Cordial elements and dimensions of affine Deligne–Lusztig varieties

The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy clas...

Full description

Saved in:
Bibliographic Details
Published in:Forum of Mathematics, Pi Vol. 9
Main Author: He, Xuhua
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.01.2021
Subjects:
ISSN:2050-5086, 2050-5086
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy class $[b]$ , we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-5086
2050-5086
DOI:10.1017/fmp.2021.10