Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks
Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this let...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 16; číslo 6; s. 982 - 986 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this letter, we propose a novel approach based on a fully convolutional network within pyramid pooling (FCN-PP) for LIM. The proposed approach has three advantages. First, this approach is automatic and insensitive to noise because multivariate morphological reconstruction is used for image preprocessing. Second, it is able to take into account features from multiple convolutional layers and explore efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of context. Finally, the selected PP module addresses the drawback of global pooling employed by convolutional neural network, FCN, and U-Net, and, thus, provides better feature maps for landslide areas. Experimental results show that the proposed FCN-PP is effective for LIM, and it outperforms the state-of-the-art approaches in terms of five metrics, <inline-formula> <tex-math notation="LaTeX">Precision </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Recall </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Overall~Error </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">score </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">Accuracy </tex-math></inline-formula>. |
|---|---|
| AbstractList | Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this letter, we propose a novel approach based on a fully convolutional network within pyramid pooling (FCN-PP) for LIM. The proposed approach has three advantages. First, this approach is automatic and insensitive to noise because multivariate morphological reconstruction is used for image preprocessing. Second, it is able to take into account features from multiple convolutional layers and explore efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of context. Finally, the selected PP module addresses the drawback of global pooling employed by convolutional neural network, FCN, and U-Net, and, thus, provides better feature maps for landslide areas. Experimental results show that the proposed FCN-PP is effective for LIM, and it outperforms the state-of-the-art approaches in terms of five metrics, [Formula Omitted], [Formula Omitted], [Formula Omitted], [Formula Omitted]-[Formula Omitted], and [Formula Omitted]. Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this letter, we propose a novel approach based on a fully convolutional network within pyramid pooling (FCN-PP) for LIM. The proposed approach has three advantages. First, this approach is automatic and insensitive to noise because multivariate morphological reconstruction is used for image preprocessing. Second, it is able to take into account features from multiple convolutional layers and explore efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of context. Finally, the selected PP module addresses the drawback of global pooling employed by convolutional neural network, FCN, and U-Net, and, thus, provides better feature maps for landslide areas. Experimental results show that the proposed FCN-PP is effective for LIM, and it outperforms the state-of-the-art approaches in terms of five metrics, <inline-formula> <tex-math notation="LaTeX">Precision </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Recall </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Overall~Error </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">score </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">Accuracy </tex-math></inline-formula>. |
| Author | Lei, Tao Liu, Shigang Li, Shuying Nandi, Asoke K. Lv, Zhiyong Zhang, Yuxiao |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2104-9298 surname: Lei fullname: Lei, Tao email: leitao@sust.edu.cn organization: School of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China – sequence: 2 givenname: Yuxiao surname: Zhang fullname: Zhang, Yuxiao email: xyu@sust.edu.cn organization: School of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China – sequence: 3 givenname: Zhiyong orcidid: 0000-0003-2595-4794 surname: Lv fullname: Lv, Zhiyong email: Lvzhiyong_fly@hotmail.com organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 4 givenname: Shuying orcidid: 0000-0003-3994-2874 surname: Li fullname: Li, Shuying email: angle_lisy@163.com organization: School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, China – sequence: 5 givenname: Shigang surname: Liu fullname: Liu, Shigang email: shgliu@gmail.com organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 6 givenname: Asoke K. orcidid: 0000-0001-6248-2875 surname: Nandi fullname: Nandi, Asoke K. email: asoke.nandi@brunel.ac.uk organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, U.K |
| BookMark | eNp9kEtLw0AUhQepYFv9AeIm4Dp1XmkmS622FqKCWhBchJvkpqQmmTiTVPrvTWxx4cLVuXDPuY9vRAaVrpCQc0YnjNHgKlw8v0w4ZWrClQoE9Y_IkHmecqnns0FfS8_1AvV2QkbWbijlUil_SN5DqFJb5Ck6y2qLVaPNznmAus6rtTM3unRu8gbLWhsonGUJa7TOyvbNW8Tamelqq4u2yXXV9R-xNT_SfGnzYU_JcQaFxbODjslqfvc6u3fDp8Vydh26iaS8cbNYeBRSBp4CGcSIGaUwFSmTfspVKjNIBMaQyNiTaQoZqIBn4KNQEAuW-WJMLvdza6M_W7RNtNGt6Q6yEecdCi54IDsX27sSo601mEW1yUswu4jRqGcY9QyjnmF0YNhl_D-ZJG-g_7YxkBf_Ji_2yRwRfzepKVOSMvENqaiDGg |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_3390_rs14081919 crossref_primary_10_1016_j_knosys_2020_106550 crossref_primary_10_1016_j_rineng_2023_101656 crossref_primary_10_3390_rs11111382 crossref_primary_10_1109_TGRS_2022_3233849 crossref_primary_10_1109_TGRS_2022_3169479 crossref_primary_10_1109_TGRS_2023_3268294 crossref_primary_10_1109_JSTARS_2023_3335281 crossref_primary_10_1016_j_engappai_2023_107337 crossref_primary_10_1016_j_jag_2022_102676 crossref_primary_10_1080_01431161_2021_1881182 crossref_primary_10_3390_rs15061682 crossref_primary_10_3390_land13071011 crossref_primary_10_3390_rs14122826 crossref_primary_10_1109_JSTARS_2023_3241157 crossref_primary_10_1016_j_isprsjprs_2022_03_011 crossref_primary_10_1109_LGRS_2023_3323534 crossref_primary_10_1109_LGRS_2020_2979693 crossref_primary_10_1007_s10346_024_02260_6 crossref_primary_10_1109_TGRS_2024_3381971 crossref_primary_10_1080_07038992_2021_1925530 crossref_primary_10_3390_rs15040977 crossref_primary_10_1109_TGRS_2024_3477910 crossref_primary_10_1109_TGRS_2024_3458951 crossref_primary_10_1007_s11069_023_06145_0 crossref_primary_10_1109_LGRS_2020_2989497 crossref_primary_10_1016_j_jag_2022_102681 crossref_primary_10_1049_ipr2_13037 crossref_primary_10_3390_rs14215577 crossref_primary_10_1007_s10346_021_01636_2 crossref_primary_10_1109_JSTARS_2021_3066378 crossref_primary_10_1007_s10346_022_01847_1 crossref_primary_10_3390_agronomy13030635 crossref_primary_10_1016_j_sigpro_2023_109203 crossref_primary_10_1109_JSTARS_2022_3220845 crossref_primary_10_1109_JSTARS_2021_3069242 crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_3390_rs16142573 crossref_primary_10_1016_j_enggeo_2023_107156 crossref_primary_10_3390_rs15184501 crossref_primary_10_1109_TGRS_2024_3380199 crossref_primary_10_1109_TGRS_2023_3320288 crossref_primary_10_1109_JSTARS_2023_3253769 crossref_primary_10_1109_JSTARS_2025_3585529 crossref_primary_10_1117_1_JRS_16_034518 crossref_primary_10_3390_rs13081440 crossref_primary_10_1109_JSTARS_2020_2980895 crossref_primary_10_1109_JSTARS_2020_3046838 crossref_primary_10_1007_s11430_023_1306_8 crossref_primary_10_1109_JSTARS_2025_3525633 crossref_primary_10_3390_rs14215448 crossref_primary_10_3390_rs12030486 crossref_primary_10_1109_TGRS_2020_3015826 crossref_primary_10_1109_TGRS_2024_3374421 crossref_primary_10_3390_land14010172 crossref_primary_10_1080_10106049_2024_2353253 crossref_primary_10_1109_LGRS_2025_3560990 crossref_primary_10_1109_ACCESS_2021_3089766 crossref_primary_10_1007_s10712_020_09609_1 crossref_primary_10_1080_10106049_2021_1912194 crossref_primary_10_1109_TGRS_2022_3196040 crossref_primary_10_3233_JIFS_211432 crossref_primary_10_3390_rs12152487 crossref_primary_10_1016_j_asoc_2025_113765 crossref_primary_10_1109_ACCESS_2025_3552444 crossref_primary_10_1007_s10346_022_01915_6 crossref_primary_10_1049_ipr2_12505 crossref_primary_10_1007_s13042_023_01880_z crossref_primary_10_1016_j_isprsjprs_2021_05_001 crossref_primary_10_1109_TGRS_2023_3261273 crossref_primary_10_3390_s22030888 crossref_primary_10_1007_s10346_024_02379_6 crossref_primary_10_3390_rs13163117 crossref_primary_10_1109_TGRS_2020_3033009 crossref_primary_10_3390_rs14184527 crossref_primary_10_3390_rs16060992 crossref_primary_10_3390_rs15153896 crossref_primary_10_1007_s11069_022_05282_2 crossref_primary_10_1080_17499518_2024_2316265 crossref_primary_10_1109_JSTARS_2020_3028855 crossref_primary_10_3390_land13101580 crossref_primary_10_1016_j_isprsjprs_2021_03_005 crossref_primary_10_3390_app14135415 crossref_primary_10_1080_17538947_2024_2441920 crossref_primary_10_1109_TGRS_2023_3327780 crossref_primary_10_1109_LGRS_2021_3049370 crossref_primary_10_3390_rs13245116 crossref_primary_10_3390_rs13040548 crossref_primary_10_1080_19475705_2024_2398103 crossref_primary_10_1016_j_isprsjprs_2020_06_003 crossref_primary_10_1016_j_jrmge_2024_08_005 crossref_primary_10_1109_TGRS_2025_3548562 crossref_primary_10_1016_j_isprsjprs_2023_05_033 crossref_primary_10_11922_noda_2021_0005_zh crossref_primary_10_1109_JSTARS_2022_3177025 crossref_primary_10_1007_s00521_020_05529_8 crossref_primary_10_1109_TGRS_2023_3278739 crossref_primary_10_3390_rs13183771 crossref_primary_10_1007_s10346_024_02360_3 crossref_primary_10_1109_TGRS_2022_3197901 crossref_primary_10_1109_TIP_2022_3226418 crossref_primary_10_1109_JSTARS_2024_3411622 crossref_primary_10_1016_j_jag_2024_103961 crossref_primary_10_1007_s10346_020_01557_6 crossref_primary_10_1016_j_image_2025_117379 crossref_primary_10_1080_15481603_2025_2502214 crossref_primary_10_1109_ACCESS_2019_2935761 crossref_primary_10_1007_s12524_023_01685_1 crossref_primary_10_1109_TGRS_2025_3545760 crossref_primary_10_1007_s10462_021_09967_1 crossref_primary_10_3390_rs16162947 crossref_primary_10_1109_TGRS_2022_3157721 crossref_primary_10_3390_agriculture13071283 crossref_primary_10_3390_rs17111849 crossref_primary_10_1109_TGRS_2022_3227098 crossref_primary_10_1109_JSTARS_2023_3327340 crossref_primary_10_1109_MGRS_2021_3063465 crossref_primary_10_1109_TGRS_2020_3011913 crossref_primary_10_1016_j_procs_2025_04_453 crossref_primary_10_1007_s11069_022_05423_7 crossref_primary_10_1016_j_ige_2024_10_003 crossref_primary_10_1109_JSTARS_2024_3491762 crossref_primary_10_1109_JSTARS_2022_3233043 crossref_primary_10_1117_1_JRS_18_036503 crossref_primary_10_1016_j_image_2023_116964 crossref_primary_10_3390_s25092813 crossref_primary_10_3390_rs17152667 crossref_primary_10_1016_j_isprsjprs_2021_10_001 crossref_primary_10_1109_TGRS_2025_3566507 crossref_primary_10_3390_rs14235969 crossref_primary_10_1109_JSTARS_2021_3117975 crossref_primary_10_3390_ijgi10050293 crossref_primary_10_1016_j_jag_2021_102615 crossref_primary_10_1109_TGRS_2025_3528750 crossref_primary_10_3390_rs14122884 crossref_primary_10_1109_TGRS_2022_3213925 crossref_primary_10_1109_TGRS_2024_3363431 crossref_primary_10_3390_rs17020178 crossref_primary_10_1080_10095020_2022_2128902 crossref_primary_10_3390_app151810063 crossref_primary_10_1109_JSTARS_2021_3134177 crossref_primary_10_1007_s10346_020_01602_4 crossref_primary_10_1016_j_jag_2023_103345 crossref_primary_10_1109_LGRS_2019_2927256 crossref_primary_10_1007_s12145_022_00889_2 crossref_primary_10_1111_tgis_13080 crossref_primary_10_1109_JSTARS_2023_3245062 crossref_primary_10_1109_TGRS_2022_3168126 crossref_primary_10_3390_rs16234464 crossref_primary_10_3390_rs11232787 crossref_primary_10_1109_LGRS_2020_3007183 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_1109_TGRS_2022_3161337 crossref_primary_10_1109_TGRS_2021_3134691 crossref_primary_10_3390_rs12030561 crossref_primary_10_1002_gj_4677 crossref_primary_10_3390_rs14040871 crossref_primary_10_1016_j_gr_2020_08_007 crossref_primary_10_3390_s20236735 crossref_primary_10_1016_j_isprsjprs_2023_06_017 crossref_primary_10_1016_j_engappai_2025_112187 crossref_primary_10_1007_s11042_023_16165_4 crossref_primary_10_3390_su12072622 crossref_primary_10_1038_s41598_022_16329_6 crossref_primary_10_1109_LGRS_2020_2966369 crossref_primary_10_1109_TCSVT_2024_3494820 crossref_primary_10_1007_s00477_023_02550_w crossref_primary_10_1109_LGRS_2023_3276768 crossref_primary_10_1109_TGRS_2023_3313619 crossref_primary_10_3390_app121910121 crossref_primary_10_1109_TCYB_2023_3291049 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_3390_info12090364 crossref_primary_10_3390_rs12060901 crossref_primary_10_1080_01431161_2022_2131479 crossref_primary_10_1109_JSTARS_2022_3159528 crossref_primary_10_1109_TGRS_2022_3159544 crossref_primary_10_3390_rs14215517 crossref_primary_10_1109_JSTARS_2023_3283524 crossref_primary_10_1016_j_isprsjprs_2023_01_018 crossref_primary_10_1109_TGRS_2022_3215209 crossref_primary_10_3390_ijgi10030168 crossref_primary_10_1007_s41064_025_00333_2 crossref_primary_10_1109_JSTARS_2022_3200997 crossref_primary_10_3390_rs12101688 crossref_primary_10_1109_JSTARS_2024_3351873 crossref_primary_10_1109_TNNLS_2021_3089332 crossref_primary_10_1007_s11629_022_7333_6 crossref_primary_10_1016_j_isprsjprs_2024_11_006 crossref_primary_10_1109_TGRS_2024_3491715 crossref_primary_10_3390_s25123646 crossref_primary_10_1109_TCDS_2021_3064679 |
| Cites_doi | 10.1016/j.rse.2016.01.003 10.1109/TNNLS.2015.2435783 10.1109/TFUZZ.2018.2889018 10.1109/CVPR.2015.7298965 10.1109/JSTARS.2018.2803784 10.1109/TGRS.2018.2862899 10.1109/YAC.2016.7804935 10.1109/TGRS.2018.2864987 10.1016/j.rse.2016.10.008 10.3390/rs10091381 10.1109/TNNLS.2016.2636227 10.1109/TFUZZ.2018.2796074 10.1007/978-3-319-24574-4_28 10.1109/TGRS.2018.2849692 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2018.2889307 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 986 |
| ExternalDocumentID | 10_1109_LGRS_2018_2889307 8618401 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61461025; 61871259; 61811530325 (NSFC-Royal Society); 61701387; 61873155; 61672333 funderid: 10.13039/501100001809 – fundername: National Science Foundation of Shanghai grantid: 16JC1401300 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD ESBDL HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-fb350ad1a58a49beef00a63d147d28d4fac3ebac4b54ddafa892fa7e38ab31f73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 223 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469377300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Sun Nov 30 05:12:35 EST 2025 Sat Nov 29 05:53:57 EST 2025 Tue Nov 18 20:42:38 EST 2025 Wed Aug 27 02:46:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-fb350ad1a58a49beef00a63d147d28d4fac3ebac4b54ddafa892fa7e38ab31f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2595-4794 0000-0002-2104-9298 0000-0003-3994-2874 0000-0001-6248-2875 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8618401 |
| PQID | 2230723294 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2230723294 ieee_primary_8618401 crossref_citationtrail_10_1109_LGRS_2018_2889307 crossref_primary_10_1109_LGRS_2018_2889307 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref1 ref8 ref7 ref9 ref4 jin (ref2) 2005; 6 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.1016/j.rse.2016.01.003 – ident: ref9 doi: 10.1109/TNNLS.2015.2435783 – ident: ref13 doi: 10.1109/TFUZZ.2018.2889018 – ident: ref14 doi: 10.1109/CVPR.2015.7298965 – ident: ref1 doi: 10.1109/JSTARS.2018.2803784 – ident: ref7 doi: 10.1109/TGRS.2018.2862899 – ident: ref12 doi: 10.1109/YAC.2016.7804935 – ident: ref11 doi: 10.1109/TGRS.2018.2864987 – ident: ref4 doi: 10.1016/j.rse.2016.10.008 – volume: 6 start-page: 3994 year: 2005 ident: ref2 article-title: Change detection of enhanced, no-changed and reduced scattering in multi-temporal ERS-2 SARimages using the two-thresholds EM and MRF algorithms publication-title: Proc IEEE Int Geosci Remote Sens Symp – ident: ref5 doi: 10.3390/rs10091381 – ident: ref10 doi: 10.1109/TNNLS.2016.2636227 – ident: ref8 doi: 10.1109/TFUZZ.2018.2796074 – ident: ref15 doi: 10.1007/978-3-319-24574-4_28 – ident: ref6 doi: 10.1109/TGRS.2018.2849692 |
| SSID | ssj0024887 |
| Score | 2.6172369 |
| Snippet | Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 982 |
| SubjectTerms | Algorithms Artificial neural networks Change detection deep convolutional network Feature extraction Feature maps Image color analysis Image processing Image reconstruction Image segmentation landslide inventory mapping (LIM) Landslides Mapping multivariate morphological reconstruction (MMR) Neural networks Principal component analysis Receptive field Task analysis Terrain factors |
| Title | Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks |
| URI | https://ieeexplore.ieee.org/document/8618401 https://www.proquest.com/docview/2230723294 |
| Volume | 16 |
| WOSCitedRecordID | wos000469377300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MoeiLl01xOiUPPond2qZdk0edbg7mEC8w8KGkTaKDbR27wf69SZZNQRF8aqE5JfRLk3OS75wP4EJ6hFChghyuFksnCHjoJB6WDiFcebtcuXMuM2ITUadDul36mIOrdS6MEMKQz0RF35qzfJ6lM71VViVanUQna21EUbTM1fqqq0eMGJ72CJyQkq49wfRcWm03n541iYtUfNUxrJVjv61BRlTlx0xslpfG3v86tg-71o1E10vcDyAnhgXYtormH4sCbDWNZO-iCG9tnc3b73GBWoZhno0X6IHpugzvqDHOBuimZwtU9VFroOaXCTJEAnQrxAjVs-HcDk_1XNfyMBdDHp8cwmvj7qV-71hJBSdVgeLUkQkOXcY9FhIW0EQI6bqshrkXRNwnPJAsxSJhaZCEAedMMkJ9ySKBCUuwJyN8BPlhNhTHgIjkNS4JTlKifCq3xkKaKouopkMuwWQJ3NVHjlNbb1zLXvRjE3e4NNa4xBqX2OJSgsu1yWhZbOOvxkUNxLqhxaAE5RWSsf0dJ7Gv6e7Kd6TBye9Wp7Cj3k2XHLAy5KfjmTiDzXQ-7U3G52akfQInD9IF |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD4ML-iLl6k4nZoHn8Rq26Rr8qjTueE2xAsMfChpk-hgrrIb7N-bZHEKiuBTC82hoV-anJN853wAxyqglEkd5Ai9WHqEiMhLA6w8SoX2doV253xuxSbidpt2OuyuAKfzXBgppSWfyTNza8_yRZ6NzVbZOTXqJCZZazEiJAxm2VpflfWolcMzPoEXMdpxZ5iBz86bN_cPhsZFz0LdNWy0Y7-tQlZW5cdcbBeY2vr_urYBa86RRBcz5DehIPtFWHGa5q_TIizfWNHe6RY8N00-b68rJGpYjnk-mKIWN5UZXlBtkL-hy64rUdVDjTc9wwyRpRKgKynfUTXvT9wA1c9NNQ97sfTx4TY81a4fq3XPiSp4mQ4VR55KceRzEfCIcsJSKZXv8woWAYlFSAVRPMMy5RlJIyIEV5yyUPFYYspTHKgY78BCP-_LXUBUiYpQFKcZ1V6VX-ERy7RFXDFBl-SqBP7nR04yV3HcCF_0Eht5-CwxuCQGl8ThUoKTucn7rNzGX423DBDzhg6DEpQ_kUzcDzlMQkN4194jI3u_Wx3BSv2x1UyajfbtPqzq97AZI6wMC6PBWB7AUjYZdYeDQzvqPgA5WNVM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+Inventory+Mapping+From+Bitemporal+Images+Using+Deep+Convolutional+Neural+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Lei%2C+Tao&rft.au=Zhang%2C+Yuxiao&rft.au=Lv%2C+Zhiyong&rft.au=Li%2C+Shuying&rft.date=2019-06-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=16&rft.issue=6&rft.spage=982&rft.epage=986&rft_id=info:doi/10.1109%2FLGRS.2018.2889307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2889307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |