Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks

Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this let...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters Jg. 16; H. 6; S. 982 - 986
Hauptverfasser: Lei, Tao, Zhang, Yuxiao, Lv, Zhiyong, Li, Shuying, Liu, Shigang, Nandi, Asoke K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-598X, 1558-0571
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this letter, we propose a novel approach based on a fully convolutional network within pyramid pooling (FCN-PP) for LIM. The proposed approach has three advantages. First, this approach is automatic and insensitive to noise because multivariate morphological reconstruction is used for image preprocessing. Second, it is able to take into account features from multiple convolutional layers and explore efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of context. Finally, the selected PP module addresses the drawback of global pooling employed by convolutional neural network, FCN, and U-Net, and, thus, provides better feature maps for landslide areas. Experimental results show that the proposed FCN-PP is effective for LIM, and it outperforms the state-of-the-art approaches in terms of five metrics, <inline-formula> <tex-math notation="LaTeX">Precision </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Recall </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Overall~Error </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">score </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">Accuracy </tex-math></inline-formula>.
AbstractList Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this letter, we propose a novel approach based on a fully convolutional network within pyramid pooling (FCN-PP) for LIM. The proposed approach has three advantages. First, this approach is automatic and insensitive to noise because multivariate morphological reconstruction is used for image preprocessing. Second, it is able to take into account features from multiple convolutional layers and explore efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of context. Finally, the selected PP module addresses the drawback of global pooling employed by convolutional neural network, FCN, and U-Net, and, thus, provides better feature maps for landslide areas. Experimental results show that the proposed FCN-PP is effective for LIM, and it outperforms the state-of-the-art approaches in terms of five metrics, <inline-formula> <tex-math notation="LaTeX">Precision </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Recall </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">Overall~Error </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">score </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">Accuracy </tex-math></inline-formula>.
Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However, it is difficult to use these approaches to detect landslide areas because of the complexity and spatial uncertainty of landslides. In this letter, we propose a novel approach based on a fully convolutional network within pyramid pooling (FCN-PP) for LIM. The proposed approach has three advantages. First, this approach is automatic and insensitive to noise because multivariate morphological reconstruction is used for image preprocessing. Second, it is able to take into account features from multiple convolutional layers and explore efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of context. Finally, the selected PP module addresses the drawback of global pooling employed by convolutional neural network, FCN, and U-Net, and, thus, provides better feature maps for landslide areas. Experimental results show that the proposed FCN-PP is effective for LIM, and it outperforms the state-of-the-art approaches in terms of five metrics, [Formula Omitted], [Formula Omitted], [Formula Omitted], [Formula Omitted]-[Formula Omitted], and [Formula Omitted].
Author Lei, Tao
Liu, Shigang
Li, Shuying
Nandi, Asoke K.
Lv, Zhiyong
Zhang, Yuxiao
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  email: leitao@sust.edu.cn
  organization: School of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 2
  givenname: Yuxiao
  surname: Zhang
  fullname: Zhang, Yuxiao
  email: xyu@sust.edu.cn
  organization: School of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 3
  givenname: Zhiyong
  orcidid: 0000-0003-2595-4794
  surname: Lv
  fullname: Lv, Zhiyong
  email: Lvzhiyong_fly@hotmail.com
  organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 4
  givenname: Shuying
  orcidid: 0000-0003-3994-2874
  surname: Li
  fullname: Li, Shuying
  email: angle_lisy@163.com
  organization: School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 5
  givenname: Shigang
  surname: Liu
  fullname: Liu, Shigang
  email: shgliu@gmail.com
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
– sequence: 6
  givenname: Asoke K.
  orcidid: 0000-0001-6248-2875
  surname: Nandi
  fullname: Nandi, Asoke K.
  email: asoke.nandi@brunel.ac.uk
  organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, U.K
BookMark eNp9kEtLw0AUhQepYFv9AeIm4Dp1XmkmS622FqKCWhBchJvkpqQmmTiTVPrvTWxx4cLVuXDPuY9vRAaVrpCQc0YnjNHgKlw8v0w4ZWrClQoE9Y_IkHmecqnns0FfS8_1AvV2QkbWbijlUil_SN5DqFJb5Ck6y2qLVaPNznmAus6rtTM3unRu8gbLWhsonGUJa7TOyvbNW8Tamelqq4u2yXXV9R-xNT_SfGnzYU_JcQaFxbODjslqfvc6u3fDp8Vydh26iaS8cbNYeBRSBp4CGcSIGaUwFSmTfspVKjNIBMaQyNiTaQoZqIBn4KNQEAuW-WJMLvdza6M_W7RNtNGt6Q6yEecdCi54IDsX27sSo601mEW1yUswu4jRqGcY9QyjnmF0YNhl_D-ZJG-g_7YxkBf_Ji_2yRwRfzepKVOSMvENqaiDGg
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_rs14081919
crossref_primary_10_1016_j_knosys_2020_106550
crossref_primary_10_1016_j_rineng_2023_101656
crossref_primary_10_3390_rs11111382
crossref_primary_10_1109_TGRS_2022_3233849
crossref_primary_10_1109_TGRS_2022_3169479
crossref_primary_10_1109_TGRS_2023_3268294
crossref_primary_10_1109_JSTARS_2023_3335281
crossref_primary_10_1016_j_engappai_2023_107337
crossref_primary_10_1016_j_jag_2022_102676
crossref_primary_10_1080_01431161_2021_1881182
crossref_primary_10_3390_rs15061682
crossref_primary_10_3390_land13071011
crossref_primary_10_3390_rs14122826
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_1016_j_isprsjprs_2022_03_011
crossref_primary_10_1109_LGRS_2023_3323534
crossref_primary_10_1109_LGRS_2020_2979693
crossref_primary_10_1007_s10346_024_02260_6
crossref_primary_10_1109_TGRS_2024_3381971
crossref_primary_10_1080_07038992_2021_1925530
crossref_primary_10_3390_rs15040977
crossref_primary_10_1109_TGRS_2024_3477910
crossref_primary_10_1109_TGRS_2024_3458951
crossref_primary_10_1007_s11069_023_06145_0
crossref_primary_10_1109_LGRS_2020_2989497
crossref_primary_10_1016_j_jag_2022_102681
crossref_primary_10_1049_ipr2_13037
crossref_primary_10_3390_rs14215577
crossref_primary_10_1007_s10346_021_01636_2
crossref_primary_10_1109_JSTARS_2021_3066378
crossref_primary_10_1007_s10346_022_01847_1
crossref_primary_10_3390_agronomy13030635
crossref_primary_10_1016_j_sigpro_2023_109203
crossref_primary_10_1109_JSTARS_2022_3220845
crossref_primary_10_1109_JSTARS_2021_3069242
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_3390_rs16142573
crossref_primary_10_1016_j_enggeo_2023_107156
crossref_primary_10_3390_rs15184501
crossref_primary_10_1109_TGRS_2024_3380199
crossref_primary_10_1109_TGRS_2023_3320288
crossref_primary_10_1109_JSTARS_2023_3253769
crossref_primary_10_1109_JSTARS_2025_3585529
crossref_primary_10_1117_1_JRS_16_034518
crossref_primary_10_3390_rs13081440
crossref_primary_10_1109_JSTARS_2020_2980895
crossref_primary_10_1109_JSTARS_2020_3046838
crossref_primary_10_1007_s11430_023_1306_8
crossref_primary_10_1109_JSTARS_2025_3525633
crossref_primary_10_3390_rs14215448
crossref_primary_10_3390_rs12030486
crossref_primary_10_1109_TGRS_2020_3015826
crossref_primary_10_1109_TGRS_2024_3374421
crossref_primary_10_3390_land14010172
crossref_primary_10_1080_10106049_2024_2353253
crossref_primary_10_1109_LGRS_2025_3560990
crossref_primary_10_1109_ACCESS_2021_3089766
crossref_primary_10_1007_s10712_020_09609_1
crossref_primary_10_1080_10106049_2021_1912194
crossref_primary_10_1109_TGRS_2022_3196040
crossref_primary_10_3233_JIFS_211432
crossref_primary_10_3390_rs12152487
crossref_primary_10_1016_j_asoc_2025_113765
crossref_primary_10_1109_ACCESS_2025_3552444
crossref_primary_10_1007_s10346_022_01915_6
crossref_primary_10_1049_ipr2_12505
crossref_primary_10_1007_s13042_023_01880_z
crossref_primary_10_1016_j_isprsjprs_2021_05_001
crossref_primary_10_1109_TGRS_2023_3261273
crossref_primary_10_3390_s22030888
crossref_primary_10_1007_s10346_024_02379_6
crossref_primary_10_3390_rs13163117
crossref_primary_10_1109_TGRS_2020_3033009
crossref_primary_10_3390_rs14184527
crossref_primary_10_3390_rs16060992
crossref_primary_10_3390_rs15153896
crossref_primary_10_1007_s11069_022_05282_2
crossref_primary_10_1080_17499518_2024_2316265
crossref_primary_10_1109_JSTARS_2020_3028855
crossref_primary_10_3390_land13101580
crossref_primary_10_1016_j_isprsjprs_2021_03_005
crossref_primary_10_3390_app14135415
crossref_primary_10_1080_17538947_2024_2441920
crossref_primary_10_1109_TGRS_2023_3327780
crossref_primary_10_1109_LGRS_2021_3049370
crossref_primary_10_3390_rs13245116
crossref_primary_10_3390_rs13040548
crossref_primary_10_1080_19475705_2024_2398103
crossref_primary_10_1016_j_isprsjprs_2020_06_003
crossref_primary_10_1016_j_jrmge_2024_08_005
crossref_primary_10_1109_TGRS_2025_3548562
crossref_primary_10_1016_j_isprsjprs_2023_05_033
crossref_primary_10_11922_noda_2021_0005_zh
crossref_primary_10_1109_JSTARS_2022_3177025
crossref_primary_10_1007_s00521_020_05529_8
crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_3390_rs13183771
crossref_primary_10_1007_s10346_024_02360_3
crossref_primary_10_1109_TGRS_2022_3197901
crossref_primary_10_1109_TIP_2022_3226418
crossref_primary_10_1109_JSTARS_2024_3411622
crossref_primary_10_1016_j_jag_2024_103961
crossref_primary_10_1007_s10346_020_01557_6
crossref_primary_10_1016_j_image_2025_117379
crossref_primary_10_1080_15481603_2025_2502214
crossref_primary_10_1109_ACCESS_2019_2935761
crossref_primary_10_1007_s12524_023_01685_1
crossref_primary_10_1109_TGRS_2025_3545760
crossref_primary_10_1007_s10462_021_09967_1
crossref_primary_10_3390_rs16162947
crossref_primary_10_1109_TGRS_2022_3157721
crossref_primary_10_3390_agriculture13071283
crossref_primary_10_3390_rs17111849
crossref_primary_10_1109_TGRS_2022_3227098
crossref_primary_10_1109_JSTARS_2023_3327340
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1109_TGRS_2020_3011913
crossref_primary_10_1016_j_procs_2025_04_453
crossref_primary_10_1007_s11069_022_05423_7
crossref_primary_10_1016_j_ige_2024_10_003
crossref_primary_10_1109_JSTARS_2024_3491762
crossref_primary_10_1109_JSTARS_2022_3233043
crossref_primary_10_1117_1_JRS_18_036503
crossref_primary_10_1016_j_image_2023_116964
crossref_primary_10_3390_s25092813
crossref_primary_10_3390_rs17152667
crossref_primary_10_1016_j_isprsjprs_2021_10_001
crossref_primary_10_1109_TGRS_2025_3566507
crossref_primary_10_3390_rs14235969
crossref_primary_10_1109_JSTARS_2021_3117975
crossref_primary_10_3390_ijgi10050293
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1109_TGRS_2025_3528750
crossref_primary_10_3390_rs14122884
crossref_primary_10_1109_TGRS_2022_3213925
crossref_primary_10_1109_TGRS_2024_3363431
crossref_primary_10_3390_rs17020178
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_3390_app151810063
crossref_primary_10_1109_JSTARS_2021_3134177
crossref_primary_10_1007_s10346_020_01602_4
crossref_primary_10_1016_j_jag_2023_103345
crossref_primary_10_1109_LGRS_2019_2927256
crossref_primary_10_1007_s12145_022_00889_2
crossref_primary_10_1111_tgis_13080
crossref_primary_10_1109_JSTARS_2023_3245062
crossref_primary_10_1109_TGRS_2022_3168126
crossref_primary_10_3390_rs16234464
crossref_primary_10_3390_rs11232787
crossref_primary_10_1109_LGRS_2020_3007183
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2022_3161337
crossref_primary_10_1109_TGRS_2021_3134691
crossref_primary_10_3390_rs12030561
crossref_primary_10_1002_gj_4677
crossref_primary_10_3390_rs14040871
crossref_primary_10_1016_j_gr_2020_08_007
crossref_primary_10_3390_s20236735
crossref_primary_10_1016_j_isprsjprs_2023_06_017
crossref_primary_10_1016_j_engappai_2025_112187
crossref_primary_10_1007_s11042_023_16165_4
crossref_primary_10_3390_su12072622
crossref_primary_10_1038_s41598_022_16329_6
crossref_primary_10_1109_LGRS_2020_2966369
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1007_s00477_023_02550_w
crossref_primary_10_1109_LGRS_2023_3276768
crossref_primary_10_1109_TGRS_2023_3313619
crossref_primary_10_3390_app121910121
crossref_primary_10_1109_TCYB_2023_3291049
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_3390_info12090364
crossref_primary_10_3390_rs12060901
crossref_primary_10_1080_01431161_2022_2131479
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_1109_TGRS_2022_3159544
crossref_primary_10_3390_rs14215517
crossref_primary_10_1109_JSTARS_2023_3283524
crossref_primary_10_1016_j_isprsjprs_2023_01_018
crossref_primary_10_1109_TGRS_2022_3215209
crossref_primary_10_3390_ijgi10030168
crossref_primary_10_1007_s41064_025_00333_2
crossref_primary_10_1109_JSTARS_2022_3200997
crossref_primary_10_3390_rs12101688
crossref_primary_10_1109_JSTARS_2024_3351873
crossref_primary_10_1109_TNNLS_2021_3089332
crossref_primary_10_1007_s11629_022_7333_6
crossref_primary_10_1016_j_isprsjprs_2024_11_006
crossref_primary_10_1109_TGRS_2024_3491715
crossref_primary_10_3390_s25123646
crossref_primary_10_1109_TCDS_2021_3064679
Cites_doi 10.1016/j.rse.2016.01.003
10.1109/TNNLS.2015.2435783
10.1109/TFUZZ.2018.2889018
10.1109/CVPR.2015.7298965
10.1109/JSTARS.2018.2803784
10.1109/TGRS.2018.2862899
10.1109/YAC.2016.7804935
10.1109/TGRS.2018.2864987
10.1016/j.rse.2016.10.008
10.3390/rs10091381
10.1109/TNNLS.2016.2636227
10.1109/TFUZZ.2018.2796074
10.1007/978-3-319-24574-4_28
10.1109/TGRS.2018.2849692
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2018.2889307
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 986
ExternalDocumentID 10_1109_LGRS_2018_2889307
8618401
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61461025; 61871259; 61811530325 (NSFC-Royal Society); 61701387; 61873155; 61672333
  funderid: 10.13039/501100001809
– fundername: National Science Foundation of Shanghai
  grantid: 16JC1401300
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-fb350ad1a58a49beef00a63d147d28d4fac3ebac4b54ddafa892fa7e38ab31f73
IEDL.DBID RIE
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469377300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Sun Nov 30 05:12:35 EST 2025
Sat Nov 29 05:53:57 EST 2025
Tue Nov 18 20:42:38 EST 2025
Wed Aug 27 02:46:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-fb350ad1a58a49beef00a63d147d28d4fac3ebac4b54ddafa892fa7e38ab31f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2595-4794
0000-0002-2104-9298
0000-0003-3994-2874
0000-0001-6248-2875
OpenAccessLink https://ieeexplore.ieee.org/document/8618401
PQID 2230723294
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2230723294
ieee_primary_8618401
crossref_citationtrail_10_1109_LGRS_2018_2889307
crossref_primary_10_1109_LGRS_2018_2889307
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref1
ref8
ref7
ref9
ref4
jin (ref2) 2005; 6
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1016/j.rse.2016.01.003
– ident: ref9
  doi: 10.1109/TNNLS.2015.2435783
– ident: ref13
  doi: 10.1109/TFUZZ.2018.2889018
– ident: ref14
  doi: 10.1109/CVPR.2015.7298965
– ident: ref1
  doi: 10.1109/JSTARS.2018.2803784
– ident: ref7
  doi: 10.1109/TGRS.2018.2862899
– ident: ref12
  doi: 10.1109/YAC.2016.7804935
– ident: ref11
  doi: 10.1109/TGRS.2018.2864987
– ident: ref4
  doi: 10.1016/j.rse.2016.10.008
– volume: 6
  start-page: 3994
  year: 2005
  ident: ref2
  article-title: Change detection of enhanced, no-changed and reduced scattering in multi-temporal ERS-2 SARimages using the two-thresholds EM and MRF algorithms
  publication-title: Proc IEEE Int Geosci Remote Sens Symp
– ident: ref5
  doi: 10.3390/rs10091381
– ident: ref10
  doi: 10.1109/TNNLS.2016.2636227
– ident: ref8
  doi: 10.1109/TFUZZ.2018.2796074
– ident: ref15
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref6
  doi: 10.1109/TGRS.2018.2849692
SSID ssj0024887
Score 2.6172369
Snippet Most of the approaches used for Landslide inventory mapping (LIM) rely on traditional feature extraction and unsupervised classification algorithms. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 982
SubjectTerms Algorithms
Artificial neural networks
Change detection
deep convolutional network
Feature extraction
Feature maps
Image color analysis
Image processing
Image reconstruction
Image segmentation
landslide inventory mapping (LIM)
Landslides
Mapping
multivariate morphological reconstruction (MMR)
Neural networks
Principal component analysis
Receptive field
Task analysis
Terrain factors
Title Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/8618401
https://www.proquest.com/docview/2230723294
Volume 16
WOSCitedRecordID wos000469377300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6oKPriXZxOyYNPYjVt0yV51OlUmCLeGPhQkibRwbbKNoX9e5MsTkERfGqhSSn90nNpvnM-gL2EMIljVYsSa_giklEZca55pCRRxuBYCq-f8tik19es1eI3U3AwqYXRWnvymT50p34vX5XFm_tVdsScOokr1pqmlI5rtb766jEvhucigijjrBV2MGPMj5rnt3eOxMUOE2bds1OO_eaDvKjKD0vs3Utj6X8PtgyLIYxEx2PcV2BK91ZhPiiav4xWYe7cS_aO1uCp6ap5O22l0aVnmJf9EboSri_DM2r0yy46aYcGVR102bX2ZYA8kQCdav2K6mXvPSxPe9318vAHTx4frMND4-y-fhEFSYWosIniMDIyzbBQsciYIFxqbTAWtVTFhKqEKWJEkWopCiIzopQwgvHECKpTJmQaG5puwEyv7OlNQExhUthsz2YcNcIZlTVKM5NlUqZFonhSAfz5kvMi9Bt3shed3OcdmOcOl9zhkgdcKrA_mfI6brbx1-A1B8RkYMCgAtVPJPPwOQ7yxNHdbezIydbvs7Zhwd6bjzlgVZgZ9t_0DswW78P2oL_rV9oHF83RPQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD5CDMRexl3rxsUPPKEFHMdu7McBK1SECgFDlXiI7NjeKpUGtQWp_362awrSEBJPiRRbifI55xJ_53wAe4RyhVPdTIgzfAlluUqEMCLRimprcapk0E-5LfJOh3e74nIOfsxqYYwxgXxmDvxp2MvXdfXof5Udcq9O4ou1PjFKSTqt1nrprMeDHJ6PCRImeDfuYaZYHBanV9eexsUPCHcO2mvHvvJCQVblP1scHExr-WOPtgJfYiCJfk6RX4U5M1iDpahp_neyBounQbR3sg53ha_n7fe0Qe3AMa-HE3QhfWeGP6g1rO_RUS-2qOqj9r2zMCMUqAToxJgHdFwPnuICddd9N49wCPTx0Qb8bv26OT5LoqhCUrlUcZxYlTEsdSoZl1QoYyzGspnplOaacE2trDKjZEUVo1pLK7kgVuYm41Jlqc2zTZgf1APzFRDXmFYu33M5R5MKnqtmnjPLmFJZRbQgDcDPL7msYsdxL3zRL0PmgUXpcSk9LmXEpQH7sykP03Yb7w1e90DMBkYMGrD1jGQZP8hRSTzh3UWPgn57e9YuLJ3dXBRl0e6cf4fP7j5iygjbgvnx8NFsw0L1NO6Nhjth1f0DIW7UhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+Inventory+Mapping+From+Bitemporal+Images+Using+Deep+Convolutional+Neural+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Lei%2C+Tao&rft.au=Zhang%2C+Yuxiao&rft.au=Lv%2C+Zhiyong&rft.au=Li%2C+Shuying&rft.date=2019-06-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=16&rft.issue=6&rft.spage=982&rft.epage=986&rft_id=info:doi/10.1109%2FLGRS.2018.2889307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2889307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon