Environmental hotspots of lactic acid production systems

Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using bio‐based feedstocks is aligned with the global sustainability agenda,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology. Bioenergy Jg. 12; H. 1; S. 19 - 38
Hauptverfasser: Ögmundarson, Ólafur, Sukumara, Sumesh, Laurent, Alexis, Fantke, Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford John Wiley & Sons, Inc 01.01.2020
Wiley
Schlagworte:
ISSN:1757-1693, 1757-1707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using bio‐based feedstocks is aligned with the global sustainability agenda, impacts along the entire life cycle of biochemical production systems need to be evaluated. This will help to identify those processes and technologies, which should be targeted for optimizing overall environmental sustainability performance. To address this need, we quantify environmental impacts of biochemical production using distinct bio‐based feedstocks, and discuss the potential for reducing impact hotspots via process optimization. Lactic acid (LA) was used as an example biochemical derived from corn, corn stover, and macroalgae (Laminaria sp.) as feedstocks of different technological maturity. We used environmental life cycle assessment (LCA), a standardized methodology, considering the full life cycle of the analyzed biochemical production systems and a broad range of environmental impact indicators. Across production systems, feedstock production and biorefinery processes dominate life cycle impact profiles, with choice in energy mix and biomass processing as main influencing aspects. Results show that uncertainty decreases with increasing technological maturity. When using Laminaria sp. (least mature among selected feedstocks), impacts are mainly driven by energy utilities (up to 86%) due to biomass drying. This suggests to focus on optimizing or avoiding this process for significantly increasing environmental sustainability of Laminaria sp.‐based LA production. Our results demonstrate that applying LCA is useful for identifying environmental impact hotspots at an earlier stage of technological development across biochemical production systems. With that, our approach contributes to improving the environmental sustainability of future biochemical production as part of moving toward a viable bioeconomy worldwide. Environmental performance of biochemical production is largely a function of the chosen feedstock system. The present study demonstrates how life cycle assessment (LCA) can be applied to pinpoint environmental hotspots specific for producing lactic acid from three selected biofeedstocks, namely corn, corn stover, and macroalgae. Results highlight that feedstock production and biorefinery processes dominate life cycle impact profiles across feedstocks, mainly driven by choice in energy mix and biomass processes, especially biomass drying. We demonstrate that applying LCA is useful for identifying environmental impact hotspots at an early stage of technological development across biochemical production systems.
AbstractList Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using bio‐based feedstocks is aligned with the global sustainability agenda, impacts along the entire life cycle of biochemical production systems need to be evaluated. This will help to identify those processes and technologies, which should be targeted for optimizing overall environmental sustainability performance. To address this need, we quantify environmental impacts of biochemical production using distinct bio‐based feedstocks, and discuss the potential for reducing impact hotspots via process optimization. Lactic acid (LA) was used as an example biochemical derived from corn, corn stover, and macroalgae (Laminaria sp.) as feedstocks of different technological maturity. We used environmental life cycle assessment (LCA), a standardized methodology, considering the full life cycle of the analyzed biochemical production systems and a broad range of environmental impact indicators. Across production systems, feedstock production and biorefinery processes dominate life cycle impact profiles, with choice in energy mix and biomass processing as main influencing aspects. Results show that uncertainty decreases with increasing technological maturity. When using Laminaria sp. (least mature among selected feedstocks), impacts are mainly driven by energy utilities (up to 86%) due to biomass drying. This suggests to focus on optimizing or avoiding this process for significantly increasing environmental sustainability of Laminaria sp.‐based LA production. Our results demonstrate that applying LCA is useful for identifying environmental impact hotspots at an earlier stage of technological development across biochemical production systems. With that, our approach contributes to improving the environmental sustainability of future biochemical production as part of moving toward a viable bioeconomy worldwide. Environmental performance of biochemical production is largely a function of the chosen feedstock system. The present study demonstrates how life cycle assessment (LCA) can be applied to pinpoint environmental hotspots specific for producing lactic acid from three selected biofeedstocks, namely corn, corn stover, and macroalgae. Results highlight that feedstock production and biorefinery processes dominate life cycle impact profiles across feedstocks, mainly driven by choice in energy mix and biomass processes, especially biomass drying. We demonstrate that applying LCA is useful for identifying environmental impact hotspots at an early stage of technological development across biochemical production systems.
Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using bio‐based feedstocks is aligned with the global sustainability agenda, impacts along the entire life cycle of biochemical production systems need to be evaluated. This will help to identify those processes and technologies, which should be targeted for optimizing overall environmental sustainability performance. To address this need, we quantify environmental impacts of biochemical production using distinct bio‐based feedstocks, and discuss the potential for reducing impact hotspots via process optimization. Lactic acid (LA) was used as an example biochemical derived from corn, corn stover, and macroalgae (Laminaria sp.) as feedstocks of different technological maturity. We used environmental life cycle assessment (LCA), a standardized methodology, considering the full life cycle of the analyzed biochemical production systems and a broad range of environmental impact indicators. Across production systems, feedstock production and biorefinery processes dominate life cycle impact profiles, with choice in energy mix and biomass processing as main influencing aspects. Results show that uncertainty decreases with increasing technological maturity. When using Laminaria sp. (least mature among selected feedstocks), impacts are mainly driven by energy utilities (up to 86%) due to biomass drying. This suggests to focus on optimizing or avoiding this process for significantly increasing environmental sustainability of Laminaria sp.‐based LA production. Our results demonstrate that applying LCA is useful for identifying environmental impact hotspots at an earlier stage of technological development across biochemical production systems. With that, our approach contributes to improving the environmental sustainability of future biochemical production as part of moving toward a viable bioeconomy worldwide.
Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using bio‐based feedstocks is aligned with the global sustainability agenda, impacts along the entire life cycle of biochemical production systems need to be evaluated. This will help to identify those processes and technologies, which should be targeted for optimizing overall environmental sustainability performance. To address this need, we quantify environmental impacts of biochemical production using distinct bio‐based feedstocks, and discuss the potential for reducing impact hotspots via process optimization. Lactic acid (LA) was used as an example biochemical derived from corn, corn stover, and macroalgae ( Laminaria sp.) as feedstocks of different technological maturity. We used environmental life cycle assessment (LCA), a standardized methodology, considering the full life cycle of the analyzed biochemical production systems and a broad range of environmental impact indicators. Across production systems, feedstock production and biorefinery processes dominate life cycle impact profiles, with choice in energy mix and biomass processing as main influencing aspects. Results show that uncertainty decreases with increasing technological maturity. When using Laminaria sp. (least mature among selected feedstocks), impacts are mainly driven by energy utilities (up to 86%) due to biomass drying. This suggests to focus on optimizing or avoiding this process for significantly increasing environmental sustainability of Laminaria sp.‐based LA production. Our results demonstrate that applying LCA is useful for identifying environmental impact hotspots at an earlier stage of technological development across biochemical production systems. With that, our approach contributes to improving the environmental sustainability of future biochemical production as part of moving toward a viable bioeconomy worldwide.
Abstract Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important goal of a viable bioeconomy worldwide. However, to ensure that using bio‐based feedstocks is aligned with the global sustainability agenda, impacts along the entire life cycle of biochemical production systems need to be evaluated. This will help to identify those processes and technologies, which should be targeted for optimizing overall environmental sustainability performance. To address this need, we quantify environmental impacts of biochemical production using distinct bio‐based feedstocks, and discuss the potential for reducing impact hotspots via process optimization. Lactic acid (LA) was used as an example biochemical derived from corn, corn stover, and macroalgae (Laminaria sp.) as feedstocks of different technological maturity. We used environmental life cycle assessment (LCA), a standardized methodology, considering the full life cycle of the analyzed biochemical production systems and a broad range of environmental impact indicators. Across production systems, feedstock production and biorefinery processes dominate life cycle impact profiles, with choice in energy mix and biomass processing as main influencing aspects. Results show that uncertainty decreases with increasing technological maturity. When using Laminaria sp. (least mature among selected feedstocks), impacts are mainly driven by energy utilities (up to 86%) due to biomass drying. This suggests to focus on optimizing or avoiding this process for significantly increasing environmental sustainability of Laminaria sp.‐based LA production. Our results demonstrate that applying LCA is useful for identifying environmental impact hotspots at an earlier stage of technological development across biochemical production systems. With that, our approach contributes to improving the environmental sustainability of future biochemical production as part of moving toward a viable bioeconomy worldwide.
Author Laurent, Alexis
Fantke, Peter
Sukumara, Sumesh
Ögmundarson, Ólafur
Author_xml – sequence: 1
  givenname: Ólafur
  orcidid: 0000-0003-3171-2388
  surname: Ögmundarson
  fullname: Ögmundarson, Ólafur
  organization: Technical University of Denmark
– sequence: 2
  givenname: Sumesh
  orcidid: 0000-0002-7924-458X
  surname: Sukumara
  fullname: Sukumara, Sumesh
  organization: Technical University of Denmark
– sequence: 3
  givenname: Alexis
  orcidid: 0000-0003-0445-7983
  surname: Laurent
  fullname: Laurent, Alexis
  organization: Technical University of Denmark
– sequence: 4
  givenname: Peter
  orcidid: 0000-0001-7148-6982
  surname: Fantke
  fullname: Fantke, Peter
  email: pefan@dtu.dk
  organization: Technical University of Denmark
BookMark eNp9UE1PAyEUJKYmttWLv2ATbyatfCzLcrRNrU2aeNEzARYqzXapsNX038t21YMxkkcekJlh3ozAoPGNAeAawSlK626jlZoiXFB8BoaIUTZBDLLB97ng5AKMYtxCWNAC8SEoF827C77ZmaaVdfbq27hPO_M2q6Vunc6kdlW2D746pKtvsniMrdnFS3BuZR3N1Vcfg5eHxfP8cbJ-Wq7m9-uJziHBE1ZAXMJSakoot4RQbZVW2JqKIq04yhW3stRalbpiFjODbVniihlmOCOIkDFY9bqVl1uxD24nw1F46cTpwYeNkCH5rI3IDUyFkUWc5JJIzkmhGMQ2p1WuNUtaN71WGuftYGIrtv4QmmRfYIILRpLTDnXbo3TwMQZjf35FUHQpiy5lcUo5geEvsHat7IJqg3T13xTUUz5cbY7_iIvlfDbrOZ-tRJBq
CitedBy_id crossref_primary_10_3389_fbioe_2024_1447278
crossref_primary_10_3390_su152115312
crossref_primary_10_32604_jrm_2023_026646
crossref_primary_10_3390_polym15142977
crossref_primary_10_1016_j_jclepro_2021_129201
crossref_primary_10_1002_gch2_202200218
crossref_primary_10_1016_j_spc_2022_09_013
crossref_primary_10_1007_s11947_024_03416_x
crossref_primary_10_1016_j_copbio_2025_103292
crossref_primary_10_1016_j_scitotenv_2023_167051
crossref_primary_10_1016_j_psep_2024_12_035
crossref_primary_10_1186_s12302_021_00587_8
crossref_primary_10_1038_s41893_019_0442_8
crossref_primary_10_1007_s41130_024_00206_z
crossref_primary_10_1016_j_biombioe_2023_106839
crossref_primary_10_1016_j_jclepro_2020_125378
crossref_primary_10_1016_j_rser_2022_112259
crossref_primary_10_1038_s41467_024_54897_5
crossref_primary_10_3389_fsufs_2022_1001769
crossref_primary_10_1002_bbb_2160
crossref_primary_10_1016_j_fbp_2024_09_020
crossref_primary_10_1186_s13068_022_02239_2
crossref_primary_10_1002_smll_202301262
crossref_primary_10_1016_j_renene_2023_02_011
crossref_primary_10_1016_j_jclepro_2022_130880
crossref_primary_10_1007_s00253_022_11804_6
crossref_primary_10_1016_j_tibtech_2020_04_011
crossref_primary_10_1134_S1811238221020028
crossref_primary_10_1016_j_biombioe_2020_105812
crossref_primary_10_1016_j_tibtech_2023_03_011
crossref_primary_10_1016_j_rser_2023_113218
crossref_primary_10_1016_j_spc_2024_05_021
crossref_primary_10_1016_j_jclepro_2024_144347
crossref_primary_10_1038_s41564_023_01517_5
crossref_primary_10_1016_j_wasman_2021_02_052
crossref_primary_10_1007_s10098_022_02373_3
crossref_primary_10_1016_j_scitotenv_2020_142466
crossref_primary_10_3390_chemengineering8040074
crossref_primary_10_1016_j_copbio_2022_102781
crossref_primary_10_3390_en15239119
crossref_primary_10_1016_j_resconrec_2024_108087
crossref_primary_10_1016_j_cogsc_2021_100513
crossref_primary_10_1186_s12934_023_02266_0
crossref_primary_10_1016_j_chemosphere_2022_136694
crossref_primary_10_1111_jiec_13394
crossref_primary_10_1007_s11367_022_02053_w
crossref_primary_10_1016_j_biortech_2023_130196
crossref_primary_10_1016_j_glt_2025_04_001
crossref_primary_10_1016_j_chempr_2021_09_012
crossref_primary_10_1016_j_jclepro_2024_141987
crossref_primary_10_1016_j_envres_2024_118286
crossref_primary_10_3390_ma16176046
crossref_primary_10_1049_enb2_12017
crossref_primary_10_1016_j_ijbiomac_2024_134797
crossref_primary_10_1038_s41467_024_45749_3
crossref_primary_10_1016_j_jclepro_2022_133412
crossref_primary_10_1016_j_matt_2022_11_006
crossref_primary_10_3390_jmse11010175
crossref_primary_10_1007_s13399_021_01375_3
crossref_primary_10_1016_j_jclepro_2023_137513
crossref_primary_10_1016_j_scitotenv_2022_153418
crossref_primary_10_1016_j_spc_2024_08_007
crossref_primary_10_1016_j_cattod_2022_10_019
Cites_doi 10.1016/j.scitotenv.2016.04.010
10.1089/ind.2007.3.058
10.1007/s10499-017-0120-7
10.4490/algae.2011.26.3.265
10.1039/C6EE00634E
10.3390/su7078621
10.1016/j.scitotenv.2014.06.084
10.1016/j.tibtech.2014.02.007
10.1002/cind.805_10.x
10.1016/j.biortech.2012.10.025
10.1016/j.jclepro.2013.09.030
10.1016/j.rser.2015.09.070
10.1007/s11367-010-0225-y
10.1038/nature21001
10.1016/j.biortech.2016.11.116
10.1089/ind.2010.6.212
10.1016/j.jclepro.2016.07.195
10.1021/acs.est.5b01192
10.1016/j.rser.2016.02.015
10.1016/j.biotechadv.2010.05.005
10.1002/9781118933916.ch20
10.1016/j.polymdegradstab.2013.06.016
10.2172/1250468
10.1016/j.biortech.2015.07.098
10.1016/j.jclepro.2009.03.015
10.1002/ep.10490
10.1016/j.jclepro.2017.02.022
10.1002/bbb.1734
10.1039/C5EE01763G
10.1002/jctb.5003
10.1016/j.rser.2015.04.114
10.1007/s11367-016-1246-y
10.1016/j.resconrec.2013.06.010
10.1089/ind.2015.0003
10.1021/ie801612p
10.1016/j.fbp.2016.04.005
10.1007/s10811-016-1039-5
10.2172/1013269
10.1016/j.biortech.2017.04.035
10.1002/9780470649848.ch26
10.1016/j.wasman.2013.12.004
10.1016/j.biortech.2018.06.004
10.1016/j.scitotenv.2015.08.023
10.1016/j.rser.2015.06.013
10.1016/j.copbio.2017.03.008
10.1021/acssuschemeng.6b01732
10.1007/s10811-014-0327-1
10.1016/j.wasman.2013.10.045
10.1016/j.cogsc.2018.12.001
10.1007/s11367-016-1087-8
10.1021/acssuschemeng.6b00243
10.1007/978-3-319-56475-3_30
10.1016/j.jclepro.2015.03.013
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Ltd
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7SN
7ST
7U6
7XB
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
LK8
M2O
M7P
MBDVC
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1111/gcbb.12652
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Materials Science Database
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Sustainability Science Abstracts
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1757-1707
EndPage 38
ExternalDocumentID oai_doaj_org_article_4e04e021f1934a3a9936b702f45d4cc7
10_1111_gcbb_12652
GCBB12652
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8G5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABJCF
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
AZQEC
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CAG
CCPQU
COF
D-E
D-F
D1I
DPXWK
DR2
DU5
DWQXO
EBD
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IGS
IHR
ITC
J0M
KB.
KQ8
L8X
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M2O
M7P
MK4
M~E
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2X
P4D
PDBOC
PIMPY
PQQKQ
PROAC
Q.N
Q11
QB0
R.K
ROL
RWI
RX1
SUPJJ
TEORI
TUS
UB1
W8V
W99
WIH
WIN
WNSPC
WQJ
WRC
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
3V.
7SN
7ST
7U6
7XB
8FK
C1K
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c4032-7602808ac5359f335cfbcb2fed51cb914b9fa8ccb8cd7f27e2f882d7e7e973133
IEDL.DBID KB.
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540000700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-1693
IngestDate Fri Oct 03 12:53:28 EDT 2025
Wed Aug 13 06:15:55 EDT 2025
Sat Nov 29 03:32:09 EST 2025
Tue Nov 18 21:05:12 EST 2025
Wed Jan 22 16:36:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4032-7602808ac5359f335cfbcb2fed51cb914b9fa8ccb8cd7f27e2f882d7e7e973133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0445-7983
0000-0003-3171-2388
0000-0001-7148-6982
0000-0002-7924-458X
OpenAccessLink https://www.proquest.com/docview/2326738087?pq-origsite=%requestingapplication%
PQID 2326738087
PQPubID 866396
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_4e04e021f1934a3a9936b702f45d4cc7
proquest_journals_2326738087
crossref_primary_10_1111_gcbb_12652
crossref_citationtrail_10_1111_gcbb_12652
wiley_primary_10_1111_gcbb_12652_GCBB12652
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology. Bioenergy
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 15
2019; 15
2017; 45
2016; 540
2017; 150
2009; 48
2017; 238
2014; 65
2018; 6
2015; 49
2013; 98
2010; 28
2015; 537
2011; 26
2016; 80
2007; 3
2010; 6
2009; 17
2018; 264
2016; 563–564
2011
2006b
2017; 25
2015; 51
2010
2006a
2017; 22
2015; 99
2017; 68
2015; 11
1997
2011; 30
2016; 53
2006
2017; 29
2003
2016; 91
2015; 8
2015; 7
2016; 99
2016; 4
2015; 196
2015; 27
2013; 78
2017; 11
2016; 21
2019
2018
2017
2013; 135
2016
2015
2014
2016; 137
2013
2018; 10
2014; 494–495
2017; 225
2014; 34
2016; 9
2014; 32
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
International Organization for Standardization [ISO] (e_1_2_6_37_1) 2006
e_1_2_6_30_1
e_1_2_6_72_1
European Commission [EC] (e_1_2_6_17_1) 2010
The Organization for Economic Cooperation and Development [OECD] (e_1_2_6_68_1) 2014
Wee Y. (e_1_2_6_80_1) 2006
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
Ögmundarson Ó. (e_1_2_6_62_1) 2019
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_64_1
e_1_2_6_43_1
Moore K. J. (e_1_2_6_49_1) 2014
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_60_1
e_1_2_6_83_1
Breedveld L. (e_1_2_6_8_1) 2014
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_28_1
Koundinya V. (e_1_2_6_41_1) 2018
e_1_2_6_45_1
e_1_2_6_52_1
Taylor R. (e_1_2_6_67_1) 2015
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
International Energy Agency [IEA] (e_1_2_6_35_1) 2017
International Organization for Standardization [ISO] (e_1_2_6_36_1) 2006
European Bioplastics (e_1_2_6_16_1) 2017
Helmes R. J. K. (e_1_2_6_26_1) 2018; 10
Statistics Iceland (e_1_2_6_65_1) 2018
The Organization for Economic Cooperation and Development [OECD] (e_1_2_6_69_1) 2018
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
Tomás‐Grasa E. (e_1_2_6_71_1)
e_1_2_6_39_1
e_1_2_6_56_1
United States Environmental Protection Agency [EPA] (e_1_2_6_73_1) 2018
e_1_2_6_77_1
e_1_2_6_58_1
e_1_2_6_79_1
Carlson T. L. (e_1_2_6_9_1) 1997
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_21_1
European Committee for Standardization [CEN] (e_1_2_6_19_1) 2015
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Patel M. K. (e_1_2_6_53_1) 2018; 6
Patel M. (e_1_2_6_54_1) 2006
Davis R. (e_1_2_6_13_1) 2013
McHugh D. J. (e_1_2_6_47_1) 2003
e_1_2_6_6_1
European Commission [EC] (e_1_2_6_18_1) 2018
Food and Agriculture Organization of the United Nations [FAO] (e_1_2_6_22_1) 2019
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
Aeschelmann F. (e_1_2_6_4_1) 2016
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 8
  start-page: 2537
  issue: 9
  year: 2015
  end-page: 2550
  article-title: Ecodesign of organic photovoltaic modules from Danish and Chinese perspectives
  publication-title: Energy & Environmental Science
– year: 2011
– volume: 34
  start-page: 573
  issue: 3
  year: 2014
  end-page: 588
  article-title: Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives
  publication-title: Waste Management
– start-page: 331
  year: 2014
  end-page: 352
– volume: 99
  start-page: 230
  year: 2015
  end-page: 238
  article-title: A framework for modelling indirect land-use changes in life cycle assessment
  publication-title: Journal of Cleaner Production
– volume: 6
  start-page: 246
  issue: 3
  year: 2018
  end-page: 256
  article-title: Second‐generation bio‐based plastics are becoming a reality – Non‐renewable energy and greenhouse gas (GHG) balance of succinic acid‐based plastic end products made from lignocellulosic biomass
  publication-title: Biofuels, Bioproducts and Biorefining
– year: 2019
  article-title: Addressing environmental sustainability of biochemicals
  publication-title: Nature Sustainability
– start-page: 431
  year: 2010
  end-page: 441
– volume: 9
  start-page: 2794
  issue: 9
  year: 2016
  end-page: 2805
  article-title: Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering
  publication-title: Energy & Environmental Science
– start-page: 755
  year: 2018
  end-page: 782
– volume: 65
  start-page: 539
  issue: 4
  year: 2014
  end-page: 550
  article-title: Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective
  publication-title: Journal of Cleaner Production
– volume: 30
  start-page: 459
  issue: 3
  year: 2011
  end-page: 468
  article-title: Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water
  publication-title: Environmental Progress & Sustainable Energy
– year: 2018
– year: 2014
– volume: 11
  start-page: 258
  issue: 2
  year: 2017
  end-page: 268
  article-title: Life cycle analysis of corn‐stover‐derived polymer‐grade l‐lactic acid and ethyl lactate: Greenhouse gas emissions and fossil energy consumption
  publication-title: Biofuels, Bioproducts and Biorefining
– volume: 196
  start-page: 301
  year: 2015
  end-page: 313
  article-title: Ensiling of seaweed for a seaweed biofuel industry
  publication-title: Bioresource Technology
– volume: 28
  start-page: 556
  issue: 5
  year: 2010
  end-page: 562
  article-title: Key technologies for bioethanol production from lignocellulose
  publication-title: Biotechnology Advances
– volume: 10
  start-page: 1
  issue: 7
  year: 2018
  end-page: 15
  article-title: Environmental impacts of experimental production of lactic acid for bioplastics from spp
  publication-title: Sustainability (Switzerland)
– volume: 80
  start-page: 30
  issue: 5
  year: 2016
  end-page: 33
  article-title: Biochemicals outlook
  publication-title: Chemistry & Industry
– volume: 15
  start-page: 91
  year: 2019
  end-page: 97
  article-title: Goods that are good enough: Introducing an absolute sustainability perspective for managing chemicals in consumer products
  publication-title: Current Opinion in Green and Sustainable Chemistry
– volume: 91
  start-page: 2221
  issue: 8
  year: 2016
  end-page: 2234
  article-title: Potential process “hurdles” in the use of macroalgae as feedstock for biofuel production in the British Isles
  publication-title: Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986)
– volume: 22
  start-page: 138
  issue: 2
  year: 2017
  end-page: 147
  article-title: ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level
  publication-title: International Journal of Life Cycle Assessment
– volume: 494–495
  start-page: 129
  issue: 50
  year: 2014
  end-page: 143
  article-title: Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups
  publication-title: The Science of the Total Environment
– volume: 32
  start-page: 231
  issue: 5
  year: 2014
  end-page: 233
  article-title: Opportunities and challenges for seaweed in the biobased economy
  publication-title: Trends in Biotechnology
– volume: 27
  start-page: 363
  issue: 1
  year: 2015
  end-page: 373
  article-title: The seasonal variation in the chemical composition of the kelp species , , and
  publication-title: Journal of Applied Phycology
– volume: 540
  start-page: 354
  issue: 7633
  year: 2016
  end-page: 362
  article-title: Sustainable polymers from renewable resources
  publication-title: Nature
– year: 1997
– volume: 150
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Seaweed as innovative feedstock for energy and feed – Evaluating the impacts through a life cycle assessment
  publication-title: Journal of Cleaner Production
– volume: 6
  start-page: 212
  issue: 4
  year: 2010
  end-page: 224
  article-title: The eco‐profile for current Ingeo polylactide production
  publication-title: Industrial Biotechnology
– volume: 537
  start-page: 385
  year: 2015
  end-page: 398
  article-title: Polylactic acid trays for fresh‐food packaging: A Carbon Footprint assessment
  publication-title: The Science of the Total Environment
– year: 2006b
– volume: 7
  start-page: 8621
  issue: 7
  year: 2015
  end-page: 8634
  article-title: Corn stover nutrient removal estimates for Central Iowa, USA
  publication-title: Sustainability
– volume: 29
  start-page: 2463
  issue: 5
  year: 2017
  end-page: 2469
  article-title: The effect of mechanical pre‐processing and different drying methodologies on bioethanol production using the brown macroalga (Hudson) JV Lamouroux
  publication-title: Journal of Applied Phycology
– year: 2019
– start-page: 157
  year: 2014
  end-page: 166
– volume: 26
  start-page: 265
  issue: 3
  year: 2011
  end-page: 275
  article-title: Bioaccumulation of copper and zinc by the giant kelp
  publication-title: Algae
– year: 2015
– volume: 45
  start-page: 202
  year: 2017
  end-page: 211
  article-title: Cellulosic ethanol: Status and innovation
  publication-title: Current Opinion in Biotechnology
– volume: 98
  start-page: 1898
  issue: 9
  year: 2013
  end-page: 1907
  article-title: Sustainability assessments of bio‐based polymers
  publication-title: Polymer Degradation and Stability
– volume: 78
  start-page: 54
  issue: 5
  year: 2013
  end-page: 66
  article-title: Life cycle assessments of biodegradable, commercial biopolymers—A critical review
  publication-title: Resources, Conservation and Recycling
– volume: 563–564
  start-page: 513
  year: 2016
  end-page: 529
  article-title: Bioextraction potential of seaweed in Denmark — An instrument for circular nutrient management
  publication-title: Science of the Total Environment
– year: 2003
– volume: 4
  start-page: 3196
  issue: 6
  year: 2016
  end-page: 3211
  article-title: The techno‐economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 99
  start-page: 58
  year: 2016
  end-page: 70
  article-title: Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills
  publication-title: Food and Bioproducts Processing
– volume: 4
  start-page: 6783
  issue: 12
  year: 2016
  end-page: 6791
  article-title: Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry‐relevant scales
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 48
  start-page: 8068
  issue: 17
  year: 2009
  end-page: 8082
  article-title: 1,3‐propanediol from fossils versus biomass: A life cycle evaluation of emissions and ecological resources
  publication-title: Industrial & Engineering Chemistry Research
– volume: 53
  start-page: 1486
  year: 2016
  end-page: 1499
  article-title: Techno‐economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 3
  start-page: 58
  issue: 1
  year: 2007
  end-page: 81
  article-title: The eco‐profiles for current and near‐future NatureWorks polylactide (PLA) production
  publication-title: Industrial Biotechnology
– year: 2006a
– year: 2016
– start-page: 307
  year: 2015
  end-page: 321
– volume: 225
  start-page: 418
  year: 2017
  end-page: 428
  article-title: Using life cycle assessment and techno‐economic analysis in a real options framework to inform the design of algal biofuel production facilities
  publication-title: Bioresource Technology
– year: 2010
– volume: 49
  start-page: 7996
  issue: 13
  year: 2015
  end-page: 8003
  article-title: Allocation games: Addressing the ill‐posed nature of allocation in life‐cycle inventories
  publication-title: Environmental Science & Technology
– volume: 68
  start-page: 876
  year: 2017
  end-page: 887
  article-title: A review of the sustainability of algal‐based biorefineries: Towards an integrated assessment framework
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 135
  start-page: 182
  year: 2013
  end-page: 190
  article-title: Potentials of macroalgae as feedstocks for biorefinery
  publication-title: Bioresource Technology
– volume: 264
  start-page: 370
  year: 2018
  end-page: 381
  article-title: The path forward for lignocellulose biorefineries: Bottlenecks, Solutions, and perspective on commercialization
  publication-title: Bioresource Technology
– volume: 51
  start-page: 506
  year: 2015
  end-page: 520
  article-title: Biorenewable chemicals: Feedstocks, technologies and the conflict with food production
  publication-title: Renewable and Sustainable Energy Reviews
– year: 2006
– article-title: Commodity chemical production from 3rd generation biomass: A techno‐economic assessment on lactic acid production
  publication-title: Biofuels, Bioproducts and Biorefining
– volume: 21
  start-page: 1218
  issue: 9
  year: 2016
  end-page: 1230
  article-title: The ecoinvent database version 3 (part I): Overview and methodology
  publication-title: International Journal of Life Cycle Assessment
– volume: 11
  start-page: 167
  issue: 3
  year: 2015
  end-page: 180
  article-title: Life cycle inventory and impact assessment data for 2014 Ingeo polylactide production
  publication-title: Industrial Biotechnology
– volume: 238
  start-page: 16
  year: 2017
  end-page: 21
  article-title: Butanol fermentation of the brown seaweed by DSM‐6422
  publication-title: Bioresource Technology
– volume: 15
  start-page: 970
  issue: 9
  year: 2010
  end-page: 984
  article-title: Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand
  publication-title: The International Journal of Life Cycle Assessment
– year: 2017
– volume: 25
  start-page: 1373
  issue: 4
  year: 2017
  end-page: 1390
  article-title: Seaweed aquaculture in Norway: Recent industrial developments and future perspectives
  publication-title: Aquaculture International
– volume: 34
  start-page: 589
  issue: 3
  year: 2014
  end-page: 606
  article-title: Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice
  publication-title: Waste Management
– volume: 17
  start-page: 1183
  issue: 13
  year: 2009
  end-page: 1194
  article-title: Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology
  publication-title: Journal of Cleaner Production
– volume: 137
  start-page: 1158
  year: 2016
  end-page: 1169
  article-title: Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – A step towards a regenerative bioeconomy
  publication-title: Journal of Cleaner Production
– volume: 49
  start-page: 335
  year: 2015
  end-page: 349
  article-title: Current states and prospects of organic waste utilization for biorefineries
  publication-title: Renewable and Sustainable Energy Reviews
– year: 2013
– ident: e_1_2_6_60_1
  doi: 10.1016/j.scitotenv.2016.04.010
– volume-title: Fisheries and aquaculture software
  year: 2019
  ident: e_1_2_6_22_1
– ident: e_1_2_6_79_1
  doi: 10.1089/ind.2007.3.058
– year: 2019
  ident: e_1_2_6_62_1
  article-title: Addressing environmental sustainability of biochemicals
  publication-title: Nature Sustainability
– ident: e_1_2_6_66_1
  doi: 10.1007/s10499-017-0120-7
– ident: e_1_2_6_20_1
  doi: 10.4490/algae.2011.26.3.265
– ident: e_1_2_6_50_1
  doi: 10.1039/C6EE00634E
– ident: e_1_2_6_39_1
  doi: 10.3390/su7078621
– ident: e_1_2_6_75_1
  doi: 10.1016/j.scitotenv.2014.06.084
– volume-title: Biobased chemicals and bioplastics
  year: 2014
  ident: e_1_2_6_68_1
– ident: e_1_2_6_76_1
  doi: 10.1016/j.tibtech.2014.02.007
– ident: e_1_2_6_64_1
  doi: 10.1002/cind.805_10.x
– ident: e_1_2_6_38_1
  doi: 10.1016/j.biortech.2012.10.025
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jclepro.2013.09.030
– ident: e_1_2_6_55_1
  doi: 10.1016/j.rser.2015.09.070
– ident: e_1_2_6_24_1
  doi: 10.1007/s11367-010-0225-y
– volume-title: ISO 14044:2006 – Environmental management – Life cycle assessment – Requirements and guidelines
  year: 2006
  ident: e_1_2_6_37_1
– ident: e_1_2_6_72_1
– ident: e_1_2_6_84_1
  doi: 10.1038/nature21001
– volume: 10
  start-page: 1
  issue: 7
  year: 2018
  ident: e_1_2_6_26_1
  article-title: Environmental impacts of experimental production of lactic acid for bioplastics from Ulva spp
  publication-title: Sustainability (Switzerland)
– volume-title: A guide to the seaweed industry
  year: 2003
  ident: e_1_2_6_47_1
– ident: e_1_2_6_40_1
  doi: 10.1016/j.biortech.2016.11.116
– ident: e_1_2_6_61_1
– volume-title: Total primary energy supply (TPES) by source (chart)
  year: 2018
  ident: e_1_2_6_65_1
– ident: e_1_2_6_78_1
  doi: 10.1089/ind.2010.6.212
– volume-title: Low PH lactic acid fermentation (Patent)
  year: 1997
  ident: e_1_2_6_9_1
– ident: e_1_2_6_58_1
  doi: 10.1016/j.jclepro.2016.07.195
– ident: e_1_2_6_25_1
  doi: 10.1021/acs.est.5b01192
– ident: e_1_2_6_70_1
  doi: 10.1016/j.rser.2016.02.015
– ident: e_1_2_6_11_1
  doi: 10.1016/j.biotechadv.2010.05.005
– ident: e_1_2_6_63_1
  doi: 10.1002/9781118933916.ch20
– ident: e_1_2_6_29_1
  doi: 10.1016/j.polymdegradstab.2013.06.016
– volume: 6
  start-page: 246
  issue: 3
  year: 2018
  ident: e_1_2_6_53_1
  article-title: Second‐generation bio‐based plastics are becoming a reality – Non‐renewable energy and greenhouse gas (GHG) balance of succinic acid‐based plastic end products made from lignocellulosic biomass
  publication-title: Biofuels, Bioproducts and Biorefining
– ident: e_1_2_6_14_1
  doi: 10.2172/1250468
– ident: e_1_2_6_27_1
  doi: 10.1016/j.biortech.2015.07.098
– ident: e_1_2_6_46_1
  doi: 10.1016/j.jclepro.2009.03.015
– ident: e_1_2_6_23_1
  doi: 10.1002/ep.10490
– start-page: 331
  volume-title: Compendium of bioenergy plants: Corn
  year: 2014
  ident: e_1_2_6_49_1
– ident: e_1_2_6_59_1
  doi: 10.1016/j.jclepro.2017.02.022
– ident: e_1_2_6_3_1
  doi: 10.1002/bbb.1734
– ident: e_1_2_6_15_1
  doi: 10.1039/C5EE01763G
– ident: e_1_2_6_48_1
  doi: 10.1002/jctb.5003
– volume-title: Medium and long‐term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources – The potential of white biotechnology
  year: 2006
  ident: e_1_2_6_54_1
– ident: e_1_2_6_82_1
  doi: 10.1016/j.rser.2015.04.114
– volume-title: Bio‐based building blocks and polymers. Global capacities and trends 2017–2022
  year: 2016
  ident: e_1_2_6_4_1
– ident: e_1_2_6_31_1
  doi: 10.1007/s11367-016-1246-y
– volume-title: European standard EN 16760:2015 – Bio‐based products – Life cycle assessment
  year: 2015
  ident: e_1_2_6_19_1
– ident: e_1_2_6_83_1
  doi: 10.1016/j.resconrec.2013.06.010
– volume-title: Biotechnological production of lactic acid and its recent applications
  year: 2006
  ident: e_1_2_6_80_1
– volume-title: From the sugar platform to biofuels and biochemicals. Final report for the European Commission, contract No ENER/C2/423‐2012/SI2.673791
  year: 2015
  ident: e_1_2_6_67_1
– volume-title: Corn stover
  year: 2018
  ident: e_1_2_6_41_1
– ident: e_1_2_6_77_1
  doi: 10.1089/ind.2015.0003
– volume-title: The International reference life cycle data system (ILCD) handbook – General guide for life cycle assessment – Detailed guidance
  year: 2010
  ident: e_1_2_6_17_1
– ident: e_1_2_6_74_1
  doi: 10.1021/ie801612p
– ident: e_1_2_6_12_1
  doi: 10.1016/j.fbp.2016.04.005
– ident: e_1_2_6_71_1
  article-title: Commodity chemical production from 3rd generation biomass: A techno‐economic assessment on lactic acid production
  publication-title: Biofuels, Bioproducts and Biorefining
– ident: e_1_2_6_2_1
  doi: 10.1007/s10811-016-1039-5
– ident: e_1_2_6_33_1
– ident: e_1_2_6_32_1
  doi: 10.2172/1013269
– ident: e_1_2_6_30_1
  doi: 10.1016/j.biortech.2017.04.035
– ident: e_1_2_6_42_1
  doi: 10.1002/9780470649848.ch26
– ident: e_1_2_6_44_1
  doi: 10.1016/j.wasman.2013.12.004
– volume-title: The Organization for Economic Cooperation and Development statistics
  year: 2018
  ident: e_1_2_6_69_1
– ident: e_1_2_6_10_1
  doi: 10.1016/j.biortech.2018.06.004
– ident: e_1_2_6_5_1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.scitotenv.2015.08.023
– volume-title: Process design and economics for the conversion of algal biomass to biofuels: Algal biomass fractionation to lipid‐ and carbohydrate‐derived fuel products
  year: 2013
  ident: e_1_2_6_13_1
– ident: e_1_2_6_6_1
  doi: 10.1016/j.rser.2015.06.013
– start-page: 157
  volume-title: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri‐Food Sector (LCA Food 2014), San Francisco, California, USA, 8–10 October, 2014
  year: 2014
  ident: e_1_2_6_8_1
– volume-title: Chinese energy and heat mix
  year: 2017
  ident: e_1_2_6_35_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.copbio.2017.03.008
– ident: e_1_2_6_51_1
  doi: 10.1021/acssuschemeng.6b01732
– volume-title: ISO 14040:2006 – Environmental management – Life cycle assessment – Principles and framework
  year: 2006
  ident: e_1_2_6_36_1
– ident: e_1_2_6_56_1
  doi: 10.1007/s10811-014-0327-1
– ident: e_1_2_6_43_1
  doi: 10.1016/j.wasman.2013.10.045
– ident: e_1_2_6_21_1
  doi: 10.1016/j.cogsc.2018.12.001
– volume-title: Bioplastics: Facts and figure
  year: 2017
  ident: e_1_2_6_16_1
– ident: e_1_2_6_81_1
  doi: 10.1007/s11367-016-1087-8
– ident: e_1_2_6_7_1
  doi: 10.1021/acssuschemeng.6b00243
– volume-title: A European strategy for plastics in a circular economy. COM(2018) 28 final
  year: 2018
  ident: e_1_2_6_18_1
– ident: e_1_2_6_28_1
  doi: 10.1007/978-3-319-56475-3_30
– volume-title: Plastics: Material‐specific data
  year: 2018
  ident: e_1_2_6_73_1
– ident: e_1_2_6_57_1
  doi: 10.1016/j.jclepro.2015.03.013
SSID ssj0065619
ssib009979516
ssib036249247
Score 2.4831598
Snippet Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an important...
Abstract Using selected bio‐based feedstocks as alternative to fossil resources for producing biochemicals and derived materials is increasingly considered an...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Acid production
Agricultural commodities
Algae
biochemicals
Biochemistry
Biomass
Biomass energy production
Biorefineries
Chemicals
Commercial markets
Corn
corn stover
Drying
Environmental aspects
Environmental impact
Environmental indicators
Environmental performance
environmental sustainability
Food
hotspots
Inventory
Lactic acid
Laminaria
Laminaria sp
Life cycle analysis
Life cycle assessment
Life cycles
Lignocellulose
Optimization
Plastics
Raw materials
Seaweeds
Stover
Sustainability
Sustainable development
Systems analysis
uncertainty
Utilities
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2keNCD-InVKgG9KEST_chmj7a0eioeFHoLm8muFkpbmujvd3aT1hZEL0IOIdnDMjPJvJfsvkfINSuAC1AcuUnkPt1EJkxjJkJsJRqMZRBp7c0m5HCYjkbqec3qy60Jq-WB68DdcxPhQWOLSINrprGfJrmMqOWi4AB-H3kk1RqZcpWklFTiG_jgW5oj0VhRMQQx3vIDe6cMnRxJI1zq1vi8QZ7fxTQRdKNVeUX_DRi6DmZ9Nxrsk70GRgYP9fQPyJaZHpLdNXHBI5L2v_ew4dD3WYUMtiqDmQ0mfmdUoGFcBPNa8hXTE9SqzuUxeR30X3pPYeOTEAKPGALkxP0fTTUIJpRlTIDNIafWFCKGXMU8V1anAHkKhbRUGmoRVxfSSOOMqxg7Ia3pbGpOSUAtxUAXCQitODUyRbohEusMfbnFfLfJzTIkGTQi4s7LYpItyYQLX-bD1yZXq7HzWjrjx1FdF9nVCCd37S9gEWRNEWR_FUGbdJZ5yZpnsMwQKzpL0yjF27c-V79MI3vsdbv-7Ow_JnROdqgj5v5bTYe0qsWHuSDb8FmNy8Wlr9Uv8cfmug
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iHvTgW1xdpaAXhUqbR9OAF3fxcRIPCnsryTRRQXZlu_r7naTd7i6IIEIPpR1KmpnJfDNtviHkjJXABSiOuUniSzeJjfOUiRhDiQbrGCRah2YT8uEhHwzU4xK5mu6Fqfkh2oKb94ywXnsH16aac_IXMOYypZnABXglTZn0Nk35Y2tNSkklZuAHV2qOyUabjiGQCW0_MH7K2FOSNOSl_j-f2bMXwlVg9V-AovOANkSk283_vcsW2WiQaHRdm842WbLDHbI-x0-4S_Kb2TY4FH0dTTAJnlTRyEXvYXNVpOGtjD5q1ljUcFQTQ1d75Pn25ql_HzetFmLgCUOMnflPrLkGwYRyjAlwBgx1thQpGJVyo5zOAUwOpXRUWuoQmpfSSut7XzG2T5aHo6E9IBF11KWqzEBoxamVOWYsInO-JzB3aDIdcj6d0QIaHnLfDuO9mOYjfjaKMBsdctrKftTsGz9K9bxiWgnPmB0ujMYvReOABbcJHjTFsTGumUZclhmZUMdFyQFkh3Snai0aN64KhJu-K2qS4-2LoMBfhlHc9Xu9cHb4F-EjskZ9Dh_KOl2yPBl_2mOyCl-Tt2p8Ekz6G0wM88Y
  priority: 102
  providerName: Wiley-Blackwell
Title Environmental hotspots of lactic acid production systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12652
https://www.proquest.com/docview/2326738087
https://doaj.org/article/4e04e021f1934a3a9936b702f45d4cc7
Volume 12
WOSCitedRecordID wos000540000700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: M7P
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: KB.
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: M2O
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1757-1707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065619
  issn: 1757-1693
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceCMWyioSXEBKSfyI4xMi1RZ66BIhEOUUORO7VKo2282W38_Y691tJdQLUmTlYUWJx_F8M46_D-At71BI1IJik8ynbjKbljmXKbkSg9ZxzIwJYhNqOi1PT3UdE25D_K1yPSaGgbrr0efIP5Dn9wKVWak-zi9TrxrlZ1ejhMYO7OWMsL6flK0ONv1Ja6XlFv7QWC0o3NgEZARlgvAHeVCVelKSSF_q__Q5w7Y9yFkh2Q2HFXj9b4DR65A2-KSjh__7No_gQUSjyadV93kMd-zsCdy_xlH4FMrJdikcVf3dLykQXg5J75KLsMAqMXjeJfMVcyxZOVmRQw_P4MfR5PvhlzTKLaQoMk44u_DTrKVByaV2nEt0LbbM2U7m2OpctNqZErEtsVOOKcscwfNOWWW9_hXnz2F31s_sC0iYYy7XXYHSaMGsKilqkYXzusDCUbcZwbt1mzYYuci9JMZFs45JfPs3of1H8GZTd75i4PhnrcqbZlPDs2aHE_3irIkfYSNsRhvL6dm4MNwQNitalTEnZCcQ1Qj219Zq4qc8NFtTjeB9MPYtj9F8PqyqsPfy9nu9gnvMR-4hmbMPu8vFlX0Nd_HP8nxYjGGHiXoMe9VkWn8bhzzBOHRtKk_YV18qf70-Pql_0dHP4-lfAT79aw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQk48I1YKBAJOIAUSPwRxweE2NLSqmXVQ5F6M87ELpWqzbJZQPwpfiNjJ9ltJdRbD0g5RJEVWZnnmTcTex7AC16jkKgF5SZZKN1kLi1zLlMKJRad55hZG8Um1GRSHh3pgzX4M5yFCdsqB58YHXXdYKiRv6XIHwQqs1K9n31Pg2pU-Ls6SGh0sNhzv39Ryta-2_1I9n3J2PbW4eZO2qsKpCgyTnSyCH8TS4uSS-05l-grrJh3tcyx0rmotLclYlVirTxTjnliobVyygWZp1AAJZd_hWgEy-JWwYMlfrVWWq7oFsUGQenNMgEk6hSFRihiqzQ0QenbpYadRcdYVW9yVkh2LkBGHYFz5PcshY4xcPvW__b1bsPNnm0nH7rlcQfW3PQu3DjTg_EelFuro3409FuzoER_0SaNT07jAbLE4kmdzLrOuITipGt-3d6HL5cy9QewPm2m7iEkzDOf67pAabVgTpWUlcnCB91j4WlZjODVYEODfa_1IPlxaoacK9jbRHuP4Ply7KzrMPLPUeMAheWI0BU8Pmjmx6Z3Mka4jC6W09y4sNwS9ywqlTEvZC0Q1Qg2BnSY3lW1ZgWNEbyO4LpgGubT5ngc7x5d_K5ncG3n8PO-2d-d7D2G6yxUKWLhagPWF_Mf7glcxZ-Lk3b-NC6hBL5eNur-At8ZU1c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH-UrYgerJ-4WjWgHhRik8lMJnMoxW27ulSXPSjU0zR5mWkLZbPdrIr_mn9d30yS3Raktx6EBEJ4hCHvN-9rZt4P4E1SIheoOOUmkSvdRCbM4kSE5EpyNDbBKM892YQcj7PDQzVZg7_dWRi3rbKzid5QlxW6GvkWeX5HUBllcsu22yIme8Od2XnoGKTcSmtHp9FA5MD8-U3pW7092iNdv2VsuP9t93PYMgyEyKOEQsvUrSxmOYpEKJskAm2BBbOmFDEWKuaFsnmGWGRYSsukYZYi0lIaaRzlkyuGkvlfl46_twfrk9HXyY8lmpWSSqyCL_IUnJKdZTpIgZSnHSH_LUPXEqVtnur2GR1jUXyIWSrYFXfpWQWuhMKXA2rvEYcb__O_vA_32jg8-NhMnAewZqYP4e6l7oyPINtfHQIk0ZNqUc_oDiobnPmjZUGOp2Uwa3rmEr6Dpi12_Ri-38jQn0BvWk3NUwiYZTZWZYoiV5wZmVG-JlLrGJG5pQnTh3edPjW2XdgdGciZ7rIxp3vtdd-H10vZWdN75J9SAweLpYTrF-5fVPNj3ZofzU1EF4tpbAnPk5yi0rSQEbNclBxR9mGzQ4pujVitVzDpw3sPtGuGoT_tDgb-6dn133oFtwls-stofPAc7jBXvvAVrU3oLeY_zQu4hb8Wp_X8ZTufAji6adhdAIlhXZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+hotspots+of+lactic+acid+production+systems&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=%C3%96gmundarson%2C+%C3%93lafur&rft.au=Sukumara%2C+Sumesh&rft.au=Laurent%2C+Alexis&rft.au=Fantke%2C+Peter&rft.date=2020-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1757-1693&rft.eissn=1757-1707&rft.volume=12&rft.issue=1&rft.spage=19&rft.epage=38&rft_id=info:doi/10.1111%2Fgcbb.12652&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon