Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones

Unmanned aerial vehicles (UAVs), commonly known as drones, are being increasingly deployed throughout the globe as a means to streamline monitoring, inspection, mapping, and logistic routines. When dispatched on autonomous missions, drones require an intelligent decision-making system for trajectory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 20; H. 2; S. 1034 - 1046
Hauptverfasser: Alyassi, Rashid, Khonji, Majid, Karapetyan, Areg, Chau, Sid Chi-Kin, Elbassioni, Khaled, Tseng, Chien-Ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Unmanned aerial vehicles (UAVs), commonly known as drones, are being increasingly deployed throughout the globe as a means to streamline monitoring, inspection, mapping, and logistic routines. When dispatched on autonomous missions, drones require an intelligent decision-making system for trajectory planning and tour optimization. Given the limited capacity of their onboard batteries, a key design challenge is to ensure the underlying algorithms can efficiently optimize the mission objectives along with recharging operations during long-haul flights. With this in view, the present work undertakes a comprehensive study on automated tour management systems for an energy-constrained drone: (1) We construct a machine learning model that estimates the energy expenditure of typical multi-rotor drones while accounting for real-world aspects and extrinsic meteorological factors. (2) Leveraging this model, the joint program of flight mission planning and recharging optimization is formulated as a multi-criteria Asymmetric Traveling Salesman Problem (ATSP), wherein a drone seeks for the time-optimal energy-feasible tour that visits all the target sites and refuels whenever necessary. (3) We devise an efficient approximation algorithm with provable worst-case performance guarantees and implement it in a drone management system, which supports real-time flight path tracking and re- computation in dynamic environments. (4) The effectiveness and practicality of the proposed approach are validated through extensive numerical simulations as well as real-world experiments. Note to Practitioners-This study is stimulated by the need for developing pragmatic and provably efficient automated tour management systems for UAVs deployed on energy-constrained, long-distance flight missions. As such, UAVs provide a nifty platform for facilitating environmental monitoring, disaster management, transport of medical supplies, as well as expediting last-mile deliveries. However, existing path planners generally fall short of capturing several crucial aspects, such as detailed power consumption model (e.g., factoring in payload, wind speed and direction) or performance guarantees, potentially leading to underutilized or infeasible routing decisions. To address these issues, the present work proposes a theoretically-backed routing approach with a certifiable degree of optimality and develops an effective, practical power consumption evaluation model for multi-rotor UAVs, verified on multiple drone models.
AbstractList Unmanned aerial vehicles (UAVs), commonly known as drones, are being increasingly deployed throughout the globe as a means to streamline monitoring, inspection, mapping, and logistic routines. When dispatched on autonomous missions, drones require an intelligent decision-making system for trajectory planning and tour optimization. Given the limited capacity of their onboard batteries, a key design challenge is to ensure the underlying algorithms can efficiently optimize the mission objectives along with recharging operations during long-haul flights. With this in view, the present work undertakes a comprehensive study on automated tour management systems for an energy-constrained drone: (1) We construct a machine learning model that estimates the energy expenditure of typical multi-rotor drones while accounting for real-world aspects and extrinsic meteorological factors. (2) Leveraging this model, the joint program of flight mission planning and recharging optimization is formulated as a multi-criteria Asymmetric Traveling Salesman Problem (ATSP), wherein a drone seeks for the time-optimal energy-feasible tour that visits all the target sites and refuels whenever necessary. (3) We devise an efficient approximation algorithm with provable worst-case performance guarantees and implement it in a drone management system, which supports real-time flight path tracking and re- computation in dynamic environments. (4) The effectiveness and practicality of the proposed approach are validated through extensive numerical simulations as well as real-world experiments. Note to Practitioners-This study is stimulated by the need for developing pragmatic and provably efficient automated tour management systems for UAVs deployed on energy-constrained, long-distance flight missions. As such, UAVs provide a nifty platform for facilitating environmental monitoring, disaster management, transport of medical supplies, as well as expediting last-mile deliveries. However, existing path planners generally fall short of capturing several crucial aspects, such as detailed power consumption model (e.g., factoring in payload, wind speed and direction) or performance guarantees, potentially leading to underutilized or infeasible routing decisions. To address these issues, the present work proposes a theoretically-backed routing approach with a certifiable degree of optimality and develops an effective, practical power consumption evaluation model for multi-rotor UAVs, verified on multiple drone models.
Author Karapetyan, Areg
Tseng, Chien-Ming
Alyassi, Rashid
Elbassioni, Khaled
Khonji, Majid
Chau, Sid Chi-Kin
Author_xml – sequence: 1
  givenname: Rashid
  surname: Alyassi
  fullname: Alyassi, Rashid
  email: rashid.alyassi@ku.ac.ae
  organization: EECS Department, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 2
  givenname: Majid
  orcidid: 0000-0002-1548-9377
  surname: Khonji
  fullname: Khonji, Majid
  email: majid.khonji@ku.ac.ae
  organization: EECS Department, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 3
  givenname: Areg
  orcidid: 0000-0001-6662-9037
  surname: Karapetyan
  fullname: Karapetyan, Areg
  email: areg.karapetyan@ku.ac.ae
  organization: EECS Department, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Sid Chi-Kin
  orcidid: 0000-0003-0362-2844
  surname: Chau
  fullname: Chau, Sid Chi-Kin
  email: sid.chau@anu.edu.au
  organization: College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
– sequence: 5
  givenname: Khaled
  orcidid: 0000-0001-7021-5400
  surname: Elbassioni
  fullname: Elbassioni, Khaled
  email: khaled.elbassioni@ku.ac.ae
  organization: EECS Department, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 6
  givenname: Chien-Ming
  surname: Tseng
  fullname: Tseng, Chien-Ming
  organization: Ubiquiti Inc., Taipei, Taiwan
BookMark eNp9kE1LwzAYx4NMcJt-APFS8NyZlyZpjnNuKkwmOsFbSNNs6-iSmaSHfXtbNkQ8eHoeeP4vD78B6FlnDQDXCI4QguJuOX6fjjDEeEQQp5TRM9BHlOYp4TnpdXtGUyoovQCDELYQ4iwXsA8-x0101u1cE5I3ozfKryu7TpQtk1ldrTcxealCqJxNXmtlbXdbOZ_cqxiNP6SLvfEqmjL5FfPg29fCJThfqTqYq9Mcgo_ZdDl5SueLx-fJeJ7qDOKYGm1oURCBSwILygrFIEQM6QwXuqCUMwRVjngpMCeQlDnTlGpGBSsRFq2GDMHtMXfv3VdjQpRb13jbVkrMBcc5Y5y0KnRUae9C8GYl977aKX-QCMoOoOwAyg6gPAFsPfyPR1dRxZZF9Kqq_3XeHJ2VMeanSXAuEBLkG_h2f6k
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TITS_2024_3350042
crossref_primary_10_1109_LRA_2025_3540736
crossref_primary_10_3390_robotics13050066
crossref_primary_10_1109_ACCESS_2025_3576274
crossref_primary_10_3390_drones7020073
crossref_primary_10_1109_ACCESS_2025_3581944
crossref_primary_10_3390_drones7030169
crossref_primary_10_2478_amns_2024_3279
crossref_primary_10_3390_drones7020077
crossref_primary_10_1109_TASE_2025_3530425
crossref_primary_10_2478_rgg_2025_0007
crossref_primary_10_1109_TRO_2025_3577058
crossref_primary_10_3390_s23094269
crossref_primary_10_1016_j_cie_2024_110601
crossref_primary_10_1080_23311916_2025_2490529
crossref_primary_10_2478_amns_2023_1_00358
crossref_primary_10_1117_1_JEI_34_3_033015
crossref_primary_10_3390_en15197136
crossref_primary_10_1016_j_trd_2023_103842
crossref_primary_10_1109_TASE_2024_3428541
crossref_primary_10_3390_info13100501
crossref_primary_10_51534_tiha_1437254
crossref_primary_10_1109_TSMC_2024_3392011
crossref_primary_10_3390_automation6020019
crossref_primary_10_3390_technologies12050069
crossref_primary_10_3390_s23021025
crossref_primary_10_3390_drones9080541
crossref_primary_10_1016_j_cor_2024_106678
crossref_primary_10_1109_JIOT_2025_3578445
crossref_primary_10_1007_s11227_025_07105_0
crossref_primary_10_1016_j_eswa_2025_129251
crossref_primary_10_1109_TIV_2024_3396556
crossref_primary_10_1007_s13132_024_01984_z
crossref_primary_10_1109_TVT_2024_3405022
crossref_primary_10_1109_TASE_2024_3481998
crossref_primary_10_1109_JIOT_2025_3525985
crossref_primary_10_20965_jrm_2023_p0271
crossref_primary_10_1109_TITS_2024_3397588
crossref_primary_10_3390_drones8090468
crossref_primary_10_3390_s23031463
crossref_primary_10_1108_AEAT_08_2022_0223
crossref_primary_10_1002_rob_22231
crossref_primary_10_1109_ACCESS_2023_3326101
crossref_primary_10_1109_ACCESS_2023_3284040
crossref_primary_10_3390_drones9010005
crossref_primary_10_1109_ACCESS_2023_3329976
crossref_primary_10_1109_ACCESS_2025_3537697
crossref_primary_10_30518_jav_1546277
crossref_primary_10_3390_drones9030158
crossref_primary_10_1007_s00202_024_02746_5
crossref_primary_10_1016_j_autcon_2025_106360
crossref_primary_10_1109_TVT_2022_3232607
crossref_primary_10_1109_TASE_2024_3395409
crossref_primary_10_3390_en16042067
crossref_primary_10_1016_j_compeleceng_2025_110529
crossref_primary_10_1109_TMC_2025_3553285
crossref_primary_10_1109_ACCESS_2024_3390035
crossref_primary_10_3390_jcs9040169
crossref_primary_10_1016_j_compag_2024_108972
crossref_primary_10_1080_00207543_2025_2536193
crossref_primary_10_1142_S2301385025500256
Cites_doi 10.1109/TSMC.2016.2582745
10.1109/IROS.2004.1389776
10.1109/TITS.2019.2939094
10.1201/b19350
10.1016/j.cie.2018.05.013
10.1038/s41467-018-03457-9
10.1145/2906388.2906410
10.1613/jair.1.11219
10.1016/j.ijpe.2019.01.010
10.1109/TITS.2017.2672880
10.1016/j.tre.2020.102214
10.1177/0042098020917790
10.1109/TITS.2017.2691606
10.1007/s10514-018-9790-x
10.1007/s10846-019-01034-w
10.1145/2934328.2934334
10.1002/net.3230120103
10.1109/ACCESS.2021.3063316
10.1145/1978782.1978791
10.1016/j.trb.2020.06.011
10.1145/1814433.1814450
10.1109/ITSC.2002.1041322
10.1002/net.21818
10.1016/j.trd.2020.102668
10.1145/2768510.2768530
10.1109/JSYST.2020.2994553
10.1613/jair.3893
10.1145/3077839.3078462
10.1109/TII.2020.3012162
10.1109/ACCESS.2021.3077041
10.1109/TASE.2013.2279544
10.1145/321832.321847
10.1007/978-4-431-53856-1
10.1016/j.tre.2011.08.001
10.1145/2502524.2502527
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3175565
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1046
ExternalDocumentID 10_1109_TASE_2022_3175565
9779119
Genre orig-research
GrantInformation_xml – fundername: Khalifa University of Science and Technology
  grantid: CIRA-2020-286
  funderid: 10.13039/501100004070
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-ece5bb392d30b56ba600161c42bcb557610a817d927303d86c55c6596d1292bc3
IEDL.DBID RIE
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800765800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Mon Jun 30 05:06:21 EDT 2025
Sat Nov 29 04:12:48 EST 2025
Tue Nov 18 20:45:15 EST 2025
Wed Aug 27 02:18:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-ece5bb392d30b56ba600161c42bcb557610a817d927303d86c55c6596d1292bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0362-2844
0000-0001-6662-9037
0000-0001-7021-5400
0000-0002-1548-9377
OpenAccessLink https://ieeexplore.ieee.org/document/9779119
PQID 2797286673
PQPubID 27623
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TASE_2022_3175565
crossref_primary_10_1109_TASE_2022_3175565
ieee_primary_9779119
proquest_journals_2797286673
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
(ref11) 2021
ref17
ref39
ref16
Coles (ref27)
ref38
ref19
ref18
(ref8) 2021
ref24
ref23
ref45
ref26
ref20
ref42
ref22
Grubwinkler (ref35)
ref44
ref21
ref43
(ref41) 2012
ref28
ref29
ref7
(ref10) 2021
ref4
ref3
(ref6) 2021
ref5
Siegwart (ref14) 2015
ref40
Li (ref25)
(ref9) 2021
References_xml – ident: ref15
  doi: 10.1109/TSMC.2016.2582745
– ident: ref12
  doi: 10.1109/IROS.2004.1389776
– volume-title: UAE to Use Drones for Government Services
  year: 2021
  ident: ref11
– ident: ref23
  doi: 10.1109/TITS.2019.2939094
– ident: ref2
  doi: 10.1201/b19350
– ident: ref17
  doi: 10.1016/j.cie.2018.05.013
– ident: ref3
  doi: 10.1038/s41467-018-03457-9
– ident: ref13
  doi: 10.1145/2906388.2906410
– ident: ref28
  doi: 10.1613/jair.1.11219
– ident: ref16
  doi: 10.1016/j.ijpe.2019.01.010
– ident: ref38
  doi: 10.1109/TITS.2017.2672880
– ident: ref5
  doi: 10.1016/j.tre.2020.102214
– ident: ref7
  doi: 10.1177/0042098020917790
– ident: ref30
  doi: 10.1109/TITS.2017.2691606
– ident: ref24
  doi: 10.1007/s10514-018-9790-x
– start-page: 206
  volume-title: Proc. Int. Conf. Automated Planning Scheduling
  ident: ref25
  article-title: Generative planning for hybrid systems based on flow tubes
– ident: ref19
  doi: 10.1007/s10846-019-01034-w
– ident: ref29
  doi: 10.1145/2934328.2934334
– start-page: 1
  volume-title: Proc. Conf. Future Automot. Technol.
  ident: ref35
  article-title: A modular and dynamic approach to predict the energy consumption of electric vehicles
– ident: ref42
  doi: 10.1002/net.3230120103
– volume-title: Dubai Police Used Drones to Detect 4
  year: 2021
  ident: ref6
– ident: ref32
  doi: 10.1109/ACCESS.2021.3063316
– ident: ref33
  doi: 10.1145/1978782.1978791
– ident: ref20
  doi: 10.1016/j.trb.2020.06.011
– ident: ref34
  doi: 10.1145/1814433.1814450
– ident: ref36
  doi: 10.1109/ITSC.2002.1041322
– volume-title: Royal Mail: Postal Service to Trial Using Drones
  year: 2021
  ident: ref9
– volume-title: Introduction to Autonomous Mobile Robots
  year: 2015
  ident: ref14
– ident: ref4
  doi: 10.1002/net.21818
– volume-title: Helicopter Flying Handbook
  year: 2012
  ident: ref41
– ident: ref40
  doi: 10.1016/j.trd.2020.102668
– ident: ref37
  doi: 10.1145/2768510.2768530
– ident: ref22
  doi: 10.1109/JSYST.2020.2994553
– ident: ref26
  doi: 10.1613/jair.3893
– ident: ref45
  doi: 10.1145/3077839.3078462
– ident: ref18
  doi: 10.1109/TII.2020.3012162
– ident: ref43
  doi: 10.1109/ACCESS.2021.3077041
– ident: ref21
  doi: 10.1109/TASE.2013.2279544
– ident: ref44
  doi: 10.1145/321832.321847
– start-page: 892
  volume-title: Proc. AAAI
  ident: ref27
  article-title: Planning with problems requiring temporal coordination
– ident: ref1
  doi: 10.1007/978-4-431-53856-1
– volume-title: French Postal Service Delivers Parcels Using Drones
  year: 2021
  ident: ref8
– ident: ref31
  doi: 10.1016/j.tre.2011.08.001
– ident: ref39
  doi: 10.1145/2502524.2502527
– volume-title: Mail Delivery by Drone: Japan Post Invests 3 Billion Yen for Commercial Drone Delivery by 2023
  year: 2021
  ident: ref10
SSID ssj0024890
Score 2.6139128
Snippet Unmanned aerial vehicles (UAVs), commonly known as drones, are being increasingly deployed throughout the globe as a means to streamline monitoring,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1034
SubjectTerms Algorithms
approximation algorithm
Approximation algorithms
Automation
Batteries
Charging stations
Decision making
Decision theory
Disaster management
Drone aircraft
Drone vehicles
Drones
Environmental management
Environmental monitoring
flight mission planning
Inspection
Machine learning
Management systems
Mathematical analysis
Mathematical models
Mission planning
Multiple criterion
Optimization
Path tracking
Planning
Power consumption
power consumption modeling
Power demand
Power management
Recharging
recharging optimization
Rotors
Routing
Space missions
Trajectory planning
Traveling salesman problem
Unmanned aerial vehicles
Title Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones
URI https://ieeexplore.ieee.org/document/9779119
https://www.proquest.com/docview/2797286673
Volume 20
WOSCitedRecordID wos000800765800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsL3LwJK7uZptkcyza4sUqWKG3ZfMQBFmlbgX_vTPZbS0ogrewJGHJbHa-L5n5BuBUc8udekqiQhY86incitorGzltRCJtgu04FJtQo1E2mej7FpwvcmG89yH4zF9QM9zlu1c7o6OyS8QquDf1CqwoJetcrW9dvSycpxAiiIQWornBTGJ9Oe4_DJAJcn5BzlKQH1nyQaGoyo8_cXAvw83_vdgWbDQwkvVru29Dy5c7sL4kLtiBSX9WUcYCUnuG4JAUkfA5K0rHhi9EydntM4XAlmxeuIghgGW14OZndPdGcsvesaVprqek7L8Lj8PB-OomauooRBbZYRV564UxCIRcGhshTSED0LM9bqwRSDiSuMgS5TRCmTh1mbRCWCm0dAgGsE-6B-0S598HZlKpeVF4g0CoZ5Abci2UdamiFNnY-S7E85XNbSMyTrUuXvJANmKdkzFyMkbeGKMLZ4shb7XCxl-dO7T6i47NwnfhaG6-vNmD7zlXWvGMypoe_D7qENaoeHwdh3ME7Wo688ewaj-q5_fpSfi8vgCYHMxA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHDyJ1TRtmua4qIuiroIr7K00D0GQVdZdwX_vTNpdFxTBWyhJKJmm833JzDcAh1pY4dRTHJVZKaJU4VbUXtnIaSPjzMbY5qHYhGq3825X30_B8TgXxnsfgs_8CTXDXb57tUM6KjtFrIJ7U0_DrExTwatsrW9lvTycqBAmiKSWsr7DjLk-7TQfLpALCnFC7lKSJ5nwQqGsyo9_cXAwreX_vdoKLNVAkjUry6_ClO-tweKEvOA6dJvDAeUsILlnCA9JEwmfs7LnWOuFSDm7faYg2B4blS5iCGFZJbn5Gd29keCyd2ximvM-aftvwGPronN2GdWVFCKL_HAQeeulMQiFXMKNzEyZBahnU2GskUg5Yl7msXIawQxPXJ5ZKW0mdeYQDmCfZBNmejj_FjCTZFqUpTcIhVKD7FBoqaxLFCXJcucbwEcrW9haZpyqXbwUgW5wXZAxCjJGURujAUfjIW-VxsZfnddp9ccd64VvwO7IfEW9C98LobQSORU23f591AHMX3Zub4qbq_b1DixQKfkqKmcXZgb9od-DOfsxeH7v74dP7QtiuM-H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Recharging+and+Flight+Mission+Planning+for+Battery-Operated+Autonomous+Drones&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Alyassi%2C+Rashid&rft.au=Khonji%2C+Majid&rft.au=Karapetyan%2C+Areg&rft.au=Chau%2C+Sid+Chi-Kin&rft.date=2023-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=20&rft.issue=2&rft.spage=1034&rft.epage=1046&rft_id=info:doi/10.1109%2FTASE.2022.3175565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2022_3175565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon