Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization
In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimizati...
Uložené v:
| Vydané v: | Mathematical programming Ročník 196; číslo 1-2; s. 935 - 985 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with
non-Lipschitzian
value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a
(
T
+
1
)
-stage stochastic MINLP satisfying
L
-exact Lipschitz regularization with
d
-dimensional state spaces, to obtain an
ε
-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by
O
(
(
2
L
T
ε
)
d
)
, and is lower bounded by
O
(
(
LT
4
ε
)
d
)
for the general case or by
O
(
(
LT
8
ε
)
d
/
2
-
1
)
for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends
polynomially
on the number of stages. We further show that the iteration complexity depends
linearly
on
T
, if all the state spaces are finite sets, or if we seek a
(
T
ε
)
-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with
T
. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization. |
|---|---|
| AbstractList | In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with
non-Lipschitzian
value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a
(
T
+
1
)
-stage stochastic MINLP satisfying
L
-exact Lipschitz regularization with
d
-dimensional state spaces, to obtain an
ε
-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by
O
(
(
2
L
T
ε
)
d
)
, and is lower bounded by
O
(
(
LT
4
ε
)
d
)
for the general case or by
O
(
(
LT
8
ε
)
d
/
2
-
1
)
for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends
polynomially
on the number of stages. We further show that the iteration complexity depends
linearly
on
T
, if all the state spaces are finite sets, or if we seek a
(
T
ε
)
-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with
T
. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization. In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a (T+1)-stage stochastic MINLP satisfying L-exact Lipschitz regularization with d-dimensional state spaces, to obtain an ε-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by O((2LTε)d), and is lower bounded by O((LT4ε)d) for the general case or by O((LT8ε)d/2-1) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T, if all the state spaces are finite sets, or if we seek a (Tε)-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization. In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a [Formula omitted]-stage stochastic MINLP satisfying L-exact Lipschitz regularization with d-dimensional state spaces, to obtain an [Formula omitted]-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by [Formula omitted], and is lower bounded by [Formula omitted] for the general case or by [Formula omitted] for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T, if all the state spaces are finite sets, or if we seek a [Formula omitted]-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization. In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a $$(T+1)$$ ( T + 1 ) -stage stochastic MINLP satisfying L -exact Lipschitz regularization with d -dimensional state spaces, to obtain an $$\varepsilon $$ ε -optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by $${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$ O ( ( 2 L T ε ) d ) , and is lower bounded by $${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$ O ( ( LT 4 ε ) d ) for the general case or by $${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/2-1})$$ O ( ( LT 8 ε ) d / 2 - 1 ) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T , if all the state spaces are finite sets, or if we seek a $$(T\varepsilon )$$ ( T ε ) -optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T . To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization. |
| Audience | Academic |
| Author | Zhang, Shixuan Sun, Xu Andy |
| Author_xml | – sequence: 1 givenname: Shixuan surname: Zhang fullname: Zhang, Shixuan organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology – sequence: 2 givenname: Xu Andy orcidid: 0000-0003-3917-9418 surname: Sun fullname: Sun, Xu Andy email: sunx@mit.edu organization: Sloan School of Management, Operations Research Center, Massachusetts Institute of Technology |
| BookMark | eNp9kctqHDEQRUVwIGMnP5BVQ9ZySlLrMUtj8gJDFvFelHtKHZluaSJpIM7XR3YHDFkYLYSKe1R1656zs5QTMfZewKUAsB-rAAGWg5QchLOau1dsJ0Zl-GhGc8Z2AFJzbQS8Yee13gOAUM7t2N2PlqefWFuchsMJl-HwkHDtj2PJc8F1jWkeQi7DelparA1nGuozssbfdOAxNZqpDH2oJSbCMuRji2v8gy3m9Ja9DrhUevfvvmC3nz_dXn_lN9-_fLu-uuHTCLJxMvtAGoLRMKFxApGkC9rqMFqxVwZQqhAASFtjhRFOExqy-6D1HQalLtiH7ds--a8T1ebv86mk3tFLq5TaGwOuqy431YwL-ZhCbgWnfg7UXfelhtjrV1ZqY8GMsgNuA6aSay0U_BTbk68OxsUL8I8J-C0B3xPwTwn4x17yP_RY4orl4WVIbVDt4tS3-mzjBeovuoacIw |
| CitedBy_id | crossref_primary_10_1007_s00245_023_09977_1 crossref_primary_10_1007_s10898_025_01480_x crossref_primary_10_1109_ACCESS_2024_3434655 crossref_primary_10_3390_met13010113 crossref_primary_10_1007_s10107_024_02192_y crossref_primary_10_1137_22M1487321 crossref_primary_10_1016_j_procs_2025_05_100 crossref_primary_10_1137_22M1508005 crossref_primary_10_1016_j_ejor_2024_05_013 crossref_primary_10_1007_s10107_022_01876_7 crossref_primary_10_1137_23M1575093 crossref_primary_10_1016_j_ejor_2023_01_049 crossref_primary_10_1109_TCST_2021_3093648 crossref_primary_10_1080_00207543_2025_2462997 crossref_primary_10_1007_s10107_021_01740_0 crossref_primary_10_1016_j_ijhydene_2024_12_216 |
| Cites_doi | 10.1049/iet-gtd.2009.0107 10.1029/WR021i006p00779 10.1137/0117061 10.1109/TSTE.2018.2805164 10.1287/opre.33.5.989 10.1287/mnsc.19.2.139 10.1137/140983136 10.1016/j.ejor.2010.08.007 10.1287/opre.28.4.889 10.1007/s10107-020-01569-z 10.1287/ijoc.2017.0782 10.1007/BF01386316 10.1287/opre.48.2.268.12379 10.1016/j.orl.2008.01.013 10.1007/s10107-016-1012-8 10.1109/TPWRS.2012.2205411 10.1007/s10107-019-01368-1 10.1016/j.ejor.2016.10.047 10.1023/A:1023062915106 10.1109/TPWRS.2018.2880996 10.1007/BF02025089 10.1016/S0305-0548(00)00076-9 10.1007/BF01580231 10.1016/j.ejor.2012.08.022 10.1007/s10957-004-1842-z 10.1287/opre.34.3.356 10.1007/BF01582895 10.1023/A:1022641805263 10.1287/moor.2014.0664 10.1287/opre.8.1.101 10.1007/s10107-018-1249-5 10.1016/j.ejor.2018.05.039 10.1287/mnsc.38.11.1642 10.1007/978-3-319-91578-4 10.1287/mnsc.20.3.282 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-022-01875-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 985 |
| ExternalDocumentID | A725670642 10_1007_s10107_022_01875_8 |
| GrantInformation_xml | – fundername: Directorate for Engineering grantid: 1751747 funderid: http://dx.doi.org/10.13039/100000084 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-e69fe50f650ca681aae28f575f4719360a23ff00e576716185ea6e79f55baf33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842139200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:41:47 EDT 2025 Sat Nov 29 11:02:17 EST 2025 Tue Nov 18 22:35:44 EST 2025 Sat Nov 29 03:34:03 EST 2025 Fri Feb 21 02:44:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Complexity analysis 90C30 90C11 90C39 MINLP 90C15 49N15 Multistage stochastic programming SDDP 90C60 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-e69fe50f650ca681aae28f575f4719360a23ff00e576716185ea6e79f55baf33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3917-9418 |
| OpenAccessLink | https://link.springer.com/10.1007/s10107-022-01875-8 |
| PQID | 2733396608 |
| PQPubID | 25307 |
| PageCount | 51 |
| ParticipantIDs | proquest_journals_2733396608 gale_infotracacademiconefile_A725670642 crossref_citationtrail_10_1007_s10107_022_01875_8 crossref_primary_10_1007_s10107_022_01875_8 springer_journals_10_1007_s10107_022_01875_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF015828950749.90057 GuiguesVDual dynamic programing with cut selection: Convergence proof and numerical experimentsEur. J. Oper. Res.201725814757358137010.1016/j.ejor.2016.10.0471380.90277 Escudero, L.F., Kamesam, P.V., King, A.J., Wets, R.J.B.: Production planning via scenario modelling. Annals of Operations Research 43, 309–335 (1993) GlasseyCRNested Decomposition and Multi-Stage Linear ProgramsManage. Sci.197320328229233731310.1287/mnsc.20.3.2820313.90037 Philpott, A., Wahid, F., Bonnans, F.: MIDAS: A Mixed Integer Dynamic Approximation Scheme. Mathematical Programming 181, 19–50 (2020) Zou, J., Ahmed, S., Sun, X.A.: Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming. IEEE Trans. Power Syst. 34(3), 1814–1823 (2019) https://doi.org/10.1109/TPWRS.2018.2880996. http://ieeexplore.ieee.org/document/8532315 LouveauxFVA Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment ProblemOper. Res.198028488990258489410.1287/opre.28.4.8890441.90076 Philpott, A., Guan, Z.: On the convergence of stochastic dual dynamic programming and related methods. Operations Research Letters 36(4), 450–455 (2008) https://doi.org/10.1016/j.orl.2008.01.013. http://linkinghub.elsevier.com/retrieve/pii/S0167637708000308 Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962) GuiguesVConvergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programsSIAM J. Optim.201626424682494357028410.1137/1409831361356.90095 Lara, C.L., Mallapragada, D.S., Papageorgiou, D.J., Venkatesh, A., Grossmann, I.E.: Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research 271(3), 1037–1054 (2018) https://doi.org/10.1016/j.ejor.2018.05.039. http://linkinghub.elsevier.com/retrieve/pii/S0377221718304466 Lan, G.: Complexity of stochastic dual dynamic programming. Mathematical Programming pp. 1–38 (2020) ChenZLPowellWBConvergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with RecourseJ. Optim. Theory Appl.19991023497524171071910.1023/A:10226418052630955.90096 Hjelmeland, M.N., Zou, J., Helseth, A., Ahmed, S.: Nonconvex Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming. IEEE Transactions on Sustainable Energy 10(1), 481–490 (2019) https://doi.org/10.1109/TSTE.2018.2805164. http://ieeexplore.ieee.org/document/8289405 Basciftci, B., Ahmed, S., Gebraeel, N.: Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning. arXiv:1906.03513 [math] (2019) TakritiSKrasenbrinkBWuLSYIncorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment ProblemOper. Res.200048226828010.1287/opre.48.2.268.12379 KusyMIZiembaWTA Bank Asset and Liability Management ModelOper. Res.198634335637610.1287/opre.34.3.356 Chen, Z.L., Li, S., Tirupati, D.: A scenario-based stochastic programming approach for technology and capacity planning. Computers & Operations Research 29(7), 781–806 (2002) https://doi.org/10.1016/S0305-0548(00)00076-9. http://linkinghub.elsevier.com/retrieve/pii/S0305054800000769 Baringo, L., Conejo, A.J.: Risk-Constrained Multi-Stage Wind Power Investment. IEEE Transactions on Power Systems 28(1), 401–411 (2013) https://doi.org/10.1109/TPWRS.2012.2205411. http://ieeexplore.ieee.org/document/6247489 PereiraMVFPintoLMVGStochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition ApproachWater Resour. Res.198521677979210.1029/WR021i006p00779 Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Optim. Online p. 25 (2017) BradleySPCraneDBA Dynamic Model for Bond Portfolio ManagementManage. Sci.197219213915110.1287/mnsc.19.2.139 GirardeauPLeclereVPhilpottABOn the Convergence of Decomposition Methods for Multistage Stochastic Convex ProgramsMath. Oper. Res.2015401130145332041710.1287/moor.2014.06641308.90115 Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse Stochastic Dual Dynamic Programming method. European J. Oper. Res. 224(2), 375–391 (2013) https://doi.org/10.1016/j.ejor.2012.08.022. http://linkinghub.elsevier.com/retrieve/pii/S0377221712006455 MulveyJMVladimirouHStochastic Network Programming for Financial Planning ProblemsManage. Sci.199238111642166410.1287/mnsc.38.11.16420825.90062 DantzigGBWolfePDecomposition Principle for Linear ProgramsOper. Res.19608110111110.1287/opre.8.1.1010093.32806 BirgeJRDecomposition and Partitioning Methods for Multistage Stochastic Linear ProgramsOper. Res.1985335989100780691610.1287/opre.33.5.9890581.90065 Slyke, R.M.V., Wets, R.: L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming. SIAM J. Appl. Math. 17(4), 638–663 (1969). http://www.jstor.org/stable/2099310 LinowskyKPhilpottABOn the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic ProgramsJ. Optim. Theory Appl.20051252349366213650010.1007/s10957-004-1842-z1071.90029 Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programming Math. Program. 191, 755–793 (2022) NesterovYLectures on Convex Optimization2018BerlinSpringer1427.90003 HoJKManneASNested decomposition for dynamic modelsMath. Program.19746112114034562610.1007/BF015802310294.90051 RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer Science & Business Media0888.49001 ZouJAhmedSSunXAPartially Adaptive Stochastic Optimization for Electric Power Generation Expansion PlanningINFORMS J. Comput.2018302388401381332510.1287/ijoc.2017.07821446.90100 Ahmed, S., King, A.J., Parija, G.: A Multi-stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty. Journal of Global Optimization 26, 3–24 (2003) ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.201810.1007/s10107-018-1249-51412.90101 FeizollahiMJAhmedSSunAExact augmented lagrangian duality for mixed integer linear programmingMath. Program.20171611–2365387359278210.1007/s10107-016-1012-81364.90226 Shapiro, A.: Analysis of stochastic dual dynamic programming method. European J. Oper. Res. 209(1), 63–72 (2011) https://doi.org/10.1016/j.ejor.2010.08.007. http://linkinghub.elsevier.com/retrieve/pii/S0377221710005448 FlachBBarrosoLPereiraMLong-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approachIET Generation, Transmission & Distribution20104229910.1049/iet-gtd.2009.0107 1875_CR1 S Takriti (1875_CR36) 2000; 48 1875_CR2 1875_CR3 1875_CR4 1875_CR5 1875_CR6 RT Rockafellar (1875_CR32) 2009 CR Glassey (1875_CR16) 1973; 20 1875_CR19 V Guigues (1875_CR18) 2017; 258 1875_CR39 MI Kusy (1875_CR21) 1986; 34 1875_CR33 FV Louveaux (1875_CR25) 1980; 28 1875_CR35 1875_CR12 1875_CR34 1875_CR9 1875_CR31 J Zou (1875_CR37) 2018; 30 ZL Chen (1875_CR10) 1999; 102 1875_CR30 Y Nesterov (1875_CR27) 2018 JK Ho (1875_CR20) 1974; 6 J Zou (1875_CR38) 2018 B Flach (1875_CR14) 2010; 4 MVF Pereira (1875_CR28) 1985; 21 GB Dantzig (1875_CR11) 1960; 8 SP Bradley (1875_CR8) 1972; 19 P Girardeau (1875_CR15) 2015; 40 MJ Feizollahi (1875_CR13) 2017; 161 K Linowsky (1875_CR24) 2005; 125 JM Mulvey (1875_CR26) 1992; 38 V Guigues (1875_CR17) 2016; 26 JR Birge (1875_CR7) 1985; 33 1875_CR22 MVF Pereira (1875_CR29) 1991; 52 1875_CR23 |
| References_xml | – reference: Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962) – reference: PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF015828950749.90057 – reference: Hjelmeland, M.N., Zou, J., Helseth, A., Ahmed, S.: Nonconvex Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming. IEEE Transactions on Sustainable Energy 10(1), 481–490 (2019) https://doi.org/10.1109/TSTE.2018.2805164. http://ieeexplore.ieee.org/document/8289405/ – reference: ZouJAhmedSSunXAPartially Adaptive Stochastic Optimization for Electric Power Generation Expansion PlanningINFORMS J. Comput.2018302388401381332510.1287/ijoc.2017.07821446.90100 – reference: GuiguesVDual dynamic programing with cut selection: Convergence proof and numerical experimentsEur. J. Oper. Res.201725814757358137010.1016/j.ejor.2016.10.0471380.90277 – reference: Philpott, A., Guan, Z.: On the convergence of stochastic dual dynamic programming and related methods. Operations Research Letters 36(4), 450–455 (2008) https://doi.org/10.1016/j.orl.2008.01.013. http://linkinghub.elsevier.com/retrieve/pii/S0167637708000308 – reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer Science & Business Media0888.49001 – reference: TakritiSKrasenbrinkBWuLSYIncorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment ProblemOper. Res.200048226828010.1287/opre.48.2.268.12379 – reference: Lara, C.L., Mallapragada, D.S., Papageorgiou, D.J., Venkatesh, A., Grossmann, I.E.: Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research 271(3), 1037–1054 (2018) https://doi.org/10.1016/j.ejor.2018.05.039. http://linkinghub.elsevier.com/retrieve/pii/S0377221718304466 – reference: Lan, G.: Complexity of stochastic dual dynamic programming. Mathematical Programming pp. 1–38 (2020) – reference: Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programming Math. Program. 191, 755–793 (2022) – reference: Chen, Z.L., Li, S., Tirupati, D.: A scenario-based stochastic programming approach for technology and capacity planning. Computers & Operations Research 29(7), 781–806 (2002) https://doi.org/10.1016/S0305-0548(00)00076-9. http://linkinghub.elsevier.com/retrieve/pii/S0305054800000769 – reference: NesterovYLectures on Convex Optimization2018BerlinSpringer1427.90003 – reference: GirardeauPLeclereVPhilpottABOn the Convergence of Decomposition Methods for Multistage Stochastic Convex ProgramsMath. Oper. Res.2015401130145332041710.1287/moor.2014.06641308.90115 – reference: FlachBBarrosoLPereiraMLong-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approachIET Generation, Transmission & Distribution20104229910.1049/iet-gtd.2009.0107 – reference: Baringo, L., Conejo, A.J.: Risk-Constrained Multi-Stage Wind Power Investment. IEEE Transactions on Power Systems 28(1), 401–411 (2013) https://doi.org/10.1109/TPWRS.2012.2205411. http://ieeexplore.ieee.org/document/6247489/ – reference: ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.201810.1007/s10107-018-1249-51412.90101 – reference: DantzigGBWolfePDecomposition Principle for Linear ProgramsOper. Res.19608110111110.1287/opre.8.1.1010093.32806 – reference: BirgeJRDecomposition and Partitioning Methods for Multistage Stochastic Linear ProgramsOper. Res.1985335989100780691610.1287/opre.33.5.9890581.90065 – reference: Slyke, R.M.V., Wets, R.: L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming. SIAM J. Appl. Math. 17(4), 638–663 (1969). http://www.jstor.org/stable/2099310 – reference: Philpott, A., Wahid, F., Bonnans, F.: MIDAS: A Mixed Integer Dynamic Approximation Scheme. Mathematical Programming 181, 19–50 (2020) – reference: Shapiro, A.: Analysis of stochastic dual dynamic programming method. European J. Oper. Res. 209(1), 63–72 (2011) https://doi.org/10.1016/j.ejor.2010.08.007. http://linkinghub.elsevier.com/retrieve/pii/S0377221710005448 – reference: GlasseyCRNested Decomposition and Multi-Stage Linear ProgramsManage. Sci.197320328229233731310.1287/mnsc.20.3.2820313.90037 – reference: LouveauxFVA Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment ProblemOper. Res.198028488990258489410.1287/opre.28.4.8890441.90076 – reference: PereiraMVFPintoLMVGStochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition ApproachWater Resour. Res.198521677979210.1029/WR021i006p00779 – reference: ChenZLPowellWBConvergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with RecourseJ. Optim. Theory Appl.19991023497524171071910.1023/A:10226418052630955.90096 – reference: GuiguesVConvergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programsSIAM J. Optim.201626424682494357028410.1137/1409831361356.90095 – reference: KusyMIZiembaWTA Bank Asset and Liability Management ModelOper. Res.198634335637610.1287/opre.34.3.356 – reference: Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Optim. Online p. 25 (2017) – reference: Escudero, L.F., Kamesam, P.V., King, A.J., Wets, R.J.B.: Production planning via scenario modelling. Annals of Operations Research 43, 309–335 (1993) – reference: MulveyJMVladimirouHStochastic Network Programming for Financial Planning ProblemsManage. Sci.199238111642166410.1287/mnsc.38.11.16420825.90062 – reference: Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse Stochastic Dual Dynamic Programming method. European J. Oper. Res. 224(2), 375–391 (2013) https://doi.org/10.1016/j.ejor.2012.08.022. http://linkinghub.elsevier.com/retrieve/pii/S0377221712006455 – reference: Ahmed, S., King, A.J., Parija, G.: A Multi-stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty. Journal of Global Optimization 26, 3–24 (2003) – reference: LinowskyKPhilpottABOn the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic ProgramsJ. Optim. Theory Appl.20051252349366213650010.1007/s10957-004-1842-z1071.90029 – reference: Zou, J., Ahmed, S., Sun, X.A.: Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming. IEEE Trans. Power Syst. 34(3), 1814–1823 (2019) https://doi.org/10.1109/TPWRS.2018.2880996. http://ieeexplore.ieee.org/document/8532315/ – reference: BradleySPCraneDBA Dynamic Model for Bond Portfolio ManagementManage. Sci.197219213915110.1287/mnsc.19.2.139 – reference: HoJKManneASNested decomposition for dynamic modelsMath. Program.19746112114034562610.1007/BF015802310294.90051 – reference: Basciftci, B., Ahmed, S., Gebraeel, N.: Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning. arXiv:1906.03513 [math] (2019) – reference: FeizollahiMJAhmedSSunAExact augmented lagrangian duality for mixed integer linear programmingMath. Program.20171611–2365387359278210.1007/s10107-016-1012-81364.90226 – volume: 4 start-page: 299 issue: 2 year: 2010 ident: 1875_CR14 publication-title: IET Generation, Transmission & Distribution doi: 10.1049/iet-gtd.2009.0107 – volume: 21 start-page: 779 issue: 6 year: 1985 ident: 1875_CR28 publication-title: Water Resour. Res. doi: 10.1029/WR021i006p00779 – ident: 1875_CR35 doi: 10.1137/0117061 – ident: 1875_CR19 doi: 10.1109/TSTE.2018.2805164 – volume: 33 start-page: 989 issue: 5 year: 1985 ident: 1875_CR7 publication-title: Oper. Res. doi: 10.1287/opre.33.5.989 – volume: 19 start-page: 139 issue: 2 year: 1972 ident: 1875_CR8 publication-title: Manage. Sci. doi: 10.1287/mnsc.19.2.139 – volume: 26 start-page: 2468 issue: 4 year: 2016 ident: 1875_CR17 publication-title: SIAM J. Optim. doi: 10.1137/140983136 – ident: 1875_CR33 doi: 10.1016/j.ejor.2010.08.007 – volume: 28 start-page: 889 issue: 4 year: 1980 ident: 1875_CR25 publication-title: Oper. Res. doi: 10.1287/opre.28.4.889 – ident: 1875_CR1 doi: 10.1007/s10107-020-01569-z – volume: 30 start-page: 388 issue: 2 year: 2018 ident: 1875_CR37 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2017.0782 – ident: 1875_CR5 – ident: 1875_CR6 doi: 10.1007/BF01386316 – volume: 48 start-page: 268 issue: 2 year: 2000 ident: 1875_CR36 publication-title: Oper. Res. doi: 10.1287/opre.48.2.268.12379 – ident: 1875_CR30 doi: 10.1016/j.orl.2008.01.013 – volume: 161 start-page: 365 issue: 1–2 year: 2017 ident: 1875_CR13 publication-title: Math. Program. doi: 10.1007/s10107-016-1012-8 – ident: 1875_CR3 doi: 10.1109/TPWRS.2012.2205411 – ident: 1875_CR31 doi: 10.1007/s10107-019-01368-1 – volume: 258 start-page: 47 issue: 1 year: 2017 ident: 1875_CR18 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.10.047 – volume-title: Variational Analysis year: 2009 ident: 1875_CR32 – ident: 1875_CR2 doi: 10.1023/A:1023062915106 – ident: 1875_CR39 doi: 10.1109/TPWRS.2018.2880996 – ident: 1875_CR12 doi: 10.1007/BF02025089 – ident: 1875_CR9 doi: 10.1016/S0305-0548(00)00076-9 – volume: 6 start-page: 121 issue: 1 year: 1974 ident: 1875_CR20 publication-title: Math. Program. doi: 10.1007/BF01580231 – ident: 1875_CR34 doi: 10.1016/j.ejor.2012.08.022 – ident: 1875_CR4 – volume: 125 start-page: 349 issue: 2 year: 2005 ident: 1875_CR24 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-004-1842-z – volume: 34 start-page: 356 issue: 3 year: 1986 ident: 1875_CR21 publication-title: Oper. Res. doi: 10.1287/opre.34.3.356 – volume: 52 start-page: 359 issue: 1–3 year: 1991 ident: 1875_CR29 publication-title: Math. Program. doi: 10.1007/BF01582895 – volume: 102 start-page: 497 issue: 3 year: 1999 ident: 1875_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1022641805263 – volume: 40 start-page: 130 issue: 1 year: 2015 ident: 1875_CR15 publication-title: Math. Oper. Res. doi: 10.1287/moor.2014.0664 – ident: 1875_CR22 – volume: 8 start-page: 101 issue: 1 year: 1960 ident: 1875_CR11 publication-title: Oper. Res. doi: 10.1287/opre.8.1.101 – year: 2018 ident: 1875_CR38 publication-title: Math. Program. doi: 10.1007/s10107-018-1249-5 – ident: 1875_CR23 doi: 10.1016/j.ejor.2018.05.039 – volume: 38 start-page: 1642 issue: 11 year: 1992 ident: 1875_CR26 publication-title: Manage. Sci. doi: 10.1287/mnsc.38.11.1642 – volume-title: Lectures on Convex Optimization year: 2018 ident: 1875_CR27 doi: 10.1007/978-3-319-91578-4 – volume: 20 start-page: 282 issue: 3 year: 1973 ident: 1875_CR16 publication-title: Manage. Sci. doi: 10.1287/mnsc.20.3.282 |
| SSID | ssj0001388 |
| Score | 2.4873185 |
| Snippet | In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 935 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Complexity Computational geometry Convexity Dynamic programming Full Length Paper Global optimization Investment analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical optimization Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Optimization Regularization Sampling Theoretical |
| Title | Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization |
| URI | https://link.springer.com/article/10.1007/s10107-022-01875-8 https://www.proquest.com/docview/2733396608 |
| Volume | 196 |
| WOSCitedRecordID | wos000842139200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQfBgxbWpmnT4xCHF4ewIbuFtE1UcJu0U_zzfS9Nt_kJeixtPshLXn5p3u_3CDlViTCRxjg_gJ9eGLHQSxQXXpyJNA0QUCthk03EvZ4YDpNbRwor62j3-krSeuoFspuPv9UCDCUAlO2JZbLCUW0Gz-j9u5n_9ZkQdaJWRAeOKvN9HR-2o89O-cvtqN10upv_6-4W2XAgk3aqWbFNlvR4h6wvSA_C081Mr7XcJWl_OskeFGo2UyRn0bxKVE9d-NYIylCAt9TGHwKgvNe0nBcZPb7p3LPKE7qg40p9QxV0Av5o5Iiee2TQvRpcXnsu-4KXwZly6ukoMZq3DUC4TEXCV0oHwgC6M7CfJSxqq4AZ025rOLHEKLvPtQKrJ4bzVBnG9kkD2tMHhOZ5muWKg_mNH2oTpKFgeZwjK9fwVCdN4tc2kJlTJscEGU9yrqmMgylhMKUdTCma5HxW5rnS5fj16zM0rcRFCzVnynEPoH8ofyU7MSC_GM9iTdKqrS_dai4lQDzGUMYUKrqorT1__XO7h3_7_IisBThhLNWxRRrT4kUfk9XsFSxbnNhZ_g6eBfZH |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah4EH7SwNr2kj0McinMIDvEtpG2igttkneLP95wu3eYV9LG0uZCTnHxpzvcdgEMVCxNqivND-On4IfedWAXCiVKRJB4BaiWKZBNRuy3u7uJrSwrLy2j38kqy8NRTZDeXfqt5FEqAKNsRszDnU5odOqPf3I79r8uFKBO1EjqwVJnv6_iwHX12yl9uR4tNp7nyv-6uwrIFmawxmhVrMKN767A0JT2IT1djvdZ8A5KbYT99UKTZzIicxbJRonpmw7e6WIYhvGVF_CECynvN8kmR7uObzpxCeUIPWG-kvqEGrI_-qGuJnpvQaZ51Ts8dm33BSfFMOXR0GBsd1A1CuFSFwlVKe8IgujO4n8U8rCuPG1OvazyxRCS7H2iFVo9NECTKcL4FFWxPbwPLsiTNVIDmN66vjZf4gmdRRqxcEyQ6roJb2kCmVpmcEmQ8yYmmMg2mxMGUxWBKUYXjcZnnkS7Hr18fkWklLVqsOVWWe4D9I_kr2YgQ-UV0FqtCrbS-tKs5lwjxOCcZU6zopLT25PXP7e787fMDWDjvXLVk66J9uQuLHk2egvZYg8pw8KL3YD59RSsP9osZ_w4wsvkr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHVEo4AMSB4jaxFmcIwIqEFBVtELcLCexAYkuagvi85nJ0pZVQhyTeJM9tp_jeW8ADlQojK_Jzw_hp-X63LVC5QkriEUUOQSolUiDTQT1uri_DxsTLP7U2724ksw4DaTS1BlWeompTBDfbPrF5pBbASJuS0zDrIuvyKnrtnk3WottLkQRtJWQQk6b-b6MD1vT5wX6y01pugHVlv_f9BVYysEnO8msZRWmdGcNFickCfHpZqTjOliHqDnsxo-KtJwZkbZYkgWwZ7lbVxvzMIS9LPVLRKD5oNlgnKX99KYTK1Wk0H3WyVQ5VJ91cZ1q5wTQDWjVzlunF1YelcGK8aw5tLQfGu1VDUK7WPnCVko7wiDqM7jPhdyvKocbU61qPMkEJMfvaYXWEBrPi5ThfBNmsD69BSxJojhRHpqFsV1tnMgVPAkSYusaL9JhCexiPGScK5ZT4IxnOdZaps6U2Jky7UwpSnA0ytPL9Dp-TX1IwyxpMmPJsco5Cdg-ksWSJwEiwoDOaCUoF5Yg81k-kAj9OCd5UyzouBj58eef693-W_J9mG-c1eT1Zf1qBxYcsp2UDVmGmWH_Re_CXPyKg9zfS43_HRrTAh4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+dual+dynamic+programming+for+multistage+stochastic+mixed-integer+nonlinear+optimization&rft.jtitle=Mathematical+programming&rft.au=Zhang+Shixuan&rft.au=Sun%2C+Xu+Andy&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=196&rft.issue=1-2&rft.spage=935&rft.epage=985&rft_id=info:doi/10.1007%2Fs10107-022-01875-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |