Equivalent Modeling of Temperature Field for Amorphous Alloy 3D Wound Core Transformer for New Energy
It is of the utmost importance to accurately solve the transformer temperature field, as it governs the overall performance and operational stability of the transformer. However, the intricate structure of high- and low-voltage windings, insulating materials, and other components presents numerous c...
Uloženo v:
| Vydáno v: | Energies (Basel) Ročník 18; číslo 12; s. 3212 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2025
|
| Témata: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is of the utmost importance to accurately solve the transformer temperature field, as it governs the overall performance and operational stability of the transformer. However, the intricate structure of high- and low-voltage windings, insulating materials, and other components presents numerous challenges for modeling. Temperature exerts a significant influence on insulation aging, and elevated temperatures can notably accelerate the degradation process of insulation materials, reducing their service life and increasing the risk of electrical failures. In view of this, this paper proposes an equivalent modeling method of the temperature field of the transformer HLV winding and studies the refined modeling of the winding part. First of all, in order to reduce the difficulty of temperature field modeling, based on the principle of constant thermal resistance, the fine high- and low-voltage windings are equivalent to large conductors, and the equivalent thermal conductivity coefficient of the high- and low-voltage windings is obtained, which improves the calculation accuracy and shortens the calculation time. Secondly, we verify the feasibility of the equivalent model before and after the simulation, analyze the influence of different boundary conditions on the winding temperature field distribution, and predict the local hotspot location and temperature trend. Finally, a 50 kVA amorphous alloy winding-core transformer is tested on different prototypes to verify the effectiveness of the proposed method. |
|---|---|
| AbstractList | It is of the utmost importance to accurately solve the transformer temperature field, as it governs the overall performance and operational stability of the transformer. However, the intricate structure of high- and low-voltage windings, insulating materials, and other components presents numerous challenges for modeling. Temperature exerts a significant influence on insulation aging, and elevated temperatures can notably accelerate the degradation process of insulation materials, reducing their service life and increasing the risk of electrical failures. In view of this, this paper proposes an equivalent modeling method of the temperature field of the transformer HLV winding and studies the refined modeling of the winding part. First of all, in order to reduce the difficulty of temperature field modeling, based on the principle of constant thermal resistance, the fine high- and low-voltage windings are equivalent to large conductors, and the equivalent thermal conductivity coefficient of the high- and low-voltage windings is obtained, which improves the calculation accuracy and shortens the calculation time. Secondly, we verify the feasibility of the equivalent model before and after the simulation, analyze the influence of different boundary conditions on the winding temperature field distribution, and predict the local hotspot location and temperature trend. Finally, a 50 kVA amorphous alloy winding-core transformer is tested on different prototypes to verify the effectiveness of the proposed method. |
| Audience | Academic |
| Author | Zhuang, Pengzhe Hou, Xiaolin Yu, Zhanyang Wang, Xiaohui Han, Jianwei Zhao, Peng Yao, Xinglong Yan, Yunfei Dai, Zonghan |
| Author_xml | – sequence: 1 givenname: Jianwei surname: Han fullname: Han, Jianwei – sequence: 2 givenname: Xiaolin surname: Hou fullname: Hou, Xiaolin – sequence: 3 givenname: Xinglong surname: Yao fullname: Yao, Xinglong – sequence: 4 givenname: Yunfei surname: Yan fullname: Yan, Yunfei – sequence: 5 givenname: Zonghan surname: Dai fullname: Dai, Zonghan – sequence: 6 givenname: Xiaohui surname: Wang fullname: Wang, Xiaohui – sequence: 7 givenname: Peng surname: Zhao fullname: Zhao, Peng – sequence: 8 givenname: Pengzhe surname: Zhuang fullname: Zhuang, Pengzhe – sequence: 9 givenname: Zhanyang surname: Yu fullname: Yu, Zhanyang |
| BookMark | eNptkU1PGzEQhi1EJSDl0l9giRtSqD924_UxCqFFou0lVY-WY4-Do107eHdB-fcMpCoVwrY0o9HzzjvynJHjlBMQ8oWzKyk1-wqJN1xIwcUROeVaz6acKXn8X35Czvt-y_BIyaWUpwSWD2N8tC2kgf7IHtqYNjQHuoJuB8UOYwF6E6H1NORC510uu_s89nTetnlP5TX9k8fk6SIjtyo29Yh1UF7pn_BElwnKZv-ZfAq27eH8b5yQ3zfL1eL79O7Xt9vF_G7qKiaGqW-8XTtvQYe6sUxxF9bMK67ryrsgmGQi1ELq4GdMVcARr4CpRlkb6pn3ckJuD319tluzK7GzZW-yjea1kMvG2DJE14JBjwCKq8oLqGDNrECDoKEOSgcBNfa6OPTalfwwQj-YbR5LwvGNFDgE0y9hQq4O1Ab_0MQU8lCsw-uhiw73EyLW501Voxc-FFweBK7kvi8Q_o3JmXlZo3lbI8LsHeziYIeYE7rE9iPJM-_LoQY |
| CitedBy_id | crossref_primary_10_3390_ma18184415 |
| Cites_doi | 10.1016/j.ijthermalsci.2006.04.012 10.1109/TTE.2021.3097876 10.1109/TIA.2021.3053500 10.1016/j.scriptamat.2022.114537 10.1109/TIA.2009.2023561 10.1016/j.ijthermalsci.2019.106009 10.1109/TEC.2020.3031858 10.1109/TEC.2005.847979 10.1109/TIE.2019.2910031 10.1038/s42005-021-00653-w 10.1109/TIA.2017.2648780 10.1109/TMAG.2012.2198442 10.1016/j.ijheatmasstransfer.2020.119889 10.1109/EI250167.2020.9347192 10.1016/j.applthermaleng.2023.121558 10.1016/j.anucene.2022.109420 10.1109/ICET55676.2022.9824027 10.1021/acsnano.6b07836 10.1109/TIA.2013.2263271 10.1016/j.jnucmat.2014.12.042 10.1016/j.apenergy.2020.115344 10.1109/TIE.2018.2875635 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en18123212 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_e9ffe7174d2e4eb0a2f20f9e5f79f2e5 A845717717 10_3390_en18123212 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c402t-d8dabcdae9f58a071cfb0d71954dcf20302f5239fd6074e18da4e0787aaf56dd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515394100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:43:48 EDT 2025 Mon Jun 30 07:19:08 EDT 2025 Tue Nov 04 18:15:52 EST 2025 Tue Nov 18 22:37:05 EST 2025 Sat Nov 29 07:17:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-d8dabcdae9f58a071cfb0d71954dcf20302f5239fd6074e18da4e0787aaf56dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/e9ffe7174d2e4eb0a2f20f9e5f79f2e5 |
| PQID | 3223909322 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e9ffe7174d2e4eb0a2f20f9e5f79f2e5 proquest_journals_3223909322 gale_infotracacademiconefile_A845717717 crossref_primary_10_3390_en18123212 crossref_citationtrail_10_3390_en18123212 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Folsom (ref_17) 2015; 458 Zhao (ref_7) 2012; 48 Liu (ref_11) 2019; 67 Staton (ref_21) 2005; 20 Ahmed (ref_22) 2017; 53 Kiradjiev (ref_10) 2019; 145 Liu (ref_9) 2024; 236 Zhang (ref_13) 2018; 66 Kwon (ref_23) 2017; 11 Chen (ref_3) 2022; 58 Ortiz (ref_5) 2009; 45 Yi (ref_12) 2021; 57 Sun (ref_14) 2020; 36 Wang (ref_18) 2007; 46 Li (ref_1) 2018; 38 Simpson (ref_15) 2013; 49 Deng (ref_16) 2022; 179 ref_8 Yuan (ref_2) 2022; 8 Niu (ref_4) 2020; 275 Pitchai (ref_20) 2020; 155 Ishibe (ref_24) 2021; 4 ref_6 Yang (ref_19) 2022; 212 |
| References_xml | – volume: 46 start-page: 228 year: 2007 ident: ref_18 article-title: A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.04.012 – volume: 8 start-page: 298 year: 2022 ident: ref_2 article-title: Modeling method for thermal field of turbulent cooling dry-type on-board traction transformer in EMUs publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2021.3097876 – volume: 57 start-page: 1440 year: 2021 ident: ref_12 article-title: Equivalent thermal conductivity prediction of form-wound windings with litz wire including transposition effects publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2021.3053500 – volume: 212 start-page: 114537 year: 2022 ident: ref_19 article-title: A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2022.114537 – volume: 45 start-page: 1530 year: 2009 ident: ref_5 article-title: Parallel CFD analysis of conjugate heat transfer in a dry-type transformer publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2009.2023561 – volume: 145 start-page: 106009 year: 2019 ident: ref_10 article-title: Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.106009 – volume: 36 start-page: 1143 year: 2020 ident: ref_14 article-title: A closed-form analytical method for reliable estimation of equivalent thermal conductivity of windings with round-profile conductors publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2020.3031858 – volume: 38 start-page: 6737 year: 2018 ident: ref_1 article-title: A model of load capacity assessment for oil-immersed transformer by using temperature rise characteristics publication-title: Proc. CSEE – volume: 20 start-page: 620 year: 2005 ident: ref_21 article-title: Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2005.847979 – volume: 67 start-page: 2667 year: 2019 ident: ref_11 article-title: Effective thermal conductivity calculation and measurement of litz wire based on the porous metal materials structure publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2910031 – volume: 4 start-page: 153 year: 2021 ident: ref_24 article-title: Heat transport through propagon-phonon interaction in epitaxial amorphous-crystalline multilayers publication-title: Commun. Phys. doi: 10.1038/s42005-021-00653-w – volume: 53 start-page: 3098 year: 2017 ident: ref_22 article-title: Analysis of end-winding thermal effects in a totally enclosed fan-cooled induction motor with a die cast copper rotor publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2017.2648780 – volume: 48 start-page: 4160 year: 2012 ident: ref_7 article-title: An adaptive mesh method in transient finite element analysis of magnetic field using a novel error estimator publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2012.2198442 – volume: 155 start-page: 119889 year: 2020 ident: ref_20 article-title: Determination of the influence of interfacial thermal resistance in a three phase composite using variational asymptotic based homogenization method publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2020.119889 – ident: ref_6 doi: 10.1109/EI250167.2020.9347192 – volume: 236 start-page: 121558 year: 2024 ident: ref_9 article-title: A fast computational method for internal temperature field in Oil-Immersed power transformers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121558 – volume: 179 start-page: 109420 year: 2022 ident: ref_16 article-title: Heat transfer performance of the solid microencapsulated fuel in light water reactors publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2022.109420 – volume: 58 start-page: 1 year: 2022 ident: ref_3 article-title: Thermal network model of high-power dry-type transformer coupled with electromagnetic loss publication-title: IEEE Trans. Magn. – ident: ref_8 doi: 10.1109/ICET55676.2022.9824027 – volume: 11 start-page: 2470 year: 2017 ident: ref_23 article-title: Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures publication-title: ACS Nano doi: 10.1021/acsnano.6b07836 – volume: 49 start-page: 2505 year: 2013 ident: ref_15 article-title: Estimation of equivalent thermal parameters of impregnated electrical windings publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2013.2263271 – volume: 458 start-page: 198 year: 2015 ident: ref_17 article-title: Experimental measurement and numerical modeling of the effective thermal conductivity of TRISO fuel compacts publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.12.042 – volume: 275 start-page: 115344 year: 2020 ident: ref_4 article-title: Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115344 – volume: 66 start-page: 6210 year: 2018 ident: ref_13 article-title: Equivalent thermal conductivity estimation for compact electromagnetic windings publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2875635 |
| SSID | ssj0000331333 |
| Score | 2.3967462 |
| Snippet | It is of the utmost importance to accurately solve the transformer temperature field, as it governs the overall performance and operational stability of the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3212 |
| SubjectTerms | 3D wound core transformer Analysis Boundary conditions Conductivity Copper Decomposition Efficiency Electric properties Electric transformers Energy industry equivalent thermal conductivity Finite element analysis Heat conductivity Metallic glasses Methods Simulation temperature field winding equivalent |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOLU-xtCBLICEOUbN-5HGqtmVXHNCqQgv0Zjn2uKq0bNp9VOq_Zybr3YIEXJBySiaJnRnPfGPH3wC8q7VqfCz6WZ-CT6aNiVkTeZVdlZgbF7XrCEy_fS7H4-r8vD5LE26L9Fvlxid2jjq0nufIj8jwKD0ntCGPr64zrhrFq6uphMZ92GWmMrLz3ZPh-OzLdpYlV4qSMLXmJVX0gCOccUxTsi9_i0QdYf_f3HIXa0b7_9vKx7CXUKYYrM3iCdzD2VN49Av34DPA4fXqksyMgo7ggmi8LV20UUyQgPSaaFmM-Pc2QbBWDH60pJB2tRCD6bS9Feqj-M4FmcRpS3KTDfrFeSdNnlMMu02Fz-HraDg5_ZSlmguZp0xymYUquMYHh3U0lSP84WOTh5J54YKPklyCjJS71jEUBD6wT-IaCWaUzkVThKBewM6sneFLEN7kpO6mKmNRaF9g3VTaNQSYonKa3taDD5vvb30iJOe6GFNLiQnryt7pqgdvt7JXaxqOP0qdsBq3Ekyd3Z1o5xc2jURLPYtISawOEjU2uZPUrVijiWUdJZoevGcjsDzAqTnepX0K1CmmyrKDShu6nY4eHG6MwKaRv7B3FvDq35cP4KHkWsLdjM4h7CznK3wND_zN8nIxf5MM-Seg3v2q priority: 102 providerName: ProQuest |
| Title | Equivalent Modeling of Temperature Field for Amorphous Alloy 3D Wound Core Transformer for New Energy |
| URI | https://www.proquest.com/docview/3223909322 https://doaj.org/article/e9ffe7174d2e4eb0a2f20f9e5f79f2e5 |
| Volume | 18 |
| WOSCitedRecordID | wos001515394100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB5K9UEfilrFs7UsWBAfQnO7m1-P15qjBXscctX6tGx2Z6BwXvR6FXzxb3d2k6tXsPgihDyECdnMzM58k-x-A3BYadU4yofJkJNPorOMkobCX3ZVYJpZ0jYSmH76UEwm5eVlNd1o9RXWhHX0wJ3ijrAiQq45tJeosUmtJJlShRkVFUmM7KVpUW0UUzEGK8XFl-r4SBXX9Ue4CLlMyaG8k4EiUf994TjmmPET2OnBoRh1g3oKW7h4Bo83KAN3AevvN1fsHZwrROhjFnaTi5bEDBn_dvzIYhxWpQlGo2L0tWU9cnEvRvN5-1Oo9-Jz6KMkTlqWm61BKy6jNAc8Uce9gM_hYlzPTk6TvlVC4rgAXCW-9LZx3rK2stIybHDUpL4IdG7escJUKolLzop8zpgBhyyukdFBYS1luffqBWwv2gW-BOGylK3UlAXluXY5Vk2pbcM4h5TV_LQBvFurz7ieRzy0s5gbrieCqs0fVQ_gza3st449469Sx8EKtxKB8TpeYD8wvR-Yf_nBAN4GG5owL3k4zvbbC_ilAsOVGZU649v5GMD-2symn7DXhuMaD4rBrHz1P0azB49kaBQcP9fsw_ZqeYOv4aH7sbq6Xh7Ag-N6Mv14EH2Wz-e_ar42PTuffvkN-nj0OQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAl64NmKlAIrAUIcrDq769cBodAmatQ0yiFAOS3rfaBKIW7zAPVP8RuZ8SMFCbj1gOSTPX6s9_N8M-vdbwBeZFLkxsedoIPkE8go8kHu6S-7SFwYaS91KWD6YZiMRunpaTbegB_NWhiaVtn4xNJR28LQGPk-Ag_Tc4w2-Nvzi4CqRtHf1aaERgWLY3f5HVO2xZvBIfbvS877vcnBUVBXFQgM5krLwKZW58Zql_ko1ciwxuehTUj5zBrPEfTcY3aWeRsjvboOmkuHRJpo7aPYWoHXvQGbEsEetmBzPDgZf1qP6oRCYNInKh1UgQ-872bEoYJ3-G_MVxYI-BsNlNzWv_u_vZV7cKeOolm3gv192HCzB7D1i7biQ3C9i9UZfkZIqowKvtGye1Z4NnGYKFRC0qxP0_cYhu2s-7VAwBWrBetOp8UlE4fsIxWcYgcF2k2a6N7NS2tkBtYrF01uw_traecOtGbFzD0CZqIQ4ZyniY9jaWKX5anUOQaEXmiJd2vD66a_lakF16nux1Rh4kXYUFfYaMPzte15JTPyR6t3BJu1BUmDlzuK-RdVexqFLfMOk3RpuZMuDzXHZvnMRT7JPHdRG14R6BQ5MHwco-t1GNgokgJT3VRGeDpubdhrQKdqz7ZQV4jb_ffhZ3DraHIyVMPB6Pgx3OZUN7kcvdqD1nK-ck_gpvm2PFvMn9YfEYPP143Qn-ccXTk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFyKM-K0AIrAUIcrDi769cBobRJRNUqilCA3pb1PqpKadzmAepf49cx40cKEnDrAckne_xY-9v55lvvzgC8yqTIjY-7QRfJJ5BR5IPc0192kbgw0l7qMoHp5-NkNEpPTrLxBvxo1sLQtMrGJ5aO2haGxsg7CDyU5xht8I6vp0WM-8P3F5cBVZCiP61NOY0KIkfu6jvKt8W7wz5-69ecDweTgw9BXWEgMKibloFNrc6N1S7zUaqRbY3PQ5tQFjRrPMcOwD0qtczbGKnWddFcOiTVRGsfxdYKvO4t2EwEip4WbO4PRuOP6xGeUAgUgKLKiSrw4TtuRnwqeJf_xoJlsYC_UULJc8N7__Mbug_bdXTNelV3eAAbbvYQ7v6Sc_ERuMHl6gy7F5Ito0JwtByfFZ5NHAqIKsE0G9K0PobhPOudFwjEYrVgvem0uGKiz75QISp2UKDdpIn63by0RsZgg3Ix5WP4dCPt3IHWrJi5J8BMFCLM8zTxcSxN7LI8lTrHQNELLfFubXjbfHtl6kTsVA9kqlCQEU7UNU7a8HJte1GlH_mj1T5BaG1BKcPLHcX8VNUeSGHLvEPxLi130uWh5tgsn7nIJ5nnLmrDGwKgIseGj2N0vT4DG0UpwlQvlRGejlsb9hoAqtrjLdQ1-p7--_ALuIOwVMeHo6Nd2OJUTrkc1NqD1nK-cs_gtvm2PFvMn9f9icHXmwboT29gZdM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equivalent+Modeling+of+Temperature+Field+for+Amorphous+Alloy+3D+Wound+Core+Transformer+for+New+Energy&rft.jtitle=Energies+%28Basel%29&rft.au=Han%2C+Jianwei&rft.au=Hou%2C+Xiaolin&rft.au=Yao%2C+Xinglong&rft.au=Yan%2C+Yunfei&rft.date=2025-06-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=18&rft.issue=12&rft.spage=3212&rft_id=info:doi/10.3390%2Fen18123212&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en18123212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |