Beyond the limitations of perturbation methods for real random eigenvalue problems using Exceptional Points and analytic continuation
A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the variability of the parameters exceed the radius of convergence of low order perturbation methods. The radius of convergence of eigenvalue perturbation methods, based on Taylor series, is known to dec...
Gespeichert in:
| Veröffentlicht in: | Journal of sound and vibration Jg. 480; S. 115398 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Ltd
18.08.2020
Elsevier Science Ltd Elsevier |
| Schlagworte: | |
| ISSN: | 0022-460X, 1095-8568 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the variability of the parameters exceed the radius of convergence of low order perturbation methods. The radius of convergence of eigenvalue perturbation methods, based on Taylor series, is known to decrease when eigenvalues are getting closer to each other. This phenomenon, known as veering in structural dynamics, is a direct consequence of the existence of branch point singularity in the complex plane of the varying parameters where some eigenvalues are defective. When this degeneracy, referred to as Exceptional Point (EP), is close to the real axis, the veering becomes stronger.
The main idea of the proposed approach is to combined a pair of eigenvalues to remove this singularity. To do so, two analytic auxiliary functions are introduced and are computed through high order derivatives of the eigenvalue pair with respect to the parameter. This yields a new robust eigenvalue reconstruction scheme which is compared to Taylor and Puiseux series. In all cases, theoretical bounds are established and all approximations are compared numerically on a three degrees of freedom toy model. This system illustrates the ability of the method to handle the vibrations of a structure with a randomly varying parameter. Computationally efficient, the proposed algorithm could also be relevant for actual numerical models of large size, arising from other applications involving parametric eigenvalue problems, e.g., waveguides, rotating machinery or instability problems such as squeal or flutter.
•Standard perturbation methods are extended using eigenvalues high order derivatives.•New eigenvalue representations based on analytic functions are proposed.•The radius of convergence of each representation depends on exceptional point.•Eigenvalue loci is reconstructed on a large range using a single computation point.•An application to random eigenvalue problems acceleration is considered. |
|---|---|
| AbstractList | A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the variability of the parameters exceed the radius of convergence of low order perturbation methods. The radius of convergence of eigenvalue perturbation methods, based on Taylor series, is known to decrease when eigenvalues are getting closer to each other. This phenomenon, knwon as veering in structural dynamics, is a direct consequence of the existence of branch point singularity in the complex plane of the varying parameters where some eigenvalues are defective. When this degeneracy, referred to as Exceptional Point (EP), is close to the real axis, the veering becomes stronger. The main idea of the proposed approach is to combined a pair of eigenvalues to remove this singularity. To do so, two analytic auxiliary functions are introduced and are computed through high order derivatives of the eigenvalue pair with respect to the parameter. This yields a new robust eigenvalue reconstruction scheme which is compared to Taylor and Puiseux series. In all cases, theoretical bounds are established and all approximations are compared numerically on a three degrees of freedom toy model. This system illustrate the ability of the method to handle the vibrations of a structure with a randomly varying parameter. Computationally efficient, the proposed algorithm could also be relevant for actual numerical models of large size, arising from other applications involving parametric eigenvalue problems, e.g., waveguides, rotating machinery or instability problems such as squeal or flutter. A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the variability of the parameters exceed the radius of convergence of low order perturbation methods. The radius of convergence of eigenvalue perturbation methods, based on Taylor series, is known to decrease when eigenvalues are getting closer to each other. This phenomenon, known as veering in structural dynamics, is a direct consequence of the existence of branch point singularity in the complex plane of the varying parameters where some eigenvalues are defective. When this degeneracy, referred to as Exceptional Point (EP), is close to the real axis, the veering becomes stronger. The main idea of the proposed approach is to combined a pair of eigenvalues to remove this singularity. To do so, two analytic auxiliary functions are introduced and are computed through high order derivatives of the eigenvalue pair with respect to the parameter. This yields a new robust eigenvalue reconstruction scheme which is compared to Taylor and Puiseux series. In all cases, theoretical bounds are established and all approximations are compared numerically on a three degrees of freedom toy model. This system illustrates the ability of the method to handle the vibrations of a structure with a randomly varying parameter. Computationally efficient, the proposed algorithm could also be relevant for actual numerical models of large size, arising from other applications involving parametric eigenvalue problems, e.g., waveguides, rotating machinery or instability problems such as squeal or flutter. A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the variability of the parameters exceed the radius of convergence of low order perturbation methods. The radius of convergence of eigenvalue perturbation methods, based on Taylor series, is known to decrease when eigenvalues are getting closer to each other. This phenomenon, known as veering in structural dynamics, is a direct consequence of the existence of branch point singularity in the complex plane of the varying parameters where some eigenvalues are defective. When this degeneracy, referred to as Exceptional Point (EP), is close to the real axis, the veering becomes stronger. The main idea of the proposed approach is to combined a pair of eigenvalues to remove this singularity. To do so, two analytic auxiliary functions are introduced and are computed through high order derivatives of the eigenvalue pair with respect to the parameter. This yields a new robust eigenvalue reconstruction scheme which is compared to Taylor and Puiseux series. In all cases, theoretical bounds are established and all approximations are compared numerically on a three degrees of freedom toy model. This system illustrates the ability of the method to handle the vibrations of a structure with a randomly varying parameter. Computationally efficient, the proposed algorithm could also be relevant for actual numerical models of large size, arising from other applications involving parametric eigenvalue problems, e.g., waveguides, rotating machinery or instability problems such as squeal or flutter. •Standard perturbation methods are extended using eigenvalues high order derivatives.•New eigenvalue representations based on analytic functions are proposed.•The radius of convergence of each representation depends on exceptional point.•Eigenvalue loci is reconstructed on a large range using a single computation point.•An application to random eigenvalue problems acceleration is considered. |
| ArticleNumber | 115398 |
| Author | Nennig, Benoit Ghienne, Martin |
| Author_xml | – sequence: 1 givenname: Martin surname: Ghienne fullname: Ghienne, Martin email: martin.ghienne@supmeca.fr – sequence: 2 givenname: Benoit surname: Nennig fullname: Nennig, Benoit email: benoit.nennig@supmeca.fr |
| BackLink | https://hal.science/hal-02536849$$DView record in HAL |
| BookMark | eNp9kcFq3DAQhkVJoJukD9CboKcevBnJsmPTUxrSJrDQHhLoTcjyKCtjS1tJXrIP0PeuNk4vPeQwM2j4v2E0_xk5cd4hIR8ZrBmw-nJYD3G_5sDzm1Vl27wjKwZtVTRV3ZyQFQDnhajh13tyFuMAAK0oxYr8-YoH73qatkhHO9mkkvUuUm_oDkOaQ_fSoBOmre8jNT7QgGqkQbneTxTtE7q9Gmeku-C7EadI52jdE7191rg7sln801uXIs1IDjUektVUe5esm1_GX5BTo8aIH17rOXn8dvtwc1dsfny_v7neFFoATwUaDqbsGmCdAazqDlRVYwd9lVMNqhGaaQ66MwKY4aoTV72GxlQ5VVr15Tn5vMzdqlHugp1UOEivrLy73shjD3hV1o1o9yxrPy3a_K_fM8YkBz-HvH2UXAhe8pbVbVZdLSodfIwBjdSvN0xB2VEykEd_5CCzP_Loj1z8yST7j_y30FvMl4XBfKS9xSCjtug09jagTrL39g36L79vrdU |
| CitedBy_id | crossref_primary_10_1002_qre_3117 crossref_primary_10_1016_j_ymssp_2024_111638 crossref_primary_10_2514_1_J060665 crossref_primary_10_1002_nme_7174 crossref_primary_10_2514_1_J065604 crossref_primary_10_1002_nme_70092 crossref_primary_10_1016_j_apacoust_2020_107862 crossref_primary_10_1016_j_jsv_2024_118239 crossref_primary_10_1007_s42417_023_00870_3 crossref_primary_10_1016_j_jsv_2025_119114 |
| Cites_doi | 10.1093/imanum/drt028 10.1103/PhysRevE.72.026221 10.1016/j.cma.2008.11.007 10.1137/0614061 10.1115/1.2888303 10.1103/PhysRevA.79.053408 10.1016/S0045-7825(98)00147-9 10.1115/1.4003189 10.1002/nla.471 10.1006/jsvi.2002.5010 10.1115/1.2888195 10.1016/j.apnum.2005.02.009 10.1137/0142047 10.1016/j.mcm.2009.08.014 10.1016/j.cma.2005.10.017 10.1002/nme.1781 10.1016/j.probengmech.2013.02.002 10.1006/jsvi.1995.0387 10.1121/1.5007851 10.1016/S0165-0114(99)80004-9 10.1016/j.jcp.2020.109425 10.1016/j.jsv.2011.10.010 10.1002/nme.1620231004 10.1016/j.ymssp.2011.02.020 10.2307/2371268 10.1016/S0045-7825(03)00371-2 10.1016/j.ijnonlinmec.2015.03.012 10.2514/3.50119 10.1016/S0022-460X(02)00899-4 10.1002/nme.1620260202 10.2514/3.5180 10.1016/S0022-460X(03)00360-2 10.1002/nme.2025 10.1088/0305-4470/38/8/009 10.1006/jath.1997.3141 10.1016/j.probengmech.2009.10.003 10.1115/1.4035109 10.1016/j.jcp.2010.12.021 10.1016/0022-460X(88)90226-X 10.1088/0953-4075/43/23/235004 10.1016/0022-460X(91)90899-U 10.1137/090761215 10.1016/S0045-7949(96)00206-4 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Aug 18, 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Aug 18, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 1XC VOOES |
| DOI | 10.1016/j.jsv.2020.115398 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1095-8568 |
| ExternalDocumentID | oai:HAL:hal-02536849v1 10_1016_j_jsv_2020_115398 S0022460X20302303 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHPGS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE NDZJH R2- SEW SMS SPG T9H VOH WUQ ZY4 ~HD 7TB 8FD FR3 KR7 1XC VOOES |
| ID | FETCH-LOGICAL-c402t-ef20f3b801bf0e56b0a56eb0d5eb060a84c1c20cbf401f2ab47dc08f5c085cad3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552935300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-460X |
| IngestDate | Tue Oct 14 20:47:51 EDT 2025 Sun Nov 09 07:15:51 EST 2025 Tue Nov 18 21:45:38 EST 2025 Sat Nov 29 07:26:54 EST 2025 Fri Feb 23 02:46:27 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Veering Uncertainty propagation Exceptional point Defective eigenvalue Puiseux series Parametric eigenvalue problem defective eigenvalue parametric eigenvalue problem |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-ef20f3b801bf0e56b0a56eb0d5eb060a84c1c20cbf401f2ab47dc08f5c085cad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6315-538X 0000-0002-0309-7165 |
| OpenAccessLink | https://hal.science/hal-02536849 |
| PQID | 2442329169 |
| PQPubID | 2047461 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02536849v1 proquest_journals_2442329169 crossref_citationtrail_10_1016_j_jsv_2020_115398 crossref_primary_10_1016_j_jsv_2020_115398 elsevier_sciencedirect_doi_10_1016_j_jsv_2020_115398 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-18 |
| PublicationDateYYYYMMDD | 2020-08-18 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of sound and vibration |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd – name: Elsevier |
| References | Kato (bib20) 1980 Christiansen, Madsen (bib43) 2006; 56 Blatman, Sudret (bib14) 2011; 230 Welters (bib51) 2011; 32 Seyranian, Mailybaev (bib52) 2003; 267 Papadrakakis, Kotsopulos (bib8) 1999; 168 Soize (bib5) 2013; 332 Seyranian, Kirillov, Mailybaev (bib48) 2005; 38 Adhikari, Friswell (bib9) 2007; 69 Akinola, Freitag, Spence (bib28) 2014; 34 Mailybaev (bib42) 2006; 13 Dubourg, Sudret, Deheeger (bib19) 2013; 33 Manconi, Mace (bib32) 2017; 139 Liu (bib33) 2002; 256 Ghanem, Spanos (bib12) 1990; 57 Collins, Thomson (bib10) 1969; 7 Van den Nieuwenhof, Coyette (bib11) 2003; 192 Daouk, Louf, Dorival, Champaney (bib3) 2014 Liu, Belytschko, Mani (bib23) 1986; 23 Andersen, Geer (bib45) 1982; 42 Nennig, Perrey-Debain (bib36) 2020; 412 Wiener (bib16) 1938; 60 Xiong, Nennig, Aurégan, Bi (bib27) 2017; 142 Sinou, Didier, Faverjon (bib15) 2015; 74 Ghanem, Ghosh (bib13) 2007; 72 Friswell (bib37) 1996; 118 Whittaker, Watson (bib41) 1965 Ladevze, Puel, Romeuf (bib2) 2006; 195 Hernández, Jáuregui, Mondragón (bib49) 2005; 72 Kamiński (bib22) 2013 Blatman, Sudret (bib17) 2010; 25 Gallina, Pichler, Uhl (bib18) 2011; 25 Daouk, Louf, Dorival, Champaney, Audebert (bib4) 2015; 16 Luongo (bib47) 1995; 185 Baumgärtel (bib26) 1985; 15 Murthy, Haftka (bib40) 1988; 26 Kamiński (bib24) 2010; 51 Seyranian, Mailybaev (bib29) 2003; vol. 13 Dieci, Papini, Pugliese, Spadoni (bib31) 2014; Vol. 2082 Du Bois, Adhikari, Lieven (bib34) 2011; 78 Andrew, Chu, Lancaster (bib39) 1993; 14 Uzdin, Lefebvre (bib46) 2010; 43 Stahl (bib44) 1997; 91 Shinozuka, Astill (bib7) 1972; 10 Pierre (bib30) 1988; 126 Bender (bib35) 2018 Cartarius, Main, Wunner (bib50) 2009; 79 Stefanou (bib6) 2009; 198 Zadeh (bib1) 1999; 100 Ghienne, Blanzé, Laurent (bib25) 2017; 345 Nair, Keane (bib21) 2003; 260 Triantafyllou, Triantafyllou (bib38) 1991; 150 Lee, Jung (bib53) 1997; 62 Mailybaev (10.1016/j.jsv.2020.115398_bib42) 2006; 13 Friswell (10.1016/j.jsv.2020.115398_bib37) 1996; 118 Liu (10.1016/j.jsv.2020.115398_bib33) 2002; 256 Whittaker (10.1016/j.jsv.2020.115398_bib41) 1965 Papadrakakis (10.1016/j.jsv.2020.115398_bib8) 1999; 168 Luongo (10.1016/j.jsv.2020.115398_bib47) 1995; 185 Welters (10.1016/j.jsv.2020.115398_bib51) 2011; 32 Blatman (10.1016/j.jsv.2020.115398_bib14) 2011; 230 Kamiński (10.1016/j.jsv.2020.115398_bib22) 2013 Seyranian (10.1016/j.jsv.2020.115398_bib52) 2003; 267 Triantafyllou (10.1016/j.jsv.2020.115398_bib38) 1991; 150 Manconi (10.1016/j.jsv.2020.115398_bib32) 2017; 139 Collins (10.1016/j.jsv.2020.115398_bib10) 1969; 7 Pierre (10.1016/j.jsv.2020.115398_bib30) 1988; 126 Sinou (10.1016/j.jsv.2020.115398_bib15) 2015; 74 Daouk (10.1016/j.jsv.2020.115398_bib4) 2015; 16 Baumgärtel (10.1016/j.jsv.2020.115398_bib26) 1985; 15 Wiener (10.1016/j.jsv.2020.115398_bib16) 1938; 60 Seyranian (10.1016/j.jsv.2020.115398_bib48) 2005; 38 Andrew (10.1016/j.jsv.2020.115398_bib39) 1993; 14 Hernández (10.1016/j.jsv.2020.115398_bib49) 2005; 72 Murthy (10.1016/j.jsv.2020.115398_bib40) 1988; 26 Adhikari (10.1016/j.jsv.2020.115398_bib9) 2007; 69 Dieci (10.1016/j.jsv.2020.115398_bib31) 2014; Vol. 2082 Ghanem (10.1016/j.jsv.2020.115398_bib12) 1990; 57 Bender (10.1016/j.jsv.2020.115398_bib35) 2018 Cartarius (10.1016/j.jsv.2020.115398_bib50) 2009; 79 Gallina (10.1016/j.jsv.2020.115398_bib18) 2011; 25 Liu (10.1016/j.jsv.2020.115398_bib23) 1986; 23 Christiansen (10.1016/j.jsv.2020.115398_bib43) 2006; 56 Seyranian (10.1016/j.jsv.2020.115398_bib29) 2003; vol. 13 Du Bois (10.1016/j.jsv.2020.115398_bib34) 2011; 78 Kamiński (10.1016/j.jsv.2020.115398_bib24) 2010; 51 Ghienne (10.1016/j.jsv.2020.115398_bib25) 2017; 345 Blatman (10.1016/j.jsv.2020.115398_bib17) 2010; 25 Kato (10.1016/j.jsv.2020.115398_bib20) 1980 Van den Nieuwenhof (10.1016/j.jsv.2020.115398_bib11) 2003; 192 Nennig (10.1016/j.jsv.2020.115398_bib36) 2020; 412 Uzdin (10.1016/j.jsv.2020.115398_bib46) 2010; 43 Stahl (10.1016/j.jsv.2020.115398_bib44) 1997; 91 Xiong (10.1016/j.jsv.2020.115398_bib27) 2017; 142 Soize (10.1016/j.jsv.2020.115398_bib5) 2013; 332 Ladevze (10.1016/j.jsv.2020.115398_bib2) 2006; 195 Stefanou (10.1016/j.jsv.2020.115398_bib6) 2009; 198 Ghanem (10.1016/j.jsv.2020.115398_bib13) 2007; 72 Akinola (10.1016/j.jsv.2020.115398_bib28) 2014; 34 Zadeh (10.1016/j.jsv.2020.115398_bib1) 1999; 100 Lee (10.1016/j.jsv.2020.115398_bib53) 1997; 62 Daouk (10.1016/j.jsv.2020.115398_bib3) 2014 Shinozuka (10.1016/j.jsv.2020.115398_bib7) 1972; 10 Andersen (10.1016/j.jsv.2020.115398_bib45) 1982; 42 Dubourg (10.1016/j.jsv.2020.115398_bib19) 2013; 33 Nair (10.1016/j.jsv.2020.115398_bib21) 2003; 260 |
| References_xml | – volume: 34 start-page: 955 year: 2014 end-page: 976 ident: bib28 article-title: The computation of Jordan blocks in parameter-dependent matrices publication-title: IMA J. Numer. Anal. – volume: 26 start-page: 293 year: 1988 end-page: 311 ident: bib40 article-title: Derivatives of eigenvalues and eigenvectors of a general complex matrix publication-title: Int. J. Numer. Methods Eng. – volume: 15 year: 1985 ident: bib26 publication-title: Analytic Perturbation Theory for Matrices and Operators – volume: 230 start-page: 2345 year: 2011 end-page: 2367 ident: bib14 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: J. Comput. Phys. – volume: 345 start-page: 844 year: 2017 end-page: 867 ident: bib25 article-title: Stochastic model reduction for robust dynamical characterization of structures with random parameters publication-title: Compt. Rendus Mc. – volume: 256 start-page: 551 year: 2002 end-page: 564 ident: bib33 article-title: Behavior of derivatives of eigenvalues and eigenvectors in curve veering and mode localization and their relation to close eigenvalues publication-title: J. Sound Vib. – volume: 72 start-page: 486 year: 2007 end-page: 504 ident: bib13 article-title: Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition publication-title: Int. J. Numer. Methods Eng. – volume: 139 year: 2017 ident: bib32 article-title: Veering and strong coupling effects in structural dynamics publication-title: J. Vib. Acoust. – start-page: 1 year: 2014 ident: bib3 article-title: On the lack-of-knowledge theory for low and high values of uncertainties publication-title: 2nd International Symposium on Uncertainty Quantification and Stochastic Modeling, Uncertainties, Rouen, France – volume: 33 start-page: 47 year: 2013 end-page: 57 ident: bib19 article-title: Metamodel-based importance sampling for structural reliability analysis publication-title: Probabilist. Eng. Mech. – volume: 412 start-page: 109425 year: 2020 ident: bib36 article-title: A high order continuation method to locate exceptional points and to compute puiseux series with applications to acoustic waveguides publication-title: J. Comput. Phys. – volume: 192 start-page: 3705 year: 2003 end-page: 3729 ident: bib11 article-title: Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties publication-title: Comput. Methods Appl. Mech. Eng. – volume: 74 start-page: 92 year: 2015 end-page: 99 ident: bib15 article-title: Stochastic non-linear response of a flexible rotor with local non-linearities publication-title: Int. J. Non Lin. Mech. – volume: 168 start-page: 305 year: 1999 end-page: 320 ident: bib8 article-title: Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 57 start-page: 197 year: 1990 end-page: 202 ident: bib12 article-title: Polynomial chaos in stochastic finite elements publication-title: J. Appl. Mech. – year: 2013 ident: bib22 article-title: The Stochastic Perturbation Method for Computational Mechanics: Practical Applications in Science and Engineering – volume: 332 start-page: 2379 year: 2013 end-page: 2395 ident: bib5 article-title: Stochastic modeling of uncertainties in computational structural dynamics - recent theoretical advances publication-title: J. Sound Vib. – volume: Vol. 2082 start-page: 173 year: 2014 end-page: 264 ident: bib31 article-title: Continuous decompositions and coalescing eigenvalues for matrices depending on parameters publication-title: Current Challenges in Stability Issues for Numerical Differential Equations. Lecture Notes in Mathematics – volume: 142 start-page: 2288 year: 2017 end-page: 2297 ident: bib27 article-title: Sound attenuation optimization using metaporous materials tuned on exceptional points publication-title: J. Acoust. Soc. Am. – volume: 69 start-page: 562 year: 2007 end-page: 591 ident: bib9 article-title: Random matrix eigenvalue problems in structural dynamics publication-title: Int. J. Numer. Methods Eng. – volume: 25 start-page: 183 year: 2010 end-page: 197 ident: bib17 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probabilist. Eng. Mech. – volume: 78 year: 2011 ident: bib34 article-title: On the quantification of eigenvalue curve veering: a veering index publication-title: J. Appl. Mech. – volume: 91 start-page: 139 year: 1997 end-page: 204 ident: bib44 article-title: The convergence of Padé approximants to functions with branch points publication-title: J. Approx. Theor. – volume: 32 start-page: 1 year: 2011 end-page: 22 ident: bib51 article-title: On explicit recursive formulas in the spectral perturbation analysis of a Jordan block publication-title: SIAM J. Matrix Anal. Appl. – volume: 14 start-page: 903 year: 1993 end-page: 926 ident: bib39 article-title: Derivatives of eigenvalues and eigenvectors of matrix functions publication-title: SIAM J. Matrix Anal. Appl. – volume: 25 start-page: 2297 year: 2011 end-page: 2312 ident: bib18 article-title: Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics publication-title: Mech. Syst. Signal Process. – volume: 150 start-page: 485 year: 1991 end-page: 500 ident: bib38 article-title: Frequency coalescence and mode localization phenomena: a geometric theory publication-title: J. Sound Vib. – volume: 267 start-page: 1047 year: 2003 end-page: 1064 ident: bib52 article-title: Interaction of eigenvalues in multi-parameter problems publication-title: J. Sound Vib. – volume: 7 start-page: 642 year: 1969 end-page: 648 ident: bib10 article-title: The eigenvalue problem for structural systems with statistical properties publication-title: AIAA J. – volume: 60 start-page: 897 year: 1938 end-page: 936 ident: bib16 article-title: The homogeneous chaos publication-title: Am. J. Math. – volume: 126 start-page: 485 year: 1988 end-page: 502 ident: bib30 article-title: Mode localization and eigenvalue loci veering phenomena in disordered structures publication-title: J. Sound Vib. – year: 2018 ident: bib35 article-title: PT symmetry publication-title: Quantum and Classical Physics – volume: 100 start-page: 9 year: 1999 end-page: 34 ident: bib1 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Set Syst. – volume: 260 start-page: 45 year: 2003 end-page: 65 ident: bib21 article-title: An approximate solution scheme for the algebraic random eigenvalue problem publication-title: J. Sound Vib. – volume: 13 start-page: 419 year: 2006 end-page: 436 ident: bib42 article-title: Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters publication-title: Numer. Lin. Algebra Appl. – volume: 43 year: 2010 ident: bib46 article-title: Finding and pinpointing exceptional points of an open quantum system publication-title: J. Phys. B – volume: 118 start-page: 390 year: 1996 end-page: 397 ident: bib37 article-title: The derivatives of repeated eigenvalues and their associated eigenvectors publication-title: J. Vib. Acoust. – start-page: 623pp year: 1980 ident: bib20 article-title: Perturbation Theory for Linear Operators – volume: 72 year: 2005 ident: bib49 article-title: Energy eigenvalue surfaces close to a degeneracy of unbound states: crossings and anticrossings of energies and widths publication-title: Phys. Rev. E – volume: 56 start-page: 91 year: 2006 end-page: 104 ident: bib43 article-title: On truncated taylor series and the position of their spurious zeros publication-title: Appl. Numer. Math. – volume: 10 start-page: 456 year: 1972 end-page: 462 ident: bib7 article-title: Random eigenvalue problems in structural analysis publication-title: AIAA J. – volume: 51 start-page: 272 year: 2010 end-page: 285 ident: bib24 article-title: Generalized stochastic perturbation technique in engineering computations publication-title: Math. Comput. Model. – volume: 42 start-page: 678 year: 1982 end-page: 693 ident: bib45 article-title: Power series expansions for the frequency and period of the limit cycle of the van der pol equation publication-title: SIAM J. Appl. Math. – volume: vol. 13 year: 2003 ident: bib29 publication-title: Multiparameter Stability Theory with Mechanical Applications – volume: 198 start-page: 1031 year: 2009 end-page: 1051 ident: bib6 article-title: The stochastic finite element method: past, present and future publication-title: Comput. Methods Appl. Mech. Eng. – volume: 16 start-page: 404 year: 2015 ident: bib4 article-title: Uncertainties in structural dynamics: overview and comparative analysis of methods publication-title: Mec. Ind. – year: 1965 ident: bib41 article-title: A Course of Modern Analysis – volume: 195 start-page: 4697 year: 2006 end-page: 4710 ident: bib2 article-title: Lack of knowledge in structural model validation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 23 start-page: 1831 year: 1986 end-page: 1845 ident: bib23 article-title: Random field finite elements publication-title: Int. J. Numer. Methods Eng. – volume: 79 year: 2009 ident: bib50 article-title: Exceptional points in the spectra of atoms in external fields publication-title: Phys. Rev. A – volume: 38 start-page: 1723 year: 2005 ident: bib48 article-title: Coupling of eigenvalues of complex matrices at diabolic and exceptional points publication-title: J. Phys. A – volume: 62 start-page: 429 year: 1997 end-page: 435 ident: bib53 article-title: An efficient algebraic method for the computation of natural frequency and mode shape sensitivitiespart i. distinct natural frequencies publication-title: Comput. Struct. – volume: 185 start-page: 377 year: 1995 end-page: 395 ident: bib47 article-title: Eigen solutions of perturbed nearly defective matrices publication-title: J. Sound Vib. – volume: 34 start-page: 955 issue: 3 year: 2014 ident: 10.1016/j.jsv.2020.115398_bib28 article-title: The computation of Jordan blocks in parameter-dependent matrices publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drt028 – volume: 72 issue: 2 year: 2005 ident: 10.1016/j.jsv.2020.115398_bib49 article-title: Energy eigenvalue surfaces close to a degeneracy of unbound states: crossings and anticrossings of energies and widths publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.026221 – volume: 198 start-page: 1031 issue: 9 year: 2009 ident: 10.1016/j.jsv.2020.115398_bib6 article-title: The stochastic finite element method: past, present and future publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.11.007 – volume: 14 start-page: 903 issue: 4 year: 1993 ident: 10.1016/j.jsv.2020.115398_bib39 article-title: Derivatives of eigenvalues and eigenvectors of matrix functions publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0614061 – volume: 57 start-page: 197 issue: 1 year: 1990 ident: 10.1016/j.jsv.2020.115398_bib12 article-title: Polynomial chaos in stochastic finite elements publication-title: J. Appl. Mech. doi: 10.1115/1.2888303 – volume: 79 year: 2009 ident: 10.1016/j.jsv.2020.115398_bib50 article-title: Exceptional points in the spectra of atoms in external fields publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.053408 – volume: 168 start-page: 305 issue: 1 year: 1999 ident: 10.1016/j.jsv.2020.115398_bib8 article-title: Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00147-9 – volume: 78 issue: 4 year: 2011 ident: 10.1016/j.jsv.2020.115398_bib34 article-title: On the quantification of eigenvalue curve veering: a veering index publication-title: J. Appl. Mech. doi: 10.1115/1.4003189 – volume: 13 start-page: 419 issue: 5 year: 2006 ident: 10.1016/j.jsv.2020.115398_bib42 article-title: Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters publication-title: Numer. Lin. Algebra Appl. doi: 10.1002/nla.471 – volume: 256 start-page: 551 issue: 3 year: 2002 ident: 10.1016/j.jsv.2020.115398_bib33 article-title: Behavior of derivatives of eigenvalues and eigenvectors in curve veering and mode localization and their relation to close eigenvalues publication-title: J. Sound Vib. doi: 10.1006/jsvi.2002.5010 – volume: 118 start-page: 390 issue: 3 year: 1996 ident: 10.1016/j.jsv.2020.115398_bib37 article-title: The derivatives of repeated eigenvalues and their associated eigenvectors publication-title: J. Vib. Acoust. doi: 10.1115/1.2888195 – volume: 56 start-page: 91 issue: 1 year: 2006 ident: 10.1016/j.jsv.2020.115398_bib43 article-title: On truncated taylor series and the position of their spurious zeros publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.02.009 – volume: 345 start-page: 844 issue: 12 year: 2017 ident: 10.1016/j.jsv.2020.115398_bib25 article-title: Stochastic model reduction for robust dynamical characterization of structures with random parameters publication-title: Compt. Rendus Mc. – volume: 42 start-page: 678 issue: 3 year: 1982 ident: 10.1016/j.jsv.2020.115398_bib45 article-title: Power series expansions for the frequency and period of the limit cycle of the van der pol equation publication-title: SIAM J. Appl. Math. doi: 10.1137/0142047 – volume: 51 start-page: 272 issue: 34 year: 2010 ident: 10.1016/j.jsv.2020.115398_bib24 article-title: Generalized stochastic perturbation technique in engineering computations publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2009.08.014 – year: 2013 ident: 10.1016/j.jsv.2020.115398_bib22 – year: 2018 ident: 10.1016/j.jsv.2020.115398_bib35 article-title: PT symmetry – volume: 195 start-page: 4697 issue: 37 year: 2006 ident: 10.1016/j.jsv.2020.115398_bib2 article-title: Lack of knowledge in structural model validation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.10.017 – volume: 15 year: 1985 ident: 10.1016/j.jsv.2020.115398_bib26 – volume: Vol. 2082 start-page: 173 year: 2014 ident: 10.1016/j.jsv.2020.115398_bib31 article-title: Continuous decompositions and coalescing eigenvalues for matrices depending on parameters – volume: 69 start-page: 562 issue: 3 year: 2007 ident: 10.1016/j.jsv.2020.115398_bib9 article-title: Random matrix eigenvalue problems in structural dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1781 – volume: 33 start-page: 47 year: 2013 ident: 10.1016/j.jsv.2020.115398_bib19 article-title: Metamodel-based importance sampling for structural reliability analysis publication-title: Probabilist. Eng. Mech. doi: 10.1016/j.probengmech.2013.02.002 – volume: 185 start-page: 377 issue: 3 year: 1995 ident: 10.1016/j.jsv.2020.115398_bib47 article-title: Eigen solutions of perturbed nearly defective matrices publication-title: J. Sound Vib. doi: 10.1006/jsvi.1995.0387 – volume: 142 start-page: 2288 issue: 4 year: 2017 ident: 10.1016/j.jsv.2020.115398_bib27 article-title: Sound attenuation optimization using metaporous materials tuned on exceptional points publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5007851 – volume: 100 start-page: 9 issue: 1 year: 1999 ident: 10.1016/j.jsv.2020.115398_bib1 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(99)80004-9 – volume: 412 start-page: 109425 year: 2020 ident: 10.1016/j.jsv.2020.115398_bib36 article-title: A high order continuation method to locate exceptional points and to compute puiseux series with applications to acoustic waveguides publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109425 – volume: 332 start-page: 2379 issue: 10 year: 2013 ident: 10.1016/j.jsv.2020.115398_bib5 article-title: Stochastic modeling of uncertainties in computational structural dynamics - recent theoretical advances publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2011.10.010 – volume: 23 start-page: 1831 issue: 10 year: 1986 ident: 10.1016/j.jsv.2020.115398_bib23 article-title: Random field finite elements publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620231004 – volume: 25 start-page: 2297 issue: 7 year: 2011 ident: 10.1016/j.jsv.2020.115398_bib18 article-title: Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.02.020 – volume: 60 start-page: 897 issue: 4 year: 1938 ident: 10.1016/j.jsv.2020.115398_bib16 article-title: The homogeneous chaos publication-title: Am. J. Math. doi: 10.2307/2371268 – volume: 16 start-page: 404 issue: 4 year: 2015 ident: 10.1016/j.jsv.2020.115398_bib4 article-title: Uncertainties in structural dynamics: overview and comparative analysis of methods publication-title: Mec. Ind. – volume: vol. 13 year: 2003 ident: 10.1016/j.jsv.2020.115398_bib29 – volume: 192 start-page: 3705 issue: 33 year: 2003 ident: 10.1016/j.jsv.2020.115398_bib11 article-title: Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(03)00371-2 – volume: 74 start-page: 92 year: 2015 ident: 10.1016/j.jsv.2020.115398_bib15 article-title: Stochastic non-linear response of a flexible rotor with local non-linearities publication-title: Int. J. Non Lin. Mech. doi: 10.1016/j.ijnonlinmec.2015.03.012 – volume: 10 start-page: 456 issue: 4 year: 1972 ident: 10.1016/j.jsv.2020.115398_bib7 article-title: Random eigenvalue problems in structural analysis publication-title: AIAA J. doi: 10.2514/3.50119 – year: 1965 ident: 10.1016/j.jsv.2020.115398_bib41 – volume: 260 start-page: 45 issue: 1 year: 2003 ident: 10.1016/j.jsv.2020.115398_bib21 article-title: An approximate solution scheme for the algebraic random eigenvalue problem publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(02)00899-4 – volume: 26 start-page: 293 issue: 2 year: 1988 ident: 10.1016/j.jsv.2020.115398_bib40 article-title: Derivatives of eigenvalues and eigenvectors of a general complex matrix publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620260202 – volume: 7 start-page: 642 issue: 4 year: 1969 ident: 10.1016/j.jsv.2020.115398_bib10 article-title: The eigenvalue problem for structural systems with statistical properties publication-title: AIAA J. doi: 10.2514/3.5180 – volume: 267 start-page: 1047 issue: 5 year: 2003 ident: 10.1016/j.jsv.2020.115398_bib52 article-title: Interaction of eigenvalues in multi-parameter problems publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(03)00360-2 – volume: 72 start-page: 486 issue: 4 year: 2007 ident: 10.1016/j.jsv.2020.115398_bib13 article-title: Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2025 – volume: 38 start-page: 1723 issue: 8 year: 2005 ident: 10.1016/j.jsv.2020.115398_bib48 article-title: Coupling of eigenvalues of complex matrices at diabolic and exceptional points publication-title: J. Phys. A doi: 10.1088/0305-4470/38/8/009 – start-page: 1 year: 2014 ident: 10.1016/j.jsv.2020.115398_bib3 article-title: On the lack-of-knowledge theory for low and high values of uncertainties – volume: 91 start-page: 139 issue: 2 year: 1997 ident: 10.1016/j.jsv.2020.115398_bib44 article-title: The convergence of Padé approximants to functions with branch points publication-title: J. Approx. Theor. doi: 10.1006/jath.1997.3141 – volume: 25 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.jsv.2020.115398_bib17 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probabilist. Eng. Mech. doi: 10.1016/j.probengmech.2009.10.003 – volume: 139 issue: 2 year: 2017 ident: 10.1016/j.jsv.2020.115398_bib32 article-title: Veering and strong coupling effects in structural dynamics publication-title: J. Vib. Acoust. doi: 10.1115/1.4035109 – volume: 230 start-page: 2345 issue: 6 year: 2011 ident: 10.1016/j.jsv.2020.115398_bib14 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – volume: 126 start-page: 485 issue: 3 year: 1988 ident: 10.1016/j.jsv.2020.115398_bib30 article-title: Mode localization and eigenvalue loci veering phenomena in disordered structures publication-title: J. Sound Vib. doi: 10.1016/0022-460X(88)90226-X – start-page: 623pp year: 1980 ident: 10.1016/j.jsv.2020.115398_bib20 – volume: 43 issue: 23 year: 2010 ident: 10.1016/j.jsv.2020.115398_bib46 article-title: Finding and pinpointing exceptional points of an open quantum system publication-title: J. Phys. B doi: 10.1088/0953-4075/43/23/235004 – volume: 150 start-page: 485 issue: 3 year: 1991 ident: 10.1016/j.jsv.2020.115398_bib38 article-title: Frequency coalescence and mode localization phenomena: a geometric theory publication-title: J. Sound Vib. doi: 10.1016/0022-460X(91)90899-U – volume: 32 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.jsv.2020.115398_bib51 article-title: On explicit recursive formulas in the spectral perturbation analysis of a Jordan block publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090761215 – volume: 62 start-page: 429 issue: 3 year: 1997 ident: 10.1016/j.jsv.2020.115398_bib53 article-title: An efficient algebraic method for the computation of natural frequency and mode shape sensitivitiespart i. distinct natural frequencies publication-title: Comput. Struct. doi: 10.1016/S0045-7949(96)00206-4 |
| SSID | ssj0009434 |
| Score | 2.3971374 |
| Snippet | A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the variability of the parameters exceed the radius of... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115398 |
| SubjectTerms | Algorithms Approximation Convergence Defective eigenvalue Eigenvalues Engineering Sciences Exceptional point Flutter Mathematical models Mechanics Numerical analysis Numerical methods Numerical models Parameters Parametric eigenvalue problem Perturbation methods Puiseux series Robustness (mathematics) Rotating machinery Singularities Structural mechanics Taylor series Uncertainty propagation Veering Vibration Vibrations Waveguides |
| Title | Beyond the limitations of perturbation methods for real random eigenvalue problems using Exceptional Points and analytic continuation |
| URI | https://dx.doi.org/10.1016/j.jsv.2020.115398 https://www.proquest.com/docview/2442329169 https://hal.science/hal-02536849 |
| Volume | 480 |
| WOSCitedRecordID | wos000552935300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009434 issn: 0022-460X databaseCode: AIEXJ dateStart: 19950107 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB60q-CLeMXqKoP4ZMkyTWZyeaxSXWVZFlylbyGZTNiUmpSmLfUH-L89Zy5N6OKigi9DCZkM5Pt6zpnJOd8h5E0ZxuCUMullIuIeNtv2EiWEB_cHeSR8xnXK_7ez6Pw8ns2SC3uq1Op2AlFdx7tdsvyvUMM1ABtLZ_8C7v1D4QL8BtBhBNhh_CPgbU0KBpQLrF7qct2WagUOJjeQm9bRWo1htEJ1YXBaRfN9pFCeEyXAsYJKN5tpRxt9oDDd2RQYuPmiqTB_xii9ZosfKPuKWe9Vvemgvh7zttjESc_a4ja9nwTw8Uqnntn6IScIro-p67rSBumdqptq3T-n8HWWnDWt-vDMFdB02UqumICHbGbckbHBEPV5sTDddpyR5qbf0zWDb84e5ifzdnuCq4ILEIHpa32go_1FhyuwlM-wURIqxB75kUjiATmafJrOPndazTzgTmQeJ7iP4Tot8GCh34Uzt68wr_bAveuY5fIBuW9fPJ0Ykjwkt1T9iNzVSb-yfUx-GqpQoArtUYU2Je1ThVqqUKAKRapQQxXaUYU6qlBNFdqjCjVUoTCFOqrQPlWekK8fppfvTz3blsOTnPlrT5U-K4McQpu8ZEqEOctEqHJWCBhClsVcjqXPZF7C3r30s5xHhWRxKWAQMiuCp2RQN7V6RmgB3gFcQBmEQnIBO6hIqsIfhz4YEHh2MCTMvd1U2reArVMWqUtOnKcASIqApAaQIXm7n7I0gi033cwdZKmNOE0kmQK_bpr2GuDdPx4V2k8nZylegy1EEMY82Y6H5Nihn1rz0KYQTMMWBrZkyfN_W_oFudf9uY7JYL3aqJfkjtyuq3b1yjL5F4N7wU8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+limitations+of+perturbation+methods+for+real+random+eigenvalue+problems+using+Exceptional+Points+and+analytic+continuation&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Ghienne%2C+Martin&rft.au=Nennig%2C+Benoit&rft.date=2020-08-18&rft.pub=Elsevier+Ltd&rft.issn=0022-460X&rft.eissn=1095-8568&rft.volume=480&rft_id=info:doi/10.1016%2Fj.jsv.2020.115398&rft.externalDocID=S0022460X20302303 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |