Cordial elements and dimensions of affine Deligne–Lusztig varieties
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy clas...
Saved in:
| Published in: | Forum of Mathematics, Pi Vol. 9 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cambridge, UK
Cambridge University Press
01.01.2021
|
| Subjects: | |
| ISSN: | 2050-5086, 2050-5086 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The affine Deligne–Lusztig variety
$X_w(b)$
in the affine flag variety of a reductive group
${\mathbf G}$
depends on two parameters: the
$\sigma $
-conjugacy class
$[b]$
and the element w in the Iwahori–Weyl group
$\tilde {W}$
of
${\mathbf G}$
. In this paper, for any given
$\sigma $
-conjugacy class
$[b]$
, we determine the nonemptiness pattern and the dimension formula of
$X_w(b)$
for most
$w \in \tilde {W}$
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2050-5086 2050-5086 |
| DOI: | 10.1017/fmp.2021.10 |