BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network

We present an automatic approach to the construction of BabelNet, a very large, wide-coverage multilingual semantic network. Key to our approach is the integration of lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition, Machine Translation is applied to enrich the resour...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence Ročník 193; s. 217 - 250
Hlavní autoři: Navigli, Roberto, Ponzetto, Simone Paolo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier B.V 01.12.2012
Elsevier
Témata:
ISSN:0004-3702, 1872-7921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an automatic approach to the construction of BabelNet, a very large, wide-coverage multilingual semantic network. Key to our approach is the integration of lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition, Machine Translation is applied to enrich the resource with lexical information for all languages. We first conduct in vitro experiments on new and existing gold-standard datasets to show the high quality and coverage of BabelNet. We then show that our lexical resource can be used successfully to perform both monolingual and cross-lingual Word Sense Disambiguation: thanks to its wide lexical coverage and novel semantic relations, we are able to achieve state-of the-art results on three different SemEval evaluation tasks.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2012.07.001