Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization

In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimizati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 196; číslo 1-2; s. 935 - 985
Hlavní autori: Zhang, Shixuan, Sun, Xu Andy
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a ( T + 1 ) -stage stochastic MINLP satisfying L -exact Lipschitz regularization with d -dimensional state spaces, to obtain an ε -optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by O ( ( 2 L T ε ) d ) , and is lower bounded by O ( ( LT 4 ε ) d ) for the general case or by O ( ( LT 8 ε ) d / 2 - 1 ) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T , if all the state spaces are finite sets, or if we seek a ( T ε ) -optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T . To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.
AbstractList In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a ( T + 1 ) -stage stochastic MINLP satisfying L -exact Lipschitz regularization with d -dimensional state spaces, to obtain an ε -optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by O ( ( 2 L T ε ) d ) , and is lower bounded by O ( ( LT 4 ε ) d ) for the general case or by O ( ( LT 8 ε ) d / 2 - 1 ) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T , if all the state spaces are finite sets, or if we seek a ( T ε ) -optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T . To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.
In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a (T+1)-stage stochastic MINLP satisfying L-exact Lipschitz regularization with d-dimensional state spaces, to obtain an ε-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by O((2LTε)d), and is lower bounded by O((LT4ε)d) for the general case or by O((LT8ε)d/2-1) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T, if all the state spaces are finite sets, or if we seek a (Tε)-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.
In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a [Formula omitted]-stage stochastic MINLP satisfying L-exact Lipschitz regularization with d-dimensional state spaces, to obtain an [Formula omitted]-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by [Formula omitted], and is lower bounded by [Formula omitted] for the general case or by [Formula omitted] for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T, if all the state spaces are finite sets, or if we seek a [Formula omitted]-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.
In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a $$(T+1)$$ ( T + 1 ) -stage stochastic MINLP satisfying L -exact Lipschitz regularization with d -dimensional state spaces, to obtain an $$\varepsilon $$ ε -optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by $${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$ O ( ( 2 L T ε ) d ) , and is lower bounded by $${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$ O ( ( LT 4 ε ) d ) for the general case or by $${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/2-1})$$ O ( ( LT 8 ε ) d / 2 - 1 ) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T , if all the state spaces are finite sets, or if we seek a $$(T\varepsilon )$$ ( T ε ) -optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T . To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.
Audience Academic
Author Zhang, Shixuan
Sun, Xu Andy
Author_xml – sequence: 1
  givenname: Shixuan
  surname: Zhang
  fullname: Zhang, Shixuan
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Xu Andy
  orcidid: 0000-0003-3917-9418
  surname: Sun
  fullname: Sun, Xu Andy
  email: sunx@mit.edu
  organization: Sloan School of Management, Operations Research Center, Massachusetts Institute of Technology
BookMark eNp9kctqHDEQRUVwIGMnP5BVQ9ZySlLrMUtj8gJDFvFelHtKHZluaSJpIM7XR3YHDFkYLYSKe1R1656zs5QTMfZewKUAsB-rAAGWg5QchLOau1dsJ0Zl-GhGc8Z2AFJzbQS8Yee13gOAUM7t2N2PlqefWFuchsMJl-HwkHDtj2PJc8F1jWkeQi7DelparA1nGuozssbfdOAxNZqpDH2oJSbCMuRji2v8gy3m9Ja9DrhUevfvvmC3nz_dXn_lN9-_fLu-uuHTCLJxMvtAGoLRMKFxApGkC9rqMFqxVwZQqhAASFtjhRFOExqy-6D1HQalLtiH7ds--a8T1ebv86mk3tFLq5TaGwOuqy431YwL-ZhCbgWnfg7UXfelhtjrV1ZqY8GMsgNuA6aSay0U_BTbk68OxsUL8I8J-C0B3xPwTwn4x17yP_RY4orl4WVIbVDt4tS3-mzjBeovuoacIw
CitedBy_id crossref_primary_10_1007_s00245_023_09977_1
crossref_primary_10_1007_s10898_025_01480_x
crossref_primary_10_1109_ACCESS_2024_3434655
crossref_primary_10_3390_met13010113
crossref_primary_10_1007_s10107_024_02192_y
crossref_primary_10_1137_22M1487321
crossref_primary_10_1016_j_procs_2025_05_100
crossref_primary_10_1137_22M1508005
crossref_primary_10_1016_j_ejor_2024_05_013
crossref_primary_10_1007_s10107_022_01876_7
crossref_primary_10_1137_23M1575093
crossref_primary_10_1016_j_ejor_2023_01_049
crossref_primary_10_1109_TCST_2021_3093648
crossref_primary_10_1080_00207543_2025_2462997
crossref_primary_10_1007_s10107_021_01740_0
crossref_primary_10_1016_j_ijhydene_2024_12_216
Cites_doi 10.1049/iet-gtd.2009.0107
10.1029/WR021i006p00779
10.1137/0117061
10.1109/TSTE.2018.2805164
10.1287/opre.33.5.989
10.1287/mnsc.19.2.139
10.1137/140983136
10.1016/j.ejor.2010.08.007
10.1287/opre.28.4.889
10.1007/s10107-020-01569-z
10.1287/ijoc.2017.0782
10.1007/BF01386316
10.1287/opre.48.2.268.12379
10.1016/j.orl.2008.01.013
10.1007/s10107-016-1012-8
10.1109/TPWRS.2012.2205411
10.1007/s10107-019-01368-1
10.1016/j.ejor.2016.10.047
10.1023/A:1023062915106
10.1109/TPWRS.2018.2880996
10.1007/BF02025089
10.1016/S0305-0548(00)00076-9
10.1007/BF01580231
10.1016/j.ejor.2012.08.022
10.1007/s10957-004-1842-z
10.1287/opre.34.3.356
10.1007/BF01582895
10.1023/A:1022641805263
10.1287/moor.2014.0664
10.1287/opre.8.1.101
10.1007/s10107-018-1249-5
10.1016/j.ejor.2018.05.039
10.1287/mnsc.38.11.1642
10.1007/978-3-319-91578-4
10.1287/mnsc.20.3.282
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-022-01875-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 985
ExternalDocumentID A725670642
10_1007_s10107_022_01875_8
GrantInformation_xml – fundername: Directorate for Engineering
  grantid: 1751747
  funderid: http://dx.doi.org/10.13039/100000084
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-e69fe50f650ca681aae28f575f4719360a23ff00e576716185ea6e79f55baf33
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842139200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:41:47 EDT 2025
Sat Nov 29 11:02:17 EST 2025
Tue Nov 18 22:35:44 EST 2025
Sat Nov 29 03:34:03 EST 2025
Fri Feb 21 02:44:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Complexity analysis
90C30
90C11
90C39
MINLP
90C15
49N15
Multistage stochastic programming
SDDP
90C60
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-e69fe50f650ca681aae28f575f4719360a23ff00e576716185ea6e79f55baf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3917-9418
OpenAccessLink https://link.springer.com/10.1007/s10107-022-01875-8
PQID 2733396608
PQPubID 25307
PageCount 51
ParticipantIDs proquest_journals_2733396608
gale_infotracacademiconefile_A725670642
crossref_citationtrail_10_1007_s10107_022_01875_8
crossref_primary_10_1007_s10107_022_01875_8
springer_journals_10_1007_s10107_022_01875_8
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF015828950749.90057
GuiguesVDual dynamic programing with cut selection: Convergence proof and numerical experimentsEur. J. Oper. Res.201725814757358137010.1016/j.ejor.2016.10.0471380.90277
Escudero, L.F., Kamesam, P.V., King, A.J., Wets, R.J.B.: Production planning via scenario modelling. Annals of Operations Research 43, 309–335 (1993)
GlasseyCRNested Decomposition and Multi-Stage Linear ProgramsManage. Sci.197320328229233731310.1287/mnsc.20.3.2820313.90037
Philpott, A., Wahid, F., Bonnans, F.: MIDAS: A Mixed Integer Dynamic Approximation Scheme. Mathematical Programming 181, 19–50 (2020)
Zou, J., Ahmed, S., Sun, X.A.: Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming. IEEE Trans. Power Syst. 34(3), 1814–1823 (2019) https://doi.org/10.1109/TPWRS.2018.2880996. http://ieeexplore.ieee.org/document/8532315
LouveauxFVA Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment ProblemOper. Res.198028488990258489410.1287/opre.28.4.8890441.90076
Philpott, A., Guan, Z.: On the convergence of stochastic dual dynamic programming and related methods. Operations Research Letters 36(4), 450–455 (2008) https://doi.org/10.1016/j.orl.2008.01.013. http://linkinghub.elsevier.com/retrieve/pii/S0167637708000308
Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)
GuiguesVConvergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programsSIAM J. Optim.201626424682494357028410.1137/1409831361356.90095
Lara, C.L., Mallapragada, D.S., Papageorgiou, D.J., Venkatesh, A., Grossmann, I.E.: Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research 271(3), 1037–1054 (2018) https://doi.org/10.1016/j.ejor.2018.05.039. http://linkinghub.elsevier.com/retrieve/pii/S0377221718304466
Lan, G.: Complexity of stochastic dual dynamic programming. Mathematical Programming pp. 1–38 (2020)
ChenZLPowellWBConvergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with RecourseJ. Optim. Theory Appl.19991023497524171071910.1023/A:10226418052630955.90096
Hjelmeland, M.N., Zou, J., Helseth, A., Ahmed, S.: Nonconvex Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming. IEEE Transactions on Sustainable Energy 10(1), 481–490 (2019) https://doi.org/10.1109/TSTE.2018.2805164. http://ieeexplore.ieee.org/document/8289405
Basciftci, B., Ahmed, S., Gebraeel, N.: Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning. arXiv:1906.03513 [math] (2019)
TakritiSKrasenbrinkBWuLSYIncorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment ProblemOper. Res.200048226828010.1287/opre.48.2.268.12379
KusyMIZiembaWTA Bank Asset and Liability Management ModelOper. Res.198634335637610.1287/opre.34.3.356
Chen, Z.L., Li, S., Tirupati, D.: A scenario-based stochastic programming approach for technology and capacity planning. Computers & Operations Research 29(7), 781–806 (2002) https://doi.org/10.1016/S0305-0548(00)00076-9. http://linkinghub.elsevier.com/retrieve/pii/S0305054800000769
Baringo, L., Conejo, A.J.: Risk-Constrained Multi-Stage Wind Power Investment. IEEE Transactions on Power Systems 28(1), 401–411 (2013) https://doi.org/10.1109/TPWRS.2012.2205411. http://ieeexplore.ieee.org/document/6247489
PereiraMVFPintoLMVGStochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition ApproachWater Resour. Res.198521677979210.1029/WR021i006p00779
Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Optim. Online p. 25 (2017)
BradleySPCraneDBA Dynamic Model for Bond Portfolio ManagementManage. Sci.197219213915110.1287/mnsc.19.2.139
GirardeauPLeclereVPhilpottABOn the Convergence of Decomposition Methods for Multistage Stochastic Convex ProgramsMath. Oper. Res.2015401130145332041710.1287/moor.2014.06641308.90115
Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse Stochastic Dual Dynamic Programming method. European J. Oper. Res. 224(2), 375–391 (2013) https://doi.org/10.1016/j.ejor.2012.08.022. http://linkinghub.elsevier.com/retrieve/pii/S0377221712006455
MulveyJMVladimirouHStochastic Network Programming for Financial Planning ProblemsManage. Sci.199238111642166410.1287/mnsc.38.11.16420825.90062
DantzigGBWolfePDecomposition Principle for Linear ProgramsOper. Res.19608110111110.1287/opre.8.1.1010093.32806
BirgeJRDecomposition and Partitioning Methods for Multistage Stochastic Linear ProgramsOper. Res.1985335989100780691610.1287/opre.33.5.9890581.90065
Slyke, R.M.V., Wets, R.: L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming. SIAM J. Appl. Math. 17(4), 638–663 (1969). http://www.jstor.org/stable/2099310
LinowskyKPhilpottABOn the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic ProgramsJ. Optim. Theory Appl.20051252349366213650010.1007/s10957-004-1842-z1071.90029
Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programming Math. Program. 191, 755–793 (2022)
NesterovYLectures on Convex Optimization2018BerlinSpringer1427.90003
HoJKManneASNested decomposition for dynamic modelsMath. Program.19746112114034562610.1007/BF015802310294.90051
RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer Science & Business Media0888.49001
ZouJAhmedSSunXAPartially Adaptive Stochastic Optimization for Electric Power Generation Expansion PlanningINFORMS J. Comput.2018302388401381332510.1287/ijoc.2017.07821446.90100
Ahmed, S., King, A.J., Parija, G.: A Multi-stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty. Journal of Global Optimization 26, 3–24 (2003)
ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.201810.1007/s10107-018-1249-51412.90101
FeizollahiMJAhmedSSunAExact augmented lagrangian duality for mixed integer linear programmingMath. Program.20171611–2365387359278210.1007/s10107-016-1012-81364.90226
Shapiro, A.: Analysis of stochastic dual dynamic programming method. European J. Oper. Res. 209(1), 63–72 (2011) https://doi.org/10.1016/j.ejor.2010.08.007. http://linkinghub.elsevier.com/retrieve/pii/S0377221710005448
FlachBBarrosoLPereiraMLong-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approachIET Generation, Transmission & Distribution20104229910.1049/iet-gtd.2009.0107
1875_CR1
S Takriti (1875_CR36) 2000; 48
1875_CR2
1875_CR3
1875_CR4
1875_CR5
1875_CR6
RT Rockafellar (1875_CR32) 2009
CR Glassey (1875_CR16) 1973; 20
1875_CR19
V Guigues (1875_CR18) 2017; 258
1875_CR39
MI Kusy (1875_CR21) 1986; 34
1875_CR33
FV Louveaux (1875_CR25) 1980; 28
1875_CR35
1875_CR12
1875_CR34
1875_CR9
1875_CR31
J Zou (1875_CR37) 2018; 30
ZL Chen (1875_CR10) 1999; 102
1875_CR30
Y Nesterov (1875_CR27) 2018
JK Ho (1875_CR20) 1974; 6
J Zou (1875_CR38) 2018
B Flach (1875_CR14) 2010; 4
MVF Pereira (1875_CR28) 1985; 21
GB Dantzig (1875_CR11) 1960; 8
SP Bradley (1875_CR8) 1972; 19
P Girardeau (1875_CR15) 2015; 40
MJ Feizollahi (1875_CR13) 2017; 161
K Linowsky (1875_CR24) 2005; 125
JM Mulvey (1875_CR26) 1992; 38
V Guigues (1875_CR17) 2016; 26
JR Birge (1875_CR7) 1985; 33
1875_CR22
MVF Pereira (1875_CR29) 1991; 52
1875_CR23
References_xml – reference: Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)
– reference: PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF015828950749.90057
– reference: Hjelmeland, M.N., Zou, J., Helseth, A., Ahmed, S.: Nonconvex Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming. IEEE Transactions on Sustainable Energy 10(1), 481–490 (2019) https://doi.org/10.1109/TSTE.2018.2805164. http://ieeexplore.ieee.org/document/8289405/
– reference: ZouJAhmedSSunXAPartially Adaptive Stochastic Optimization for Electric Power Generation Expansion PlanningINFORMS J. Comput.2018302388401381332510.1287/ijoc.2017.07821446.90100
– reference: GuiguesVDual dynamic programing with cut selection: Convergence proof and numerical experimentsEur. J. Oper. Res.201725814757358137010.1016/j.ejor.2016.10.0471380.90277
– reference: Philpott, A., Guan, Z.: On the convergence of stochastic dual dynamic programming and related methods. Operations Research Letters 36(4), 450–455 (2008) https://doi.org/10.1016/j.orl.2008.01.013. http://linkinghub.elsevier.com/retrieve/pii/S0167637708000308
– reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer Science & Business Media0888.49001
– reference: TakritiSKrasenbrinkBWuLSYIncorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment ProblemOper. Res.200048226828010.1287/opre.48.2.268.12379
– reference: Lara, C.L., Mallapragada, D.S., Papageorgiou, D.J., Venkatesh, A., Grossmann, I.E.: Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research 271(3), 1037–1054 (2018) https://doi.org/10.1016/j.ejor.2018.05.039. http://linkinghub.elsevier.com/retrieve/pii/S0377221718304466
– reference: Lan, G.: Complexity of stochastic dual dynamic programming. Mathematical Programming pp. 1–38 (2020)
– reference: Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programming Math. Program. 191, 755–793 (2022)
– reference: Chen, Z.L., Li, S., Tirupati, D.: A scenario-based stochastic programming approach for technology and capacity planning. Computers & Operations Research 29(7), 781–806 (2002) https://doi.org/10.1016/S0305-0548(00)00076-9. http://linkinghub.elsevier.com/retrieve/pii/S0305054800000769
– reference: NesterovYLectures on Convex Optimization2018BerlinSpringer1427.90003
– reference: GirardeauPLeclereVPhilpottABOn the Convergence of Decomposition Methods for Multistage Stochastic Convex ProgramsMath. Oper. Res.2015401130145332041710.1287/moor.2014.06641308.90115
– reference: FlachBBarrosoLPereiraMLong-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approachIET Generation, Transmission & Distribution20104229910.1049/iet-gtd.2009.0107
– reference: Baringo, L., Conejo, A.J.: Risk-Constrained Multi-Stage Wind Power Investment. IEEE Transactions on Power Systems 28(1), 401–411 (2013) https://doi.org/10.1109/TPWRS.2012.2205411. http://ieeexplore.ieee.org/document/6247489/
– reference: ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.201810.1007/s10107-018-1249-51412.90101
– reference: DantzigGBWolfePDecomposition Principle for Linear ProgramsOper. Res.19608110111110.1287/opre.8.1.1010093.32806
– reference: BirgeJRDecomposition and Partitioning Methods for Multistage Stochastic Linear ProgramsOper. Res.1985335989100780691610.1287/opre.33.5.9890581.90065
– reference: Slyke, R.M.V., Wets, R.: L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming. SIAM J. Appl. Math. 17(4), 638–663 (1969). http://www.jstor.org/stable/2099310
– reference: Philpott, A., Wahid, F., Bonnans, F.: MIDAS: A Mixed Integer Dynamic Approximation Scheme. Mathematical Programming 181, 19–50 (2020)
– reference: Shapiro, A.: Analysis of stochastic dual dynamic programming method. European J. Oper. Res. 209(1), 63–72 (2011) https://doi.org/10.1016/j.ejor.2010.08.007. http://linkinghub.elsevier.com/retrieve/pii/S0377221710005448
– reference: GlasseyCRNested Decomposition and Multi-Stage Linear ProgramsManage. Sci.197320328229233731310.1287/mnsc.20.3.2820313.90037
– reference: LouveauxFVA Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment ProblemOper. Res.198028488990258489410.1287/opre.28.4.8890441.90076
– reference: PereiraMVFPintoLMVGStochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition ApproachWater Resour. Res.198521677979210.1029/WR021i006p00779
– reference: ChenZLPowellWBConvergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with RecourseJ. Optim. Theory Appl.19991023497524171071910.1023/A:10226418052630955.90096
– reference: GuiguesVConvergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programsSIAM J. Optim.201626424682494357028410.1137/1409831361356.90095
– reference: KusyMIZiembaWTA Bank Asset and Liability Management ModelOper. Res.198634335637610.1287/opre.34.3.356
– reference: Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Optim. Online p. 25 (2017)
– reference: Escudero, L.F., Kamesam, P.V., King, A.J., Wets, R.J.B.: Production planning via scenario modelling. Annals of Operations Research 43, 309–335 (1993)
– reference: MulveyJMVladimirouHStochastic Network Programming for Financial Planning ProblemsManage. Sci.199238111642166410.1287/mnsc.38.11.16420825.90062
– reference: Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse Stochastic Dual Dynamic Programming method. European J. Oper. Res. 224(2), 375–391 (2013) https://doi.org/10.1016/j.ejor.2012.08.022. http://linkinghub.elsevier.com/retrieve/pii/S0377221712006455
– reference: Ahmed, S., King, A.J., Parija, G.: A Multi-stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty. Journal of Global Optimization 26, 3–24 (2003)
– reference: LinowskyKPhilpottABOn the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic ProgramsJ. Optim. Theory Appl.20051252349366213650010.1007/s10957-004-1842-z1071.90029
– reference: Zou, J., Ahmed, S., Sun, X.A.: Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming. IEEE Trans. Power Syst. 34(3), 1814–1823 (2019) https://doi.org/10.1109/TPWRS.2018.2880996. http://ieeexplore.ieee.org/document/8532315/
– reference: BradleySPCraneDBA Dynamic Model for Bond Portfolio ManagementManage. Sci.197219213915110.1287/mnsc.19.2.139
– reference: HoJKManneASNested decomposition for dynamic modelsMath. Program.19746112114034562610.1007/BF015802310294.90051
– reference: Basciftci, B., Ahmed, S., Gebraeel, N.: Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning. arXiv:1906.03513 [math] (2019)
– reference: FeizollahiMJAhmedSSunAExact augmented lagrangian duality for mixed integer linear programmingMath. Program.20171611–2365387359278210.1007/s10107-016-1012-81364.90226
– volume: 4
  start-page: 299
  issue: 2
  year: 2010
  ident: 1875_CR14
  publication-title: IET Generation, Transmission & Distribution
  doi: 10.1049/iet-gtd.2009.0107
– volume: 21
  start-page: 779
  issue: 6
  year: 1985
  ident: 1875_CR28
  publication-title: Water Resour. Res.
  doi: 10.1029/WR021i006p00779
– ident: 1875_CR35
  doi: 10.1137/0117061
– ident: 1875_CR19
  doi: 10.1109/TSTE.2018.2805164
– volume: 33
  start-page: 989
  issue: 5
  year: 1985
  ident: 1875_CR7
  publication-title: Oper. Res.
  doi: 10.1287/opre.33.5.989
– volume: 19
  start-page: 139
  issue: 2
  year: 1972
  ident: 1875_CR8
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.19.2.139
– volume: 26
  start-page: 2468
  issue: 4
  year: 2016
  ident: 1875_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/140983136
– ident: 1875_CR33
  doi: 10.1016/j.ejor.2010.08.007
– volume: 28
  start-page: 889
  issue: 4
  year: 1980
  ident: 1875_CR25
  publication-title: Oper. Res.
  doi: 10.1287/opre.28.4.889
– ident: 1875_CR1
  doi: 10.1007/s10107-020-01569-z
– volume: 30
  start-page: 388
  issue: 2
  year: 2018
  ident: 1875_CR37
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2017.0782
– ident: 1875_CR5
– ident: 1875_CR6
  doi: 10.1007/BF01386316
– volume: 48
  start-page: 268
  issue: 2
  year: 2000
  ident: 1875_CR36
  publication-title: Oper. Res.
  doi: 10.1287/opre.48.2.268.12379
– ident: 1875_CR30
  doi: 10.1016/j.orl.2008.01.013
– volume: 161
  start-page: 365
  issue: 1–2
  year: 2017
  ident: 1875_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1012-8
– ident: 1875_CR3
  doi: 10.1109/TPWRS.2012.2205411
– ident: 1875_CR31
  doi: 10.1007/s10107-019-01368-1
– volume: 258
  start-page: 47
  issue: 1
  year: 2017
  ident: 1875_CR18
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.10.047
– volume-title: Variational Analysis
  year: 2009
  ident: 1875_CR32
– ident: 1875_CR2
  doi: 10.1023/A:1023062915106
– ident: 1875_CR39
  doi: 10.1109/TPWRS.2018.2880996
– ident: 1875_CR12
  doi: 10.1007/BF02025089
– ident: 1875_CR9
  doi: 10.1016/S0305-0548(00)00076-9
– volume: 6
  start-page: 121
  issue: 1
  year: 1974
  ident: 1875_CR20
  publication-title: Math. Program.
  doi: 10.1007/BF01580231
– ident: 1875_CR34
  doi: 10.1016/j.ejor.2012.08.022
– ident: 1875_CR4
– volume: 125
  start-page: 349
  issue: 2
  year: 2005
  ident: 1875_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1842-z
– volume: 34
  start-page: 356
  issue: 3
  year: 1986
  ident: 1875_CR21
  publication-title: Oper. Res.
  doi: 10.1287/opre.34.3.356
– volume: 52
  start-page: 359
  issue: 1–3
  year: 1991
  ident: 1875_CR29
  publication-title: Math. Program.
  doi: 10.1007/BF01582895
– volume: 102
  start-page: 497
  issue: 3
  year: 1999
  ident: 1875_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022641805263
– volume: 40
  start-page: 130
  issue: 1
  year: 2015
  ident: 1875_CR15
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2014.0664
– ident: 1875_CR22
– volume: 8
  start-page: 101
  issue: 1
  year: 1960
  ident: 1875_CR11
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.1.101
– year: 2018
  ident: 1875_CR38
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1249-5
– ident: 1875_CR23
  doi: 10.1016/j.ejor.2018.05.039
– volume: 38
  start-page: 1642
  issue: 11
  year: 1992
  ident: 1875_CR26
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.38.11.1642
– volume-title: Lectures on Convex Optimization
  year: 2018
  ident: 1875_CR27
  doi: 10.1007/978-3-319-91578-4
– volume: 20
  start-page: 282
  issue: 3
  year: 1973
  ident: 1875_CR16
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.20.3.282
SSID ssj0001388
Score 2.4873185
Snippet In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Complexity
Computational geometry
Convexity
Dynamic programming
Full Length Paper
Global optimization
Investment analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical optimization
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Numerical Analysis
Optimization
Regularization
Sampling
Theoretical
Title Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization
URI https://link.springer.com/article/10.1007/s10107-022-01875-8
https://www.proquest.com/docview/2733396608
Volume 196
WOSCitedRecordID wos000842139200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQfBgxbWpmnT4xCHF4ewIbuFtE1UcJu0U_zzfS9Nt_kJeixtPshLXn5p3u_3CDlViTCRxjg_gJ9eGLHQSxQXXpyJNA0QUCthk03EvZ4YDpNbRwor62j3-krSeuoFspuPv9UCDCUAlO2JZbLCUW0Gz-j9u5n_9ZkQdaJWRAeOKvN9HR-2o89O-cvtqN10upv_6-4W2XAgk3aqWbFNlvR4h6wvSA_C081Mr7XcJWl_OskeFGo2UyRn0bxKVE9d-NYIylCAt9TGHwKgvNe0nBcZPb7p3LPKE7qg40p9QxV0Av5o5Iiee2TQvRpcXnsu-4KXwZly6ukoMZq3DUC4TEXCV0oHwgC6M7CfJSxqq4AZ025rOLHEKLvPtQKrJ4bzVBnG9kkD2tMHhOZ5muWKg_mNH2oTpKFgeZwjK9fwVCdN4tc2kJlTJscEGU9yrqmMgylhMKUdTCma5HxW5rnS5fj16zM0rcRFCzVnynEPoH8ofyU7MSC_GM9iTdKqrS_dai4lQDzGUMYUKrqorT1__XO7h3_7_IisBThhLNWxRRrT4kUfk9XsFSxbnNhZ_g6eBfZH
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah4EH7SwNr2kj0McinMIDvEtpG2igttkneLP95wu3eYV9LG0uZCTnHxpzvcdgEMVCxNqivND-On4IfedWAXCiVKRJB4BaiWKZBNRuy3u7uJrSwrLy2j38kqy8NRTZDeXfqt5FEqAKNsRszDnU5odOqPf3I79r8uFKBO1EjqwVJnv6_iwHX12yl9uR4tNp7nyv-6uwrIFmawxmhVrMKN767A0JT2IT1djvdZ8A5KbYT99UKTZzIicxbJRonpmw7e6WIYhvGVF_CECynvN8kmR7uObzpxCeUIPWG-kvqEGrI_-qGuJnpvQaZ51Ts8dm33BSfFMOXR0GBsd1A1CuFSFwlVKe8IgujO4n8U8rCuPG1OvazyxRCS7H2iFVo9NECTKcL4FFWxPbwPLsiTNVIDmN66vjZf4gmdRRqxcEyQ6roJb2kCmVpmcEmQ8yYmmMg2mxMGUxWBKUYXjcZnnkS7Hr18fkWklLVqsOVWWe4D9I_kr2YgQ-UV0FqtCrbS-tKs5lwjxOCcZU6zopLT25PXP7e787fMDWDjvXLVk66J9uQuLHk2egvZYg8pw8KL3YD59RSsP9osZ_w4wsvkr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHVEo4AMSB4jaxFmcIwIqEFBVtELcLCexAYkuagvi85nJ0pZVQhyTeJM9tp_jeW8ADlQojK_Jzw_hp-X63LVC5QkriEUUOQSolUiDTQT1uri_DxsTLP7U2724ksw4DaTS1BlWeompTBDfbPrF5pBbASJuS0zDrIuvyKnrtnk3WottLkQRtJWQQk6b-b6MD1vT5wX6y01pugHVlv_f9BVYysEnO8msZRWmdGcNFickCfHpZqTjOliHqDnsxo-KtJwZkbZYkgWwZ7lbVxvzMIS9LPVLRKD5oNlgnKX99KYTK1Wk0H3WyVQ5VJ91cZ1q5wTQDWjVzlunF1YelcGK8aw5tLQfGu1VDUK7WPnCVko7wiDqM7jPhdyvKocbU61qPMkEJMfvaYXWEBrPi5ThfBNmsD69BSxJojhRHpqFsV1tnMgVPAkSYusaL9JhCexiPGScK5ZT4IxnOdZaps6U2Jky7UwpSnA0ytPL9Dp-TX1IwyxpMmPJsco5Cdg-ksWSJwEiwoDOaCUoF5Yg81k-kAj9OCd5UyzouBj58eef693-W_J9mG-c1eT1Zf1qBxYcsp2UDVmGmWH_Re_CXPyKg9zfS43_HRrTAh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+dual+dynamic+programming+for+multistage+stochastic+mixed-integer+nonlinear+optimization&rft.jtitle=Mathematical+programming&rft.au=Zhang+Shixuan&rft.au=Sun%2C+Xu+Andy&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=196&rft.issue=1-2&rft.spage=935&rft.epage=985&rft_id=info:doi/10.1007%2Fs10107-022-01875-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon