-page: 2315
  article-title: Heterogeneous attentions for solving pickup and delivery problem via deep reinforcement learning
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 33
  start-page: 1621
  year: 2020
  end-page: 1632
– volume: 20
  start-page: 3806
  issue: 10
  year: 2019
  end-page: 3817
  article-title: Online vehicle routing with neural combinatorial optimization and deep reinforcement learning
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 6
  start-page: 51
  issue: 1
  year: 2017
  end-page: 79
  article-title: Vehicle routing problems for city logistics
  publication-title: EURO J. Transport. Logist.
– volume: 34
  start-page: 10418
  year: 2021
  end-page: 10430
  article-title: Learning collaborative policies to solve NP‐hard routing problems
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  article-title: Solving a new 3D bin packing problem with deep reinforcement learning method
  publication-title: arXiv preprint arXiv:170805930
– volume: 8
  start-page: 219
  issue: 2
  year: 1960
  end-page: 223
  article-title: On the job‐shop scheduling problem
  publication-title: Oper. Res.
– year: 2021
  article-title: Combinatorial optimization and reasoning with graph neural networks
  publication-title: arXiv preprint arXiv:210209544
– volume: 8
  start-page: 120388
  year: 2020
  end-page: 120416
  article-title: Learning combinatorial optimization on graphs: a survey with applications to networking
  publication-title: IEEE Access
– start-page: 5002
  year: 2021
  end-page: 5008
– volume: 6
  start-page: 119
  issue: 2
  year: 2021
  end-page: 141
  article-title: Graph learning for combinatorial optimization: a survey of state‐of‐the‐art
  publication-title: Data Sci. Eng.
– volume: 32
  year: 2018
– start-page: 177
  year: 2009
  end-page: 201
– volume: 34
  start-page: 26198
  year: 2021
  end-page: 26211
  article-title: Learning to delegate for large‐scale vehicle routing
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
– volume: 30
  year: 2016
– volume: 17
  start-page: 4861
  issue: 7
  year: 2020
  end-page: 4871
  article-title: Step‐wise deep learning models for solving routing problems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 51
  start-page: 3103
  issue: 6
  year: 2020
  end-page: 3114
  article-title: Deep reinforcement learning for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 121
  year: 2020
  article-title: Multi‐vehicle routing problems with soft time windows: a multi‐agent reinforcement learning approach
  publication-title: Transport. Res. C Emerg. Technol.
– volume: 59
  start-page: 3360
  issue: 11
  year: 2021
  end-page: 3377
  article-title: Learning to schedule job‐shop problems: representation and policy learning using graph neural network and reinforcement learning
  publication-title: Int. J. Prod. Res.
– volume: 13
  start-page: 517
  issue: 4
  year: 1965
  end-page: 546
  article-title: An additive algorithm for solving linear programs with zero‐one variables
  publication-title: Oper. Res.
– year: 2019
– volume: 11
  year: 2021
  article-title: Deep reinforcement learning in transportation research: a review
  publication-title: Transp. Res. Interdiscip. Perspect.
– year: 2022
  article-title: Learning to solve vehicle routing problems: a survey
  publication-title: arXiv preprint arXiv:220502453
– start-page: 1
  year: 2021
  end-page: 25
  article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review
  publication-title: J. Intell. Manuf.
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Solving a periodic capacitated vehicle routing problem using simulated annealing algorithm for a manufacturing company
  publication-title: Braz. J. Oper. Prod. Manag.
– year: 2021
  article-title: Schedulenet: learn to solve multi‐agent scheduling problems with reinforcement learning
  publication-title: arXiv preprint arXiv:210603051
– volume: 35
  start-page: 3677
  issue: 5
  year: 2021
  end-page: 3687
  article-title: Combining reinforcement learning and constraint programming for combinatorial optimization
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 233
  year: 2021
  article-title: Deep reinforcement learning for transportation network combinatorial optimization: a survey
  publication-title: Knowl. Base Syst.
– volume: 48
  start-page: 170
  year: 2018
  end-page: 179
  article-title: A survey of the advancing use and development of machine learning in smart manufacturing
  publication-title: J. Manuf. Syst.
– volume: 57
  start-page: 3290
  issue: 10
  year: 2019
  end-page: 3310
  article-title: Learning dispatching rules using random forest in flexible job shop scheduling problems
  publication-title: Int. J. Prod. Res.
– start-page: 19
  year: 2020
  end-page: 24
– start-page: 2454
  year: 2016
  end-page: 2461
– volume: 34
  start-page: 7472
  year: 2021
  end-page: 7483
– volume: 31
  start-page: 1985
  issue: 12
  year: 2004
  end-page: 2002
  article-title: A simple and effective evolutionary algorithm for the vehicle routing problem
  publication-title: Comput. Oper. Res.
– volume: 12
  issue: 9
  year: 2020
  article-title: A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics
  publication-title: Sustainability
– volume: 134
  year: 2021
  article-title: Reinforcement learning for combinatorial optimization: a survey
  publication-title: Comput. Oper. Res.
– volume: 8
  start-page: 229
  issue: 3
  year: 1992
  end-page: 256
  article-title: Simple statistical gradient‐following algorithms for connectionist reinforcement learning
  publication-title: Mach. Learn.
– volume: 63
  start-page: 208
  year: 2016
  end-page: 221
  article-title: Champ: creating heuristics via many parameters for online bin packing
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 6659
  year: 2020
  end-page: 6672
  article-title: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2022
  end-page: 12
  article-title: Learning to solve multiple‐TSP with time window and rejections via deep reinforcement learning
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 60
  start-page: 4316
  issue: 13
  year: 2022
  end-page: 4341
  article-title: Deep reinforcement learning in production systems: a systematic literature review
  publication-title: Int. J. Prod. Res.
– volume: 32
  start-page: 6281
  year: 2019
  end-page: 6292
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 257
  issue: 4
  year: 2021
  end-page: 270
  article-title: A review of reinforcement learning based intelligent optimization for manufacturing scheduling
  publication-title: Complex Syst. Model. Simulat.
– volume: 298
  start-page: 939
  issue: 3
  year: 2022
  end-page: 952
  article-title: Deep Q‐learning for same‐day delivery with vehicles and drones
  publication-title: Eur. J. Oper. Res.
– volume: 3
  start-page: 131
  issue: 2
  year: 2021
  end-page: 146
  article-title: Machine learning‐based scheduling: a bibliometric perspective
  publication-title: IET Collab. Intell. Manuf.
– volume: 19
  start-page: 618
  issue: 4
  year: 2007
  end-page: 632
  article-title: Variable neighborhood search for the pickup and delivery traveling salesman problem with LIFO loading
  publication-title: Inf. J. Comput.
– volume: 277
  start-page: 903
  issue: 3
  year: 2019
  end-page: 917
  article-title: Product packing and stacking under uncertainty: a robust approach
  publication-title: Eur. J. Oper. Res.
– volume: 34
  start-page: 5138
  year: 2021
  end-page: 5149
  article-title: Matrix encoding networks for neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 621
  issue: 6
  year: 1989
  end-page: 636
  article-title: The prize collecting traveling salesman problem
  publication-title: Networks
– volume: 25
  start-page: 651
  issue: 4
  year: 2021
  end-page: 665
  article-title: Surrogate‐assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 109
  year: 2022
  article-title: Learning variable ordering heuristics for solving constraint satisfaction problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 53
  start-page: 234
  year: 2015
  end-page: 249
  article-title: An iterated local search heuristic for the split delivery vehicle routing problem
  publication-title: Comput. Oper. Res.
– volume: 34
  start-page: 5138
  year: 2021
  end-page: 5149
– volume: 290
  start-page: 405
  issue: 2
  year: 2021
  end-page: 421
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: Eur. J. Oper. Res.
– start-page: 30
  year: 1997
  end-page: 38
– volume: 9
  issue: 2
  year: 2020
  article-title: On modeling stochastic dynamic vehicle routing problems
  publication-title: EURO J. Transport. Logist.
– volume: 302
  start-page: 874
  issue: 3
  year: 2022
  end-page: 891
  article-title: An algorithm selection approach for the flexible job shop scheduling problem: choosing constraint programming solvers through machine learning
  publication-title: Eur. J. Oper. Res.
– start-page: 4393
  year: 2021
  end-page: 4402
– start-page: 1301
  year: 2021
  end-page: 1316
– start-page: 1928
  year: 2016
  end-page: 1937
– volume: 60
  start-page: 611
  issue: 3
  year: 2012
  end-page: 624
  article-title: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems
  publication-title: Oper. Res.
– year: 2021
  article-title: End‐to‐end constrained optimization learning: a survey
  publication-title: arXiv preprint arXiv:210316378
– volume: 34
  year: 2021
  article-title: A bi‐level framework for learning to solve combinatorial optimization on graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 394
  year: 2020
  end-page: 402
  article-title: Deep reinforcement learning approach to solve dynamic vehicle routing problem with stochastic customers
  publication-title: Proc. Int. Conf. Autom. Plan. Sched.
– volume: 45
  start-page: 448
  issue: 8
  year: 2019
  end-page: 457
  article-title: On online algorithms for bin, strip, and box packing, and their worst‐case and average‐case analysis
  publication-title: Program. Comput. Software
– start-page: 1185
  year: 2011
  end-page: 1192
– volume: 48
  start-page: 657
  issue: 6
  year: 1997
  article-title: Meta‐heuristics theory and applications
  publication-title: J. Oper. Res. Soc.
– volume: 33
  start-page: 5057
  issue: 9
  year: 2021
  end-page: 5069
  article-title: Learning improvement heuristics for solving routing problems
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– start-page: 457
  year: 2003
  end-page: 474
– start-page: 80
  year: 2017
  end-page: 89
– volume: 1
  start-page: 419
  issue: 4
  year: 2018
  end-page: 430
  article-title: Machine learning for combinatorial optimization of brace placement of steel frames
  publication-title: Japan Architect. Rev.
– start-page: 575
  year: 2019
  end-page: 589
– volume: 25
  start-page: 207
  issue: 2
  year: 2017
  end-page: 236
  article-title: On learning and branching: a survey
  publication-title: Top
– volume: 166
  year: 2021
  article-title: Machine learning and data mining in manufacturing
  publication-title: Expert Syst. Appl.
– volume: 52
  start-page: 11107
  issue: 10
  year: 2021
  end-page: 11120
  article-title: Reinforcement learning with multiple relational attention for solving vehicle routing problems
  publication-title: IEEE Trans. Cybern.
– volume: 160
  year: 2021
  article-title: Recent dynamic vehicle routing problems: a survey
  publication-title: Comput. Ind. Eng.
– volume: 168
  year: 2022
  article-title: On‐line three‐dimensional packing problems: a review of off‐line and on‐line solution approaches
  publication-title: Comput. Ind. Eng.
– start-page: 1157
  year: 2006
  end-page: 1163
– year: 2021
– volume: 235
  year: 2022
  article-title: One model packs thousands of items with recurrent conditional query learning
  publication-title: Knowl. Base Syst.
– volume: 104
  start-page: 1889
  issue: 5
  year: 2019
  end-page: 1902
  article-title: A review of machine learning for the optimization of production processes
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  end-page: 15
  article-title: Tap‐net: transport‐and‐pack using reinforcement learning
  publication-title: ACM Trans. Graph.
– volume: 41
  start-page: 6876
  issue: 15
  year: 2014
  end-page: 6889
  article-title: A unified hyper‐heuristic framework for solving bin packing problems
  publication-title: Expert Syst. Appl.
– year: 2018
– year: 1994
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 15
  article-title: A flexible reinforced bin packing framework with automatic slack selection
  publication-title: Math. Probl. Eng.
– start-page: 1
  year: 2021
  end-page: 12
  article-title: Learning to solve 3‐D bin packing problem via deep reinforcement learning and constraint programming
  publication-title: IEEE Trans. Cybern.
– start-page: 465
  year: 2020
  end-page: 480
– year: 2016
  article-title: Openai gym
  publication-title: arXiv preprint arXiv:160601540
– volume: 23
  start-page: 11528
  issue: 8
  year: 2021
  end-page: 11538
  article-title: Deep reinforcement learning for the electric vehicle routing problem with time windows
  publication-title: IEEE Trans. Intell. Transport. Syst.
– start-page: 1386
  year: 2019
  end-page: 1394
– volume: 34
  start-page: 11096
  year: 2021
  end-page: 11107
– volume: 34
  start-page: 307
  issue: 3
  year: 1987
  end-page: 318
  article-title: The orienteering problem
  publication-title: Nav. Res. Logist.
– year: 2020
  article-title: Rethinking attention with performers
  publication-title: arXiv preprint arXiv:200914794
– volume: 48
  start-page: 801
  issue: 5
  year: 2000
  end-page: 810
  article-title: A lower bound for the split delivery vehicle routing problem
  publication-title: Oper. Res.
– start-page: 1995
  year: 2016
  end-page: 2003
– start-page: 1
  year: 2021
  end-page: 14
  article-title: Solving dynamic traveling salesman problems with deep reinforcement learning
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 113
  start-page: 390
  issue: 2
  year: 1999
  end-page: 434
  article-title: Deterministic job‐shop scheduling: past, present and future
  publication-title: Eur. J. Oper. Res.
– volume: 65
  start-page: 1
  issue: 1
  year: 2022
  end-page: 17
  article-title: Learning practically feasible policies for online 3D bin packing
  publication-title: Sci. China Inf. Sci.
– start-page: 1017
  year: 1999
  end-page: 1023
– volume: 107
  start-page: 1112
  year: 2022
  end-page: 1119
  article-title: Towards standardising reinforcement learning approaches for production scheduling problems
  publication-title: Procedia CIRP
– year: 2021
  article-title: A reinforcement learning environment for job‐shop scheduling
  publication-title: arXiv preprint arXiv:210403760
– start-page: 392
  year: 2021
  end-page: 409
– volume: 15
  start-page: 4276
  issue: 7
  year: 2019
  end-page: 4284
  article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 2511
  year: 2021
  end-page: 2522
– volume: 34
  start-page: 23609
  year: 2021
  end-page: 23620
  article-title: A hierarchical reinforcement learning based optimization framework for large‐scale dynamic pickup and delivery problems
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 190
  year: 2022
  end-page: 213
– year: 2018
  article-title: Bert: pre‐training of deep bidirectional transformers for language understanding
  publication-title: arXiv preprint arXiv:181004805
– year: 2020
  article-title: Learning TSP requires rethinking generalization
  publication-title: arXiv preprint arXiv:200607054
– volume: 257
  start-page: 118
  issue: 1
  year: 2017
  end-page: 132
  article-title: The pickup and delivery traveling salesman problem with handling costs
  publication-title: Eur. J. Oper. Res.
– volume: 52
  start-page: 13572
  issue: 12
  year: 2021
  end-page: 13585
  article-title: Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing problem
  publication-title: IEEE Trans. Cybern.
– start-page: 822
  year: 2020
  end-page: 828
– volume: 11
  start-page: 219
  issue: 3‐4
  year: 2018
  end-page: 354
  article-title: An introduction to deep reinforcement learning
  publication-title: Found. Trends Mach. Learn.
– year: 2022
  article-title: A survey for solving mixed integer programming via machine learning
  publication-title: arXiv preprint arXiv:220302878
– year: 2018
  article-title: Ranked reward: enabling self‐play reinforcement learning for combinatorial optimization
  publication-title: arXiv preprint arXiv:180701672
– year: 2022
  article-title: Learning to generalize dispatching rules on the job shop scheduling
  publication-title: arXiv preprint arXiv:220604423
– start-page: 741
  year: 2021
  end-page: 749
– year: 2012
– start-page: 3441
  year: 2021
  end-page: 3451
– volume: 43
  start-page: 1
  issue: 3
  year: 2021
  end-page: 40
  article-title: A machine learning‐based branch and price algorithm for a sampled vehicle routing problem
  publication-title: OR Spectr.
– volume: 157
  year: 2022
  article-title: Dynamic stochastic electric vehicle routing with safe reinforcement learning
  publication-title: Transport. Res. E Logist. Transport. Rev.
– volume: 33
  start-page: 21188
  year: 2020
  end-page: 21198
– volume: 12
  start-page: 97
  issue: 1
  year: 2021
  end-page: 105
  article-title: SOLO: search online, learn offline for combinatorial optimization problems
  publication-title: Proc. Int. Symp. Comb. Search
– volume: 34
  start-page: 6278
  year: 2021
  end-page: 6289
  article-title: Learning large neighborhood search policy for integer programming
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 175
  start-page: 367
  issue: 1
  year: 2010
  end-page: 407
  article-title: Variable neighbourhood search: methods and applications
  publication-title: Ann. Oper. Res.
– year: 2020
  article-title: A generalized reinforcement learning algorithm for online 3D bin‐packing
  publication-title: arXiv preprint arXiv:200700463
– volume: 6
  start-page: 80
  issue: 1
  year: 1959
  end-page: 91
  article-title: The truck dispatching problem
  publication-title: Manag. Sci.
– volume: 11
  start-page: 15
  issue: 1
  year: 1999
  end-page: 34
  article-title: Neural networks for combinatorial optimization: a review of more than a decade of research
  publication-title: Inf. J. Comput.
– volume: 127
  start-page: 317
  issue: 2
  year: 2000
  end-page: 331
  article-title: The disjunctive graph machine representation of the job shop scheduling problem
  publication-title: Eur. J. Oper. Res.
– start-page: 1
  year: 2019
  end-page: 7
– volume: 33
  start-page: 18087
  year: 2020
  end-page: 18097
  article-title: Hybrid models for learning to branch
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
– year: 2022
  article-title: A data‐driven column generation algorithm for bin packing problem in manufacturing industry
  publication-title: arXiv preprint arXiv:220212466
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2530
  year: 2007
  end-page: 2537
– volume: 20
  start-page: 63
  issue: 1
  year: 2012
  end-page: 89
  article-title: Automating the packing heuristic design process with genetic programming
  publication-title: Evol. Comput.
– volume: 43
  start-page: 1500
  issue: 9/10
  year: 2014
  end-page: 1511
  article-title: A genetic programming hyper‐heuristic for the multidimensional knapsack problem
  publication-title: Kybernetes
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
– start-page: 941
  year: 2019
  end-page: 950
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  article-title: Human‐level control through deep reinforcement learning
  publication-title: Nature
– year: 2021
  article-title: Attend2pack: bin packing through deep reinforcement learning with attention
  publication-title: arXiv preprint arXiv:210704333
– year: 2017
– volume: 22
  start-page: 7208
  issue: 11
  year: 2020
  end-page: 7218
  article-title: A hybrid of deep reinforcement learning and local search for the vehicle routing problems
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 2022
  article-title: Neural combinatorial optimization: a new player in the field
  publication-title: arXiv preprint arXiv:220501356
– year: 2020
  article-title: A survey on reinforcement learning for combinatorial optimization
  publication-title: arXiv preprint arXiv:200812248
– volume: 10
  start-page: 29
  issue: 2
  year: 2018
  end-page: 40
  article-title: Fast truck‐packing of 3D boxes
  publication-title: Eng. Manag. Prod. Serv.
– volume: 23
  start-page: 551
  issue: 3
  year: 2016
  end-page: 591
  article-title: A research survey: review of flexible job shop scheduling techniques
  publication-title: Int. Trans. Oper. Res.
– ident: e_1_2_11_129_1
  doi: 10.1016/j.ejor.2016.07.009
– ident: e_1_2_11_5_1
– volume: 34
  start-page: 10418
  year: 2021
  ident: e_1_2_11_13_1
  article-title: Learning collaborative policies to solve NP‐hard routing problems
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_130_1
  doi: 10.1016/s0305‐0548(03)00158‐8
– ident: e_1_2_11_154_1
  doi: 10.1609/icaps.v30i1.6685
– ident: e_1_2_11_79_1
  doi: 10.1038/sj.jors.2600781
– ident: e_1_2_11_169_1
  doi: 10.1109/tits.2022.3207011
– ident: e_1_2_11_76_1
  doi: 10.1016/j.ejtl.2020.100008
– ident: e_1_2_11_147_1
– ident: e_1_2_11_122_1
  doi: 10.1609/aaai.v32i1.11798
– ident: e_1_2_11_132_1
  doi: 10.1049/cim2.12015
– ident: e_1_2_11_86_1
  doi: 10.1016/s0377‐2217(98)00113‐1
– year: 2017
  ident: e_1_2_11_58_1
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv preprint arXiv:170706347
– year: 2022
  ident: e_1_2_11_35_1
  article-title: A survey for solving mixed integer programming via machine learning
  publication-title: arXiv preprint arXiv:220302878
– ident: e_1_2_11_182_1
  doi: 10.1109/4235.996017
– ident: e_1_2_11_90_1
  doi: 10.1111/itor.12199
– ident: e_1_2_11_42_1
  doi: 10.1016/j.cor.2021.105400
– ident: e_1_2_11_26_1
  doi: 10.1609/aaai.v36i9.21262
– ident: e_1_2_11_2_1
  doi: 10.1016/j.ejor.2020.07.063
– ident: e_1_2_11_32_1
  doi: 10.1016/j.engappai.2021.104603
– start-page: 5998
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_11_98_1
– ident: e_1_2_11_73_1
  doi: 10.24963/ijcai.2022/662
– ident: e_1_2_11_160_1
  doi: 10.1109/SMC52423.2021.9658956
– ident: e_1_2_11_82_1
  doi: 10.1080/00207543.2011.611539
– volume: 32
  start-page: 6281
  year: 2019
  ident: e_1_2_11_12_1
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: e_1_2_11_44_1
  article-title: A survey on reinforcement learning for combinatorial optimization
  publication-title: arXiv preprint arXiv:200812248
– ident: e_1_2_11_31_1
  doi: 10.1007/978-3-030-78230-6_25
– start-page: 5138
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: e_1_2_11_96_1
– start-page: 1301
  volume-title: Asian Conference on Machine Learning
  year: 2021
  ident: e_1_2_11_164_1
– ident: e_1_2_11_108_1
  doi: 10.1109/IROS51168.2021.9635914
– ident: e_1_2_11_23_1
– ident: e_1_2_11_59_1
  doi: 10.1038/nature14236
– year: 2020
  ident: e_1_2_11_66_1
  article-title: A generalized reinforcement learning algorithm for online 3D bin‐packing
  publication-title: arXiv preprint arXiv:200700463
– ident: e_1_2_11_29_1
– ident: e_1_2_11_18_1
  doi: 10.1080/00207543.2021.1943037
– ident: e_1_2_11_158_1
  doi: 10.1109/tnnls.2021.3105905
– ident: e_1_2_11_16_1
  doi: 10.1145/3447548.3467135
– ident: e_1_2_11_97_1
  doi: 10.1109/tetci.2021.3098354
– ident: e_1_2_11_7_1
– ident: e_1_2_11_178_1
  doi: 10.1002/1520‐6750(198706)34:3<307::aid‐nav3220340302>3.0.co;2‐d
– ident: e_1_2_11_193_1
– year: 2022
  ident: e_1_2_11_95_1
  article-title: Hybrid intelligence for dynamic job‐shop scheduling with deep reinforcement learning and attention mechanism
  publication-title: arXiv preprint arXiv:220100548
– ident: e_1_2_11_123_1
– ident: e_1_2_11_162_1
  doi: 10.1109/ICDE51399.2021.00283
– year: 2017
  ident: e_1_2_11_20_1
  article-title: Solving a new 3D bin packing problem with deep reinforcement learning method
  publication-title: arXiv preprint arXiv:170805930
– ident: e_1_2_11_104_1
– ident: e_1_2_11_100_1
  doi: 10.2478/emj‐2018‐0009
– ident: e_1_2_11_133_1
  doi: 10.3390/su12093760
– ident: e_1_2_11_92_1
  doi: 10.1109/tii.2022.3189725
– ident: e_1_2_11_149_1
  doi: 10.1609/aaai.v35i13.17430
– ident: e_1_2_11_152_1
  doi: 10.1109/ICMLA51294.2020.00013
– ident: e_1_2_11_142_1
– ident: e_1_2_11_46_1
  doi: 10.23919/csms.2021.0027
– volume: 34
  start-page: 23609
  year: 2021
  ident: e_1_2_11_163_1
  article-title: A hierarchical reinforcement learning based optimization framework for large‐scale dynamic pickup and delivery problems
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_185_1
  doi: 10.1007/978-0-387-77778-8_10
– ident: e_1_2_11_88_1
  doi: 10.1109/tevc.2021.3065707
– ident: e_1_2_11_161_1
  doi: 10.1609/socs.v12i1.18556
– ident: e_1_2_11_60_1
  doi: 10.1609/aaai.v30i1.10295
– volume: 33
  start-page: 6659
  year: 2020
  ident: e_1_2_11_141_1
  article-title: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_9_1
– year: 2021
  ident: e_1_2_11_37_1
  article-title: End‐to‐end constrained optimization learning: a survey
  publication-title: arXiv preprint arXiv:210316378
– ident: e_1_2_11_140_1
– ident: e_1_2_11_180_1
  doi: 10.1016/j.cor.2014.08.005
– start-page: 21188
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: e_1_2_11_11_1
– ident: e_1_2_11_115_1
  doi: 10.1109/SSCI47803.2020.9308538
– ident: e_1_2_11_78_1
  doi: 10.1287/opre.13.4.517
– ident: e_1_2_11_14_1
– start-page: 11096
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: e_1_2_11_71_1
– ident: e_1_2_11_51_1
  doi: 10.1016/j.jmsy.2018.02.004
– ident: e_1_2_11_68_1
  doi: 10.1145/3414685.3417796
– ident: e_1_2_11_75_1
  doi: 10.1109/tcyb.2021.3111082
– ident: e_1_2_11_167_1
  doi: 10.1109/CEC.2006.1688440
– year: 2018
  ident: e_1_2_11_189_1
  article-title: Bert: pre‐training of deep bidirectional transformers for language understanding
  publication-title: arXiv preprint arXiv:181004805
– ident: e_1_2_11_137_1
– year: 2021
  ident: e_1_2_11_40_1
  article-title: Combinatorial optimization and reasoning with graph neural networks
  publication-title: arXiv preprint arXiv:210209544
– ident: e_1_2_11_183_1
  doi: 10.1109/tevc.2007.892759
– ident: e_1_2_11_89_1
  doi: 10.1109/tii.2019.2908210
– ident: e_1_2_11_48_1
  doi: 10.1016/j.trip.2021.100425
– ident: e_1_2_11_128_1
  doi: 10.1016/j.ejor.2007.08.048
– volume: 34
  start-page: 26198
  year: 2021
  ident: e_1_2_11_136_1
  article-title: Learning to delegate for large‐scale vehicle routing
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_120_1
  doi: 10.1109/CEC.2007.4424789
– ident: e_1_2_11_175_1
– ident: e_1_2_11_8_1
– ident: e_1_2_11_195_1
  doi: 10.1609/aaai.v36i8.20899
– start-page: 575
  volume-title: International Symposium on Intelligence Computation and Applications
  year: 2019
  ident: e_1_2_11_144_1
– ident: e_1_2_11_166_1
– year: 2015
  ident: e_1_2_11_121_1
  article-title: Deep reinforcement learning in large discrete action spaces
  publication-title: arXiv preprint arXiv:151207679
– ident: e_1_2_11_22_1
  doi: 10.1609/aaai.v35i1.16155
– ident: e_1_2_11_101_1
  doi: 10.1016/j.ejor.2019.03.040
– ident: e_1_2_11_33_1
  doi: 10.1049/cim2.12004
– ident: e_1_2_11_188_1
  doi: 10.1016/j.tre.2021.102496
– ident: e_1_2_11_45_1
  doi: 10.1080/00207543.2021.1973138
– ident: e_1_2_11_194_1
  doi: 10.1609/aaai.v36i9.21214
– year: 2022
  ident: e_1_2_11_94_1
  article-title: Learning to generalize dispatching rules on the job shop scheduling
  publication-title: arXiv preprint arXiv:220604423
– ident: e_1_2_11_134_1
  doi: 10.1007/978-3-031-08011-1_14
– ident: e_1_2_11_64_1
  doi: 10.1016/s0377‐2217(99)00486‐5
– ident: e_1_2_11_72_1
– ident: e_1_2_11_148_1
  doi: 10.1109/tii.2020.3031409
– ident: e_1_2_11_36_1
  doi: 10.1016/j.cie.2022.108122
– ident: e_1_2_11_62_1
  doi: 10.1561/2200000071
– ident: e_1_2_11_173_1
  doi: 10.1007/s00291‐020‐00615‐8
– ident: e_1_2_11_3_1
  doi: 10.1109/tnnls.2021.3068828
– ident: e_1_2_11_116_1
  doi: 10.1162/evco_a_00044
– ident: e_1_2_11_67_1
  doi: 10.1016/j.knosys.2021.107683
– ident: e_1_2_11_87_1
  doi: 10.1109/CEC.2016.7744244
– ident: e_1_2_11_146_1
  doi: 10.1287/opre.48.5.801.12407
– ident: e_1_2_11_10_1
– ident: e_1_2_11_47_1
  doi: 10.1007/s10845‐021‐01847‐3
– ident: e_1_2_11_111_1
  doi: 10.1007/0-306-48056-5_16
– volume: 33
  start-page: 18087
  year: 2020
  ident: e_1_2_11_25_1
  article-title: Hybrid models for learning to branch
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: e_1_2_11_85_1
  article-title: Openai gym
  publication-title: arXiv preprint arXiv:160601540
– ident: e_1_2_11_93_1
  doi: 10.1080/00207543.2019.1581954
– year: 2021
  ident: e_1_2_11_84_1
  article-title: A reinforcement learning environment for job‐shop scheduling
  publication-title: arXiv preprint arXiv:210403760
– ident: e_1_2_11_179_1
  doi: 10.1002/net.3230190602
– ident: e_1_2_11_126_1
  doi: 10.1002/net.3230110211
– ident: e_1_2_11_155_1
  doi: 10.1109/tcyb.2021.3089179
– ident: e_1_2_11_157_1
  doi: 10.1109/tits.2021.3105232
– ident: e_1_2_11_6_1
– volume: 30
  start-page: 6000
  year: 2017
  ident: e_1_2_11_99_1
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_109_1
  doi: 10.1145/3459637.3481933
– ident: e_1_2_11_151_1
  doi: 10.1016/j.trc.2020.102861
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: e_1_2_11_187_1
– ident: e_1_2_11_112_1
  doi: 10.1109/BigDataService.2017.18
– ident: e_1_2_11_113_1
  doi: 10.1016/j.eswa.2014.04.043
– volume: 34
  year: 2021
  ident: e_1_2_11_17_1
  article-title: A bi‐level framework for learning to solve combinatorial optimization on graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_70_1
  doi: 10.1007/s10479‐009‐0657‐6
– year: 2021
  ident: e_1_2_11_105_1
  article-title: Attend2pack: bin packing through deep reinforcement learning with attention
  publication-title: arXiv preprint arXiv:210704333
– ident: e_1_2_11_127_1
  doi: 10.1016/j.ejor.2017.08.035
– ident: e_1_2_11_19_1
– volume-title: An Extension of the Lin‐Kernighan‐Helsgaun TSP Solver for Constrained Traveling Salesman and Vehicle Routing Problems
  year: 2017
  ident: e_1_2_11_177_1
– ident: e_1_2_11_131_1
  doi: 10.1287/opre.1120.1048
– ident: e_1_2_11_55_1
  doi: 10.1038/nature14539
– ident: e_1_2_11_118_1
  doi: 10.1007/978-3-642-01799-5_6
– ident: e_1_2_11_170_1
  doi: 10.1609/aaai.v36i9.21236
– ident: e_1_2_11_74_1
– ident: e_1_2_11_165_1
  doi: 10.1016/j.ejor.2021.06.021
– start-page: 1928
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: e_1_2_11_57_1
– ident: e_1_2_11_81_1
  doi: 10.1016/j.procir.2022.05.117
– ident: e_1_2_11_4_1
  doi: 10.1287/ijoc.11.1.15
– start-page: 1621
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: e_1_2_11_15_1
– ident: e_1_2_11_159_1
  doi: 10.1109/IJCNN52387.2021.9534083
– year: 2020
  ident: e_1_2_11_191_1
  article-title: Rethinking attention with performers
  publication-title: arXiv preprint arXiv:200914794
– ident: e_1_2_11_77_1
  doi: 10.1287/opre.8.2.219
– ident: e_1_2_11_190_1
– ident: e_1_2_11_30_1
  doi: 10.1609/aaai.v35i5.16484
– year: 2020
  ident: e_1_2_11_192_1
  article-title: Learning TSP requires rethinking generalization
  publication-title: arXiv preprint arXiv:200607054
– ident: e_1_2_11_196_1
– ident: e_1_2_11_153_1
  doi: 10.1109/tcyb.2020.2977661
– ident: e_1_2_11_43_1
  doi: 10.1016/j.knosys.2021.107526
– ident: e_1_2_11_145_1
  doi: 10.1109/tits.2019.2909109
– ident: e_1_2_11_102_1
  doi: 10.1134/s0361768819080036
– ident: e_1_2_11_139_1
  doi: 10.1609/aaai.v35i8.16916
– ident: e_1_2_11_21_1
  doi: 10.1109/tcyb.2021.3121542
– ident: e_1_2_11_39_1
  doi: 10.1109/access.2020.3004964
– ident: e_1_2_11_69_1
  doi: 10.1155/2021/6653586
– ident: e_1_2_11_138_1
  doi: 10.1609/aaai.v33i01.33014731
– year: 2022
  ident: e_1_2_11_50_1
  article-title: A data‐driven column generation algorithm for bin packing problem in manufacturing industry
  publication-title: arXiv preprint arXiv:220212466
– ident: e_1_2_11_53_1
  doi: 10.1016/j.eswa.2020.114060
– ident: e_1_2_11_176_1
  doi: 10.1287/mnsc.6.1.80
– ident: e_1_2_11_143_1
– ident: e_1_2_11_124_1
– year: 2022
  ident: e_1_2_11_34_1
  article-title: Learning to solve vehicle routing problems: a survey
  publication-title: arXiv preprint arXiv:220502453
– ident: e_1_2_11_28_1
– ident: e_1_2_11_119_1
  doi: 10.1016/j.eswa.2016.07.005
– ident: e_1_2_11_110_1
  doi: 10.1007/s11432‐021‐3348‐6
– ident: e_1_2_11_150_1
  doi: 10.1109/tits.2020.3003163
– start-page: 7472
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: e_1_2_11_135_1
– year: 2018
  ident: e_1_2_11_103_1
  article-title: Ranked reward: enabling self‐play reinforcement learning for combinatorial optimization
  publication-title: arXiv preprint arXiv:180701672
– ident: e_1_2_11_172_1
  doi: 10.1016/s0305‐0548(00)00109‐x
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: e_1_2_11_54_1
– ident: e_1_2_11_56_1
  doi: 10.1007/bf00992696
– ident: e_1_2_11_156_1
  doi: 10.1109/tits.2021.3056120
– ident: e_1_2_11_117_1
  doi: 10.1108/k‐09‐2013‐0201
– year: 2021
  ident: e_1_2_11_65_1
  article-title: Schedulenet: learn to solve multi‐agent scheduling problems with reinforcement learning
  publication-title: arXiv preprint arXiv:210603051
– ident: e_1_2_11_107_1
  doi: 10.1109/RO-MAN46459.2019.8956393
– ident: e_1_2_11_171_1
  doi: 10.1287/ijoc.1060.0202
– ident: e_1_2_11_106_1
– ident: e_1_2_11_27_1
– ident: e_1_2_11_80_1
  doi: 10.1002/2475‐8876.12059
– start-page: 1995
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: e_1_2_11_61_1
– volume: 34
  start-page: 6278
  year: 2021
  ident: e_1_2_11_24_1
  article-title: Learning large neighborhood search policy for integer programming
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 5138
  year: 2021
  ident: e_1_2_11_181_1
  article-title: Matrix encoding networks for neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_83_1
  doi: 10.1080/00207543.2020.1870013
– ident: e_1_2_11_174_1
  doi: 10.1007/s11750‐017‐0451‐6
– ident: e_1_2_11_168_1
  doi: 10.1109/tnnls.2022.3148435
– volume-title: Machine Scheduling Problems: Classification, Complexity and Computations
  year: 2012
  ident: e_1_2_11_63_1
– ident: e_1_2_11_125_1
  doi: 10.1007/s13676‐014‐0074‐0
– ident: e_1_2_11_52_1
  doi: 10.1007/s00170‐019‐03988‐5
– ident: e_1_2_11_91_1
  doi: 10.1016/j.ejor.2022.01.034
– ident: e_1_2_11_184_1
  doi: 10.1109/CEC.2016.7744093
– ident: e_1_2_11_49_1
  doi: 10.14488/bjopm.2020.011
– ident: e_1_2_11_41_1
  doi: 10.1007/s41019‐021‐00155‐3
– year: 2022
  ident: e_1_2_11_38_1
  article-title: Neural combinatorial optimization: a new player in the field
  publication-title: arXiv preprint arXiv:220501356
– ident: e_1_2_11_186_1
  doi: 10.1016/j.cie.2021.107604
– ident: e_1_2_11_114_1
  doi: 10.1007/978-3-319-92198-3_7
SSID ssj0002513287
Score 2.458917
SecondaryResourceType review_article
Snippet An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress of human...
Abstract An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology and the progress...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial intelligence
bin packing
Combinatorial analysis
combinatorial optimisation
Deep learning
deep reinforcement learning
Economic development
Graph representations
Heuristic
Industrial development
Integer programming
job shop scheduling
Job shops
Machine learning
Manufacturing
manufacturing systems
Neural networks
Production scheduling
Scheduling
vehicle routing
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxGA1SPOhBXLFaJaAXhbGTZZYca7HowSKi0FvIVinYGen2-_2SmZYWRC_eZoYcwre-j0neQ-g6t8JC51HgASUiTomNBOdZZHOuYia4zbUKYhNZv58PBuJlTerLnwmr6IErw7UBjhCSplRpOuSWpyrmMM0RZtJE2YxrX30B9awNU74GQ9dmMAss-Ui5aJvRmN4RGmd0owMFov4NdLmOUUOT6e2jvRod4k61qwO05YpDtLvGGXiEXju4um6CywLXmg8feFZiCKKFwxBAMOv6SRoCC5dQEMb1gR1ca8dM8ajAY1XM_Z2GcEnxGL33Ht66j1EtjBAZHjNAxNoJlSmX6RjQgHNJYq1NjUu9EJXjTA1jBYMKgWy0scpSDVmnuba5_w0nzJCdoEZRFu4UYUjfxDgxZADjAEsZ4dKEaSjg8JbkRDXRzdJY0tSs4V684lOGv9dcSG9YGQzbRFertV8VV8aPq-69zVcrPL91-ABel7XX5V9eb6LW0mOyTrqpZLGgFOAPIU10G7z4yzZk9-mZhqez_9jQOdrxQvTV6bQWaswmc3eBts1iNppOLkNwfgNC8uXJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC6i8WAOGo3ixgcNeklgdPox09MnUVESgiKSgLemXysL7ozZXf39qe7tXRWCF28zQzHTTL2-6kd9AAeNVx4zj0ENGFUIRn2hhJCFb4QpuRK-sSaRTcirq-b2Vl3nCbdx3lY5i4kpUPvOxTnyI14qxjC3UXr88LeIrFFxdTVTaCzAR8oYjXb-SxbzORbM3RwrgllXUqGO3GDIDikrJXuVh1K7_lcY8yVSTanmYvW9g_wMKxlkkpOpVazBh9Cuw6cXrQe_wM0JmZ5aIV1LMnXEHZl0BG3xKRD8HJbMsSBH-yQdxpVh3vdDMgXNmAxaMjTtYzwakc46bsCfi_PfZz-KzK9QOFFyBNY2KCNNkLZEUBFCVXnvaxfqyGcVBDf90mC9Q9GpfWlkbdF5rbC-iat5yvX5Jiy2XRu2gGAUqFxQfY5oECGZU6GuuMU8gHdVQ00Pvs3-tna5-XjkwLjXaRFcKB01o5NmerA_l32Yttz4r9RpVNpcIrbJTg-60Z3OXqcRy1Ja18xY1hde1KYUEu2Ru7oyXgrbg52ZHnX23bF-VmIPviczeGMY-uznJUtXX99-1zYsR6b66fa1HVicjB7DLiy5p8lgPNpLdvsPl8H0mw
  priority: 102
  providerName: ProQuest
Title A review on learning to solve combinatorial optimisation problems in manufacturing
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcim2.12072
https://www.proquest.com/docview/3092291011
https://doaj.org/article/53311662ab2f4d46a0474213c65ad74b
Volume 5
WOSCitedRecordID wos000943186000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: P5Z
  dateStart: 20210301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: K7-
  dateStart: 20210301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: M7S
  dateStart: 20210301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: BENPR
  dateStart: 20210301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: PIMPY
  dateStart: 20210301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2516-8398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513287
  issn: 2516-8398
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD6U1gd98C6u1iWgLwqjk8skE_ClLS0u0mWoitWXkNuWBXdGdrf9_Z5kZtcWRBBfQjKTYULOOTlfbucDeFUHHdDzWJSA1YVgNBRaCFWEWtiSaxFqZzPZhJpO6_Nz3ezA-81dmD4-xHbBLVlGHq-TgVvXs5AgqEUh-vmCvaWsVDgA71HK60TcwESzXWFBz81ZZsjDnCwQCdSb-KRCv_v9-Q2PlAP330Cb1zFrdjon9_6vuffh7gA2yUGvHQ9gJ7YP4c61EISP4OyA9LdXSNeSgULigqw7gjp5FQn-BafOaWKOeko6HF8Ww_kfMlDRrMi8JQvbXqYrEvnO42P4cnL8-ehDMfAsFF6UHAG2i9oqG5UrEVzEWFUhBOmjTLxWUXA7Ky3Oeygadyitkg6N2AkX6rSrp_2MP4HdtmvjUyA4GlQ-6hlHVIjQzOsoK-7QH2CpqqkdwetNXxs_BCFPXBg_TN4MF9qkfjK5n0bwclv3Zx9644-1DpPItjVSuOz8oFtemMH6DGJaSqVk1rGZCELaUijUS-5lZYMSbgT7G4GbwYZXhpeaMURTlI7gTRbtX5phjianLOee_Uvl53A78df3h9r2YXe9vIwv4Ja_Ws9Xy3HW5zHsHR5Pm7NxXi7A9KMqxumI6idMm-o7vm8mp803LH2dTH8BIcb87w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgk4QHmJhUItUQ5FCk1sJ44PCJVC1dW2q6oqUm_Gr61WYpOyuy3iT_EbGTvJtpVQbz1wSyLLSuJvZj4_Zj6AjdJJh5FH4whomXCauURyLhJXcp0yyV1pdBSbEMNheXIiD5fgT5cLE45Vdj4xOmpX27BGvsVSSSnGtiz7dPYzCapRYXe1k9BoYDHwv3_hlG32sf8Fx_cdpbtfj3f2klZVILE8ZUgnjZdaaC9MiqHU-zx3zhXWF0HFyXOmR6lGlp8hlF2qRWEQsoYbV4Y9LGlHDPu9A3c5K0Wo1T8QyWJNB7kCwxlIVwWVyy07ntAPGU0FvRb3ojzANU57lRnH0Lb76H_7KavwsCXRZLtB_WNY8tUTeHCltOJTONomTVYOqSvSSmOcknlN0NYuPMHPM-MqLDig_ZEa_eakPddEWomdGRlXZKKr85D6EXM5n8G3W_mo57Bc1ZV_AQS9XG69HDFku0g5rfRFzgzGObzLy0z3YLMbXWXb4upB4-OHipv8XKqABBWR0IO3i7ZnTUmRf7b6HECyaBHKgMcH9fRUtV5FIVfPsqKg2tARd7zQKRdob8wWuXaCmx6sdbhRrW-aqUvQ9OB9hN0Nr6F2-gc0Xr28ua91uLd3fLCv9vvDwSu4T5ELNkf11mB5Pj33r2HFXszHs-mbaDMEvt82Hv8CxK9RPA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9SRfTBb_G0akBfFNZuktlk81irh0U9DlHoW8jXlgNvt9xd-_c7yebOFkQQ37LLLBsyX79JMjOEvG6DDuh5LHLA6go4C5UGUFVowdZCQ2idzc0m1GzWnpzoebmbk3JhxvoQuw23pBnZXicFj2ehGwNOSEUy_WLJ3zFeK7TA16FRLAk1h_luiwVdt-C5RR6OZIVQoN0WKAV98PvzKy4pV-6_Ajcvg9bsdaZ3_3O-98idAjfp4Sgf98m12D8gty8VIXxIvh3SMX-FDj0tTSRO6WagKJUXkeJvMHhOoTlKKh3QwizLDSBamtGs6aKnS9ufpySJnPX4iPyYfvx-9KkqnRYqD7VAiO2itspG5WqEFzE2TQhB-ihTZ6sIwna1xciHoXqH2irpUI0duNCmcz3tO_GY7PVDH58Qivag8VF3AnEhgjOvo2yEQ4-AT03L7IS82S628aUMeeqG8dPk43DQJq2Tyes0Ia92tGdj8Y0_Ur1PPNtRpILZ-cWwOjVF_wyiWsak5NbxDgJIW4NCyRReNjYocBOyv-W4KVq8NqLWnCOeYmxC3mbe_mUa5uj4K8-jp_9C_JLcnH-Ymi_Hs8_PyK3UzH684bZP9jar8_ic3PAXm8V69SLL9i_Ba_hG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+learning+to+solve+combinatorial+optimisation+problems+in+manufacturing&rft.jtitle=IET+collaborative+intelligent+manufacturing&rft.au=Zhang%2C+Cong&rft.au=Wu%2C+Yaoxin&rft.au=Ma%2C+Yining&rft.au=Song%2C+Wen&rft.date=2023-03-01&rft.issn=2516-8398&rft.eissn=2516-8398&rft.volume=5&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fcim2.12072&rft.externalDBID=10.1049%252Fcim2.12072&rft.externalDocID=CIM212072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-8398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-8398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-8398&client=summon