Cordial elements and dimensions of affine Deligne–Lusztig varieties

The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy clas...

Full description

Saved in:
Bibliographic Details
Published in:Forum of Mathematics, Pi Vol. 9
Main Author: He, Xuhua
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.01.2021
Subjects:
ISSN:2050-5086, 2050-5086
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy class $[b]$ , we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$ .
AbstractList The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy class $[b]$ , we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$ .
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy class $[b]$ , we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$ .
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$ . In this paper, for any given $\sigma $ -conjugacy class $[b]$ , we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$ .
ArticleNumber e9
Author He, Xuhua
Author_xml – sequence: 1
  givenname: Xuhua
  surname: He
  fullname: He, Xuhua
  email: xuhuahe@math.cuhk.edu.hk
  organization: The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
BookMark eNp1kM9qGzEQxkVxoc6fU19gocewqf6stKtjcdzEYOgldzG7GhmZ9cqV5EJyyjvkDfskUerQhtCc5pvhN98M3wmZTWFCQj4zeskoa7-63f6SU85K94HMOZW0lrRTs1f6EzlPaUspZVQKodmcLBchWg9jhSPucMqpgslW1hedfJhSFVwFzvkJqysc_WbC3w-P60O6z35T_YLoMXtMZ-SjgzHh-Us9Jbffl7eLm3r943q1-Lauh4byXGMres6o0q6TTduKBrnjFgYA7XjHtVONEzhYRpHJjlvWUc371smmV06BOCWro60NsDX76HcQ70wAb_4MQtwYiNkPIxolhMDOSdEPvFG6h4Zz1rYt67m1vR6K15ej1z6GnwdM2WzDIU7le8Ol0lo2SnWFujhSQwwpRXR_rzJqnlM3JXXznHrpCs3e0IPPkEuOOYIf39mpX3Zg10dvN_jvkf_xTw72leE
CitedBy_id crossref_primary_10_1307_mmj_20175356
crossref_primary_10_1007_s00209_022_03154_w
crossref_primary_10_2140_ant_2024_18_1681
crossref_primary_10_1007_s42543_024_00086_8
crossref_primary_10_2140_ant_2025_19_2015
crossref_primary_10_5802_aif_3578
crossref_primary_10_2140_ant_2025_19_1973
Cites_doi 10.1016/j.jalgebra.2009.04.003
10.4007/annals.2014.179.1.6
10.2307/1971021
10.1007/BF02684396
10.1016/j.jalgebra.2012.09.017
10.1090/memo/1260
10.4171/dm/322
10.1007/s00222-016-0710-4
10.4007/annals.2014.179.3.3
10.1112/S0010437X10004823
10.1007/s00229-016-0863-x
10.24033/asens.2254
10.1007/BF02715544
10.1007/s00208-020-02102-5
10.1112/S0010437X14007349
10.24033/asens.2138
10.4007/annals.2017.185.2.2
10.1515/crelle.2011.044
10.1023/A:1000102604688
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
– notice: The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1017/fmp.2021.10
DatabaseName Cambridge Core Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList

Engineering Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: IKXGN
  name: Cambridge Open Access
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2050-5086
ExternalDocumentID oai_doaj_org_article_6333e8f53bc2469ba42217771b2ddb9c
10_1017_fmp_2021_10
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AANRG
AARAB
AASVR
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ACBMC
ACGFS
ACIMK
ACIWK
ACREK
ACUIJ
ACUYZ
ACWGA
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADVJH
AEBAK
AEGXH
AEHGV
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
DOHLZ
EBS
EJD
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
L6V
LW7
M-V
M48
M7S
M~E
NIKVX
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WXY
ZYDXJ
AAYXX
ABVKB
ABXHF
ACAJB
ACDLN
ACUHS
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c402t-e73b21069f8547734e2f2dacaa9f2829f64f3ecd10e1582d18092b7f54b6f6a3
IEDL.DBID IKXGN
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693681800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-5086
IngestDate Fri Oct 03 12:44:56 EDT 2025
Fri Jul 25 12:05:34 EDT 2025
Sat Nov 29 03:17:24 EST 2025
Tue Nov 18 21:28:58 EST 2025
Wed Mar 13 06:01:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 11G25
20G25
Language English
License http://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-e73b21069f8547734e2f2dacaa9f2829f64f3ecd10e1582d18092b7f54b6f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.cambridge.org/core/product/identifier/S205050862100010X/type/journal_article
PQID 2569954668
PQPubID 2035936
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_6333e8f53bc2469ba42217771b2ddb9c
proquest_journals_2569954668
crossref_primary_10_1017_fmp_2021_10
crossref_citationtrail_10_1017_fmp_2021_10
cambridge_journals_10_1017_fmp_2021_10
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Forum of Mathematics, Pi
PublicationTitleAlternate Forum of Mathematics, Pi
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2017; 209
2010; 43
2015; 48
2012; 372
2010; 15
2011; 656
1965; 25
1997; 109
2005; 298
2021; 379
1976; 103
2010; 146
2009; 322
2014; 150
2017; 152
2017; 185
1972; 41
2019; 261
8
1985; 56
2014; 179
S205050862100010X_r21
Rapoport (S205050862100010X_r25) 2005; 298
Yu (S205050862100010X_r18) 2021; 379
He (S205050862100010X_r14) 2015
Görtz (S205050862100010X_r9) 2010
Milićević (S205050862100010X_r23); 8
S205050862100010X_r1
Görtz (S205050862100010X_r7) 2010; 15
S205050862100010X_r2
S205050862100010X_r3
S205050862100010X_r19
S205050862100010X_r4
S205050862100010X_r6
S205050862100010X_r8
S205050862100010X_r13
S205050862100010X_r12
Kottwitz (S205050862100010X_r20) 1985; 56
S205050862100010X_r11
S205050862100010X_r22
S205050862100010X_r28
S205050862100010X_r17
S205050862100010X_r27
S205050862100010X_r16
S205050862100010X_r15
References_xml – volume: 43
  start-page: 1017
  issue: 6
  year: 2010
  end-page: 1038
  article-title: On a conjecture of Kottwitz and Rapoport
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
– volume: 146
  start-page: 1339
  year: 2010
  end-page: 1382
  article-title: Affine Deligne-Lusztig varieties in affine flag varieties
  publication-title: Compos. Math.
– volume: 15
  start-page: 1009
  year: 2010
  end-page: 1028
  article-title: Dimension of affine Deligne-Lusztig varieties in affine flag varieties
  publication-title: Doc. Math.
– volume: 298
  start-page: 271
  year: 2005
  end-page: 318
  article-title: A guide to the reduction modulo $p$ of Shimura varieties
  publication-title: Astérisque
– volume: 103
  start-page: 103
  issue: 1
  year: 1976
  end-page: 161
  article-title: Representations of reductive groups over finite fields
  publication-title: Ann. of Math. (2)
– volume: 25
  start-page: 5
  year: 1965
  end-page: 48
  article-title: On some Bruhat decomposition and the structure of the Hecke rings of $p$ -adic Chevalley groups
  publication-title: Publ. Math. Inst. Hautes Études Sci.
– volume: 56
  start-page: 201
  year: 1985
  end-page: 220
  article-title: Isocrystals with additional structure
  publication-title: Compos. Math.
– volume: 179
  start-page: 1009
  issue: 3
  year: 2014
  end-page: 1040
  article-title: Truncations of level 1 of elements in the loop group of a reductive group
  publication-title: Ann. of Math. (2)
– volume: 656
  start-page: 87
  year: 2011
  end-page: 129
  article-title: The Newton stratification on deformations of local $G$ -shtukas’
  publication-title: J. Reine Angew. Math.
– volume: 209
  start-page: 329
  year: 2017
  end-page: 423
  article-title: Projectivity of the Witt vector Grassmannian
  publication-title: Invent. Math.
– volume: 379
  start-page: 1747
  year: 2021
  end-page: 1765
  article-title: Dimension formula of the affine Deligne-Lusztig variety $X\left(\mu, b\right)$ ’
  publication-title: Math. Ann.
– volume: 179
  start-page: 367
  year: 2014
  end-page: 404
  article-title: Geometric and homological properties of affine Deligne-Lusztig varieties
  publication-title: Ann. of Math. (2)
– volume: 8
  article-title: Generic Newton points and the Newton poset in Iwahori-double cosets
  publication-title: Forum Math. Sigma
– volume: 322
  start-page: 4030
  year: 2009
  end-page: 4039
  article-title: A subalgebra of $0$ -Hecke algebra’
  publication-title: J. Algebra
– volume: 261
  year: 2019
  article-title: Dimensions of Affine Deligne-Lusztig Varieties: A New Approach via Labeled Folded Alcove Walks and Root Operators
  publication-title: Memoirs of the American Mathematical Society
– volume: 150
  start-page: 1903
  issue: 11
  year: 2014
  end-page: 1927
  article-title: Minimal length elements of extended affine Weyl group
  publication-title: Compos. Math.
– volume: 185
  start-page: 403
  year: 2017
  end-page: 492
  article-title: Affine Grassmannians and the geometric Satake in mixed characteristic
  publication-title: Ann. of Math. (2)
– volume: 41
  start-page: 5
  year: 1972
  end-page: 276
  article-title: Groupes rèductifs sur un corps local, I
  publication-title: Publ. Math. Inst. Hautes Études Sci.
– volume: 48
  start-page: 647
  year: 2015
  end-page: 665
  article-title: $P$ -alcoves and nonemptiness of affine Deligne-Lusztig varieties’
  publication-title: Ann. Sci. Èc. Norm. Supér. (4)
– volume: 109
  start-page: 255
  year: 1997
  end-page: 339
  article-title: Isocrystals with additional structure. II
  publication-title: Compos. Math.
– volume: 372
  start-page: 204
  year: 2012
  end-page: 210
  article-title: Elements with finite Coxeter part in an affine Weyl group
  publication-title: J. Algebra
– volume: 152
  start-page: 317
  year: 2017
  end-page: 343
  article-title: Stratifications in the reduction of Shimura varieties
  publication-title: Manuscripta Math.
– ident: S205050862100010X_r12
  doi: 10.1016/j.jalgebra.2009.04.003
– ident: S205050862100010X_r13
  doi: 10.4007/annals.2014.179.1.6
– ident: S205050862100010X_r3
  doi: 10.2307/1971021
– ident: S205050862100010X_r19
  doi: 10.1007/BF02684396
– ident: S205050862100010X_r17
  doi: 10.1016/j.jalgebra.2012.09.017
– ident: S205050862100010X_r22
  doi: 10.1090/memo/1260
– volume: 15
  start-page: 1009
  year: 2010
  ident: S205050862100010X_r7
  article-title: Dimension of affine Deligne-Lusztig varieties in affine flag varieties
  publication-title: Doc. Math.
  doi: 10.4171/dm/322
– volume: 56
  start-page: 201
  year: 1985
  ident: S205050862100010X_r20
  article-title: Isocrystals with additional structure
  publication-title: Compos. Math.
– ident: S205050862100010X_r1
  doi: 10.1007/s00222-016-0710-4
– ident: S205050862100010X_r27
  doi: 10.4007/annals.2014.179.3.3
– ident: S205050862100010X_r6
  doi: 10.1112/S0010437X10004823
– ident: S205050862100010X_r16
  doi: 10.1007/s00229-016-0863-x
– volume-title: Advanced Lectures in Mathematics
  year: 2010
  ident: S205050862100010X_r9
– ident: S205050862100010X_r8
  doi: 10.24033/asens.2254
– ident: S205050862100010X_r2
  doi: 10.1007/BF02715544
– volume: 379
  start-page: 1747
  year: 2021
  ident: S205050862100010X_r18
  article-title: Dimension formula of the affine Deligne-Lusztig variety $X\left(\mu, b\right)$ ’
  publication-title: Math. Ann.
  doi: 10.1007/s00208-020-02102-5
– volume: 298
  start-page: 271
  year: 2005
  ident: S205050862100010X_r25
  article-title: A guide to the reduction modulo $p$ of Shimura varieties
  publication-title: Astérisque
– volume: 8
  ident: S205050862100010X_r23
  article-title: Generic Newton points and the Newton poset in Iwahori-double cosets
  publication-title: Forum Math. Sigma
– ident: S205050862100010X_r15
  doi: 10.1112/S0010437X14007349
– start-page: 73
  volume-title: Current Developments in Mathematics
  year: 2015
  ident: S205050862100010X_r14
– ident: S205050862100010X_r4
  doi: 10.24033/asens.2138
– ident: S205050862100010X_r28
  doi: 10.4007/annals.2017.185.2.2
– ident: S205050862100010X_r11
  doi: 10.1515/crelle.2011.044
– ident: S205050862100010X_r21
  doi: 10.1023/A:1000102604688
SSID ssj0001053391
Score 2.2504086
Snippet The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy...
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $-conjugacy...
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $ -conjugacy...
SourceID doaj
proquest
crossref
cambridge
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 11G25
20G25
Number Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELYQYoAB8SsKBXmoGJACjR3byQgFxFAqhg5skf8OVYIUkcLAxDvwhjwJviS0ICqxMCY6Kc7dxb7vcvcdIR2tYy2415HTEACKwG-OcRt108wkDiQ4XzUK99VgkN7eZjffRn1hTVhND1wr7kRyzn0KghvLApQzOmEhilYqNsw5k1ncfUPU8w1MVdkVbDHN4qYhDzmi4QHZKVl8jL2yMxqFH8dRxdr_a1OuTprLNbLahIj0tF7aOlnwxQZZuZ7yq5ab5KI3RsPeU19Xf5dUF446ZOrH7FdJx0A1QIgg6TnWHBf-4-29_1y-TkZ39AXhMfKobpHh5cWwdxU1AxEiG2DeJPKKmwDRZAapSJTiiWfAnLZaZ4B_REEmwL11cdfHImUOubmYUSASI0Fqvk0Wi3HhdwgVioPhKg2iLsm8SblLgnimZUDaIEyLHE5VlDdeXeZ1RZgK_v-Yoy7DVYscfekvtw2rOA63uJ8v3JkKP9ZkGvPFztAQUxFkwK5uBL_IG7_I__KLFml_mXH2AiG-Q_47KdPd_3jGHlnGJdcZmTZZnDw9-32yZF8mo_LpoPLIT6Gp5lw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEIAtWHqAQ0tLUbdQ5APqoVIKsR07PiGgIA4UVSoHbpH_Bq0EyXaz7IFT36Fv2CepJ_HuqirqhWOSOTgZj50Zz3xDyL4xuSl4MJk3EB2UAm2OcZcdltoKDxJ86AqFL9XVVXlzo7-lgFub0irna2K3UPvGYYz8IG7NiC6Tsjwa_8iwaxSerqYWGqtkDSkJrEvd-76MsWChqc5TWR6SouEeGZUs_4wVs0uYwl-bUsfu_2dp7vab81fPHekmeZn-NOlxPzVek5VQvyEbXxeY1naLnJ02OD_uaOiTyFtqak89Av8xiNbSBqgBiD-i9AumLtfh989flw_t43R0S2foZSOO9S25Pj-7Pr3IUl-FzEVvcZoFxW309KSGshBKcREYMG-cMRrwYBWkAB6czw9DXpTMI-KLWQWFsBKk4dtkUDd1eEdooThYrsoo6oUOtuReRHFtZHTYobBD8nHxjatkHG3VJ5apaEbjCpURr4bk01wBlUtwcuyRcfe08P5CeNwzOZ4WO0FNLkQQpN3daCa3VbLLSnLOQwkFt44Jqa0RLDppSuWWeW-1G5LduZKXL7DU8Pv_P94h6ziYPmSzSwbTyUP4QF642XTUTva6yfoH4u_0_A
  priority: 102
  providerName: ProQuest
Title Cordial elements and dimensions of affine Deligne–Lusztig varieties
URI https://www.cambridge.org/core/product/identifier/S205050862100010X/type/journal_article
https://www.proquest.com/docview/2569954668
https://doaj.org/article/6333e8f53bc2469ba42217771b2ddb9c
Volume 9
WOSCitedRecordID wos000693681800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge Open Access
  customDbUrl:
  eissn: 2050-5086
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001053391
  issn: 2050-5086
  databaseCode: IKXGN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-5086
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001053391
  issn: 2050-5086
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-5086
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001053391
  issn: 2050-5086
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2050-5086
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001053391
  issn: 2050-5086
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-5086
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001053391
  issn: 2050-5086
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB21uxzKASgUsVBWPlQckMJubMeOj7RsAbWsKtpDbpEd29VKS3a12fbAAfEP_CFfgifJZoXogUsvkWPNIZ4ZxzPjmTcAR1rHOmFOR1b74KAkuOcoK6Jxqgy3Xnjr6kLhczmdplmmLnYg29TCYFplh3FQ3-TX_dGWDfzpaGabHBq3Gl1SbMKGFjmGqONxNsKg5agVQd4yfhf6wYKhtAf9z2fZx-k2_oJFqCpuS_YQRdp_Q_xKGr_Datot0MJfB1aN6__Pb7s-i04f398qnsCj1j4l75uZfdhx5VN4-KUDd62eweRkgVo1J65JPa-ILi2x2CYAQ28VWXiivQ_mK_mACc-l-_3z1_lN9X09uya36JsjiOsBXJ1Ork4-RW03hqgIPuY6cpKZ8JFC-TThUjLuqKdWF1orj9exXnDPXGHjsYuTlFoEBqNG-oQb4YVmz6FXLkr3AkgimTdMpoHUcuVMyiwP5EqL4Ob7xAzgTce8vOVElTfpaDJsvmWOYgpvA3i7EU1etJDm2FljfjfxUUe8bJA87iY7Rhl3JAi_XU8EKW7EkQvGmEt9wkxBuVBGcxpcOyljQ601qhjA4UZDtgsIxiWC7wmRvvzfBb6CPRw1IZ9D6K1XN-41PChu17NqNYT-8WR68XVYxxGGrYIPMXv1Ep8_Jn8A0WAPug
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCOWFvChcEBKaWzHjg8IQR9q1e0KiT30FvlZVSrJstkWwan_ob-jf4pfgiePXSEqbj1wTDKK4szLM575BmBN61RnzOvE6RADlAx1jjKbbOTKcBdEcL5pFB7K0Sg_PFSfl-Cy74XBssreJjaG2lUWc-TvomtG6DIh8g-TbwlOjcLT1X6ERisW-_7H9xiy1e_3tiJ_X1O6sz3e3E26qQKJjbHSLPGSmRjnCBXyjEvJuKeBOm21VgGPFYPggXnr0g2fZjl1CHBFjQwZNyIIzeJrb8BNjsa_qRT8skjpYF-rSrsuQASmDl8REpOm69igu8Bu-MMHNqMC_vIEjXvbuf-f_ZgHcK_bR5OPreA_hCVfPoK7B3MQ2voxbG9WKP0nxLcl8jXRpSMOxxlgirAmVSA6hLjNJltYmF36X-cXw9P65-z4iJxhDgHBZp_A-DqW8RSWy6r0z4BkkgXDZB5JHVfe5MzxSK608IaGzAzgzZylRaf6ddGWzcloJCYF8j5eDeBtz-_CdtDrOAHk5GritTnxpEUcuZrsEwrOnARhwpsb1fSo6KxOIRhjPg8ZM5ZyoYzmNIagUqaGOmeUHcBqL1OLBSwE6vm_H7-C27vjg2Ex3Bvtr8Ad_LA2ObUKy7PpqX8Bt-zZ7Lievmz0hEBxzeL3Gw93UIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cordial+elements+and+dimensions+of+affine+Deligne%E2%80%93Lusztig+varieties&rft.jtitle=Forum+of+mathematics.+Pi&rft.au=He%2C+Xuhua&rft.date=2021-01-01&rft.pub=Cambridge+University+Press&rft.eissn=2050-5086&rft.volume=9&rft_id=info:doi/10.1017%2Ffmp.2021.10&rft.externalDocID=10_1017_fmp_2021_10
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5086&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5086&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5086&client=summon