Trustworthy cyber-physical power systems using AI: dueling algorithms for PMU anomaly detection and cybersecurity
Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary decentralization, decarbonization, and digitalization techniques have ushered in a new global energy paradigm. Waves of disruption have been felt acr...
Saved in:
| Published in: | The Artificial intelligence review Vol. 57; no. 7; p. 183 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.07.2024
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-7462, 0269-2821, 1573-7462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary decentralization, decarbonization, and digitalization techniques have ushered in a new global energy paradigm. Waves of disruption have been felt across the electricity industry as the digitalization journey in this sector has converged with advances in artificial intelligence (AI). However, there are risks involved. As AI becomes more established, new security threats have emerged. Among the most important is the cyber-physical protection of critical infrastructure, such as the power grid. This article focuses on dueling AI algorithms designed to investigate the trustworthiness of power systems’ cyber-physical security under various scenarios using the phasor measurement units (PMU) use case. Particularly in PMU operations, the focus is on areas that manage sensitive data vital to power system operators’ activities. The initial stage deals with anomaly detection applied to energy systems and PMUs, while the subsequent stage examines adversarial attacks targeting AI models. At this stage, evaluations of the Madry attack, basic iterative method (BIM), momentum iterative method (MIM), and projected gradient descend (PGD) are carried out, which are all powerful adversarial techniques that may compromise anomaly detection methods. The final stage addresses mitigation methods for AI-based cyberattacks. All these three stages represent various uses of AI and constitute the dueling AI algorithm convention that is conceptualised and demonstrated in this work. According to the findings of this study, it is essential to investigate the trade-off between the accuracy of AI-based anomaly detection models and their digital immutability against potential cyberphysical attacks in terms of trustworthiness for the critical infrastructure under consideration. |
|---|---|
| AbstractList | Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary decentralization, decarbonization, and digitalization techniques have ushered in a new global energy paradigm. Waves of disruption have been felt across the electricity industry as the digitalization journey in this sector has converged with advances in artificial intelligence (AI). However, there are risks involved. As AI becomes more established, new security threats have emerged. Among the most important is the cyber-physical protection of critical infrastructure, such as the power grid. This article focuses on dueling AI algorithms designed to investigate the trustworthiness of power systems’ cyber-physical security under various scenarios using the phasor measurement units (PMU) use case. Particularly in PMU operations, the focus is on areas that manage sensitive data vital to power system operators’ activities. The initial stage deals with anomaly detection applied to energy systems and PMUs, while the subsequent stage examines adversarial attacks targeting AI models. At this stage, evaluations of the Madry attack, basic iterative method (BIM), momentum iterative method (MIM), and projected gradient descend (PGD) are carried out, which are all powerful adversarial techniques that may compromise anomaly detection methods. The final stage addresses mitigation methods for AI-based cyberattacks. All these three stages represent various uses of AI and constitute the dueling AI algorithm convention that is conceptualised and demonstrated in this work. According to the findings of this study, it is essential to investigate the trade-off between the accuracy of AI-based anomaly detection models and their digital immutability against potential cyberphysical attacks in terms of trustworthiness for the critical infrastructure under consideration. |
| ArticleNumber | 183 |
| Audience | Academic |
| Author | Halden, Ugur Cali, Umit Catak, Ferhat Ozgur |
| Author_xml | – sequence: 1 givenname: Umit surname: Cali fullname: Cali, Umit email: umit.cali@ntnu.no organization: School of Physics, Engineering and Technology, University of York, Department of Electric Energy, Norwegian University of Science and Technology – sequence: 2 givenname: Ferhat Ozgur surname: Catak fullname: Catak, Ferhat Ozgur organization: The Faculty of Science and Technology, Department of Electrical Engineering and Computer Science, University of Stavanger – sequence: 3 givenname: Ugur surname: Halden fullname: Halden, Ugur organization: Department of Electric Energy, Norwegian University of Science and Technology |
| BookMark | eNp9kU1LAzEQhoMo2Fb_gKeA59V87Ke3UvwoVPSg55DNzrYp202bZGn335u6guKh5JBhZp53mHnH6Lw1LSB0Q8kdJSS7d5TEKYsIiyNKcpZFhzM0oknGoyzkz__El2js3JoQkrCYj9Duw3bO7431qx6rvgQbbVe900o2eGv2YLHrnYeNw53T7RJP5w-46qA5xrJZGqv9KhRrY_H76yeWrdnIpscVeFBemzZkqkHXgepCd3-FLmrZOLj--Sfo8-nxY_YSLd6e57PpIlIxYT6qUqZynlZ5UVU0ZUUOiSwU5TzlSrGCsTzlNOOJlCDDKlIRKOu0LuNEQskk4xN0O-hurdl14LxYm862YaTgJCNFEGU0dN0NXUvZgNBtbbyVKrwKNlqFI9c65KdZkack4TwPABsAZY1zFmqxtXojbS8oEUcvxOCFCF6Iby_EIUD5P0hpL4_3CdN0cxrlA-rCnHYJ9neNE9QXMROitQ |
| CitedBy_id | crossref_primary_10_1007_s42452_025_06523_2 crossref_primary_10_1109_ACCESS_2025_3549679 crossref_primary_10_3390_computers14080321 crossref_primary_10_1016_j_engappai_2025_112220 crossref_primary_10_1007_s12559_025_10483_5 crossref_primary_10_1016_j_asoc_2025_113312 crossref_primary_10_1016_j_aej_2024_09_115 crossref_primary_10_1109_ACCESS_2025_3579939 crossref_primary_10_1007_s10462_025_11318_3 |
| Cites_doi | 10.1007/978-3-030-83301-5_7 10.1109/IWCMC.2018.8450487 10.1016/j.apenergy.2021.116601 10.1109/TSG.2010.2044815 10.1016/j.advengsoft.2022.103126 10.1109/PESGM.2018.8586320 10.1109/JSTSP.2018.2833749 10.1109/ICCS.2014.7024804 10.3390/s22103933 10.1109/JESTIE.2022.3227005 10.1109/IEEESTD.1995.79050 10.1007/978-3-319-33331-1_16 10.1016/j.renene.2019.12.131 10.1109/ICSMC.2003.1245641 10.1109/GLOBECOM42002.2020.9322072 10.1109/PMAPS.2018.8440495 10.3390/electronics11182967 10.1201/9780203913673 10.1080/00031305.1994.10476030 10.1016/j.jnca.2015.11.016 10.1007/978-3-319-22264-6_5 10.1109/SP.2016.41 10.1126/science.aaw4399 10.1109/TSG.2018.2816027 10.1016/j.ijepes.2022.108916 10.1109/TPWRS.2017.2764882 10.1109/NAPS46351.2019.9000312 10.1016/j.rser.2019.109543 10.1109/COMST.2020.2975048 10.1109/TETCI.2020.2968933 10.1016/j.segan.2023.101140 10.3390/jsan9020020 10.1109/NAPS56150.2022.10012188 10.1109/IRI.2016.74 10.1109/CFEC.2018.8358730 10.1109/PESGM52003.2023.10252380 10.3390/info12110442 10.1007/s40565-018-0423-3 10.1016/j.ejcon.2021.09.005 10.1109/CIASG.2014.7011557 10.1016/j.eneco.2019.104500 10.1016/j.neucom.2018.05.017 10.1109/CYBERNIGERIA51635.2021.9428792 10.1109/ISRCS.2014.6900095 10.1016/j.segan.2024.101347 10.1016/j.scs.2020.102384 10.1162/neco.1997.9.8.1735 10.1109/PSCC.2016.7540980 10.1109/TPEC51183.2021.9384947 10.1109/ISGT45199.2020.9087782 10.1155/2012/127072 10.1007/s40565-017-0280-5 10.1007/978-3-030-83301-5 10.1109/SEST53650.2022.9898500 10.1109/TSG.2018.2830118 10.31449/inf.v45i1.3234 10.1016/j.matpr.2020.10.852 10.1109/ICC.2018.8423024 10.1109/ACCESS.2018.2878436 10.1049/iet-gtd.2020.0526 10.1145/3219819.3219845 10.1016/j.cosrev.2020.100270 10.1080/08839514.2022.2034718 10.1016/j.eswa.2021.114865 10.1109/TSG.2018.2859339 10.1145/3494107.3522778 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer Copyright Springer Nature B.V. Jul 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: Copyright Springer Nature B.V. Jul 2024 |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-024-10827-x |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College Library & information science collection. ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| ExternalDocumentID | A798605338 10_1007_s10462_024_10827_x |
| GrantInformation_xml | – fundername: NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital - Trondheim University Hospital) |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BENPR BGNMA C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LLZTM M1O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF0 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I 8AO 8FE 8FG AAFWJ AASML AAYXX ABDBE ABFSG ABUWG ACSTC AEZWR AFFHD AFHIU AFKRA AHPBZ AHWEU AIXLP AYFIA AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CNYFK DWQXO FRNLG GNUQQ ICD K6V K7- M0C MK~ P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PSYQQ Q2X 3V. 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c402t-d62c836d89dd16298e5a9c13363cc29228631735aaea524ac0ebf6fb45aeb2a23 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251543100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7462 0269-2821 |
| IngestDate | Fri Nov 14 01:21:57 EST 2025 Sat Nov 29 10:31:05 EST 2025 Tue Nov 18 21:55:57 EST 2025 Sat Nov 29 02:43:28 EST 2025 Fri Feb 21 02:39:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-d62c836d89dd16298e5a9c13363cc29228631735aaea524ac0ebf6fb45aeb2a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10462-024-10827-x |
| PQID | 3070916221 |
| PQPubID | 36790 |
| ParticipantIDs | proquest_journals_3070916221 gale_infotracacademiconefile_A798605338 crossref_primary_10_1007_s10462_024_10827_x crossref_citationtrail_10_1007_s10462_024_10827_x springer_journals_10_1007_s10462_024_10827_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Pal S, Sikdar B (2014) A mechanism for detecting data manipulation attacks on pmu data, In: 2014 IEEE international conference on communication systems, IEEE, pp 253–257 Roy P, Bhattacharjee S, Das SK (2020) Real time stream mining based attack detection in distribution level pmus for smart grids, In: GLOBECOM 2020-2020 IEEE global communications conference, IEEE, pp 1–6 Bhattacharjee S, Islam MJ, Abedzadeh S (2022) Robust anomaly based attack detection in smart grids under data poisoning attacks, In: Proceedings of the 8th ACM on Cyber-physical system security workshop, pp 3–14 DengXBianDWangWJiangZYaoWQiuWTongNShiDLiuYDeep learning model to detect various synchrophasor data anomaliesIET Gener Trans Distrib202014245739574510.1049/iet-gtd.2020.0526 KrishnaVBGunterCASandersWHEvaluating detectors on optimal attack vectors that enable electricity theft and der fraudIEEE J Select Top Signal Process201812479080510.1109/JSTSP.2018.2833749 Henriksen E, Halden U, Kuzlu M, Cali U (2022) Electrical load forecasting utilizing an explainable artificial intelligence (xai) tool on Norwegian residential buildings, In: 2022 international conference on smart energy systems and technologies (SEST), pp 1–6. https://doi.org/10.1109/SEST53650.2022.9898500 AmuthaAUthraRARoselynJPBrunetRGAnomaly detection in multivariate streaming pmu data using density estimation technique in wide area monitoring systemExpert Syst Appl202117510.1016/j.eswa.2021.114865 Ford V, Siraj A, Eberle W (2014) Smart grid energy fraud detection using artificial neural networks, In: 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG), IEEE, pp 1–6 Garza LF, Mandal P (2022) Lstm based hybrid neural network for pmu data forecasting and anomaly detection, In: 2022 North American Power Symposium (NAPS), IEEE, pp 1–6 Badrinath Krishna V, Weaver GA, Sanders WH (2015) Pca-based method for detecting integrity attacks on advanced metering infrastructure, In: Quantitative evaluation of systems: 12th international conference, QEST 2015, Madrid, Spain, September 1–3, proceedings 12, Springer, 2015, pp 70–85 Hink RCB, Beaver JM, Buckner MA, Morris T, Adhikari U, Pan S (2014) Machine learning for power system disturbance and cyber-attack discrimination, In: 2014 7th international symposium on resilient control systems (ISRCS), IEEE, pp 1–8 Uslar M, Delfs C, Gottschalk M (2017) The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains Kurakin A, Goodfellow I, Bengio S (2016) Adversarial machine learning at scale. arXiv:1611.01236 Rafferty M, Brogan P, Hastings J, Laverty D, Liu XA, Khan R (2018) Local anomaly detection by application of regression analysis on pmu data, In: 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5 Summary for Policymakers—Global Warming of 1.5 °C. https://www.ipcc.ch/sr15/chapter/spm Vicol B, Gavrilas M, Ivanov O (2013) Modern Technologies for Power Systems Monitoring, ELS International Symposium (June) Ozgur Catak F, Sivaslioglu S, Sahinbas K (2020) A generative model based adversarial security of deep learning and linear classifier models. 2010.08546 Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. arXiv:1312.6199 AminiAKanfoudJGanT-HAn artificial intelligence neural network predictive model for anomaly detection and monitoring of wind turbines using scada dataAppl Artif Intell202210.1080/08839514.2022.2034718 BauknechtDFunckeSVogelMIs small beautiful? A framework for assessing decentralised electricity systemsRenew Sustain Energy Rev2020118201910954310.1016/j.rser.2019.109543 Styvaktakis E, Gu IYH, Bollen MHJ (2003) Event-based transient categorization and analysis in electric power systems, In: SMC’03 Conference Proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme-system security and assurance (Cat. No.03CH37483), vol 5, pp. 4176–4183. https://doi.org/10.1109/ICSMC.2003.1245641 BakerMFardAYAlthuwainiHShadmandMBReal-time ai-based anomaly detection and classification in power electronics dominated gridsIEEE J Emerg Select Top Ind Electron20234254955910.1109/JESTIE.2022.3227005 AburAExpositoAGPower system state estimation: theory and implementation2004Boca RatonCRC Press10.1201/9780203913673 QayyumAUsamaMQadirJAl-FuqahaASecuring connected autonomous vehicles: challenges posed by adversarial machine learning and the way forwardIEEE Commun Surv Tutor2020222998102610.1109/COMST.2020.2975048 PukelsheimFThe three sigma ruleAm Stat19944828891129252410.1080/00031305.1994.10476030 RamasubramanianBRajanMAGirish ChandraMCleavelandRMarcusSIResilience to denial-of-service and integrity attacks: a structured systems approachEur J Control2022636169436485510.1016/j.ejcon.2021.09.005 FinlaysonSGBowersJDItoJZittrainJLBeamALKohaneISAdversarial attacks on medical machine learningScience201936364331287128910.1126/science.aaw4399 Jimada-Ojuolape B, Teh J (2020) Surveys on the reliability impacts of power system cyber-physical layers. Sustain Cities Soc 62:102384 ArefinAABabaMSinghNSSNorNBMSheikhMAKannanRAbroGEMMathurNReview of the techniques of the data analytics and islanding detection of distribution systems using phasor measurement unit dataElectronics20221118296710.3390/electronics11182967 Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2023) Anomaly detection in power markets and systems, In: 2023 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5 Ogu RE, Ikerionwu CI, Ayogu II (2021) Leveraging artificial intelligence of things for anomaly detection in advanced metering infrastructures, In: 2020 IEEE 2nd international conference on cyberspac (CYBER NIGERIA), pp 16–20. https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428792 Valdes A, Macwan R, Backes M (2016) Anomaly detection in electrical substation circuits via unsupervised machine learning, In: 2016 IEEE 17th international conference on information reuse and integration (IRI), IEEE, pp 500–505 ChoiD-HXieLImpact of power system network topology errors on real-time locational marginal priceJ Mod Power Syst Clean Energy20175579780910.1007/s40565-017-0280-5 RisbudPGatsisNTahaAVulnerability analysis of smart grids to GPS spoofingIEEE Trans Smart Grid20191043535354810.1109/TSG.2018.2830118 De BenedettiMLeonardiFMessinaFSantoroCVasilakosAAnomaly detection and predictive maintenance for photovoltaic systemsNeurocomputing2018310596810.1016/j.neucom.2018.05.017 GaggeroGBRossiMGirdinioPMarcheseMDetecting system fault/cyberattack within a photovoltaic system connected to the grid: a neural network-based solutionJ Sens Actuator Netw2020922010.3390/jsan9020020 AhmedMMahmoodANHuJA survey of network anomaly detection techniquesJ Netw Comput Appl201660193110.1016/j.jnca.2015.11.016 Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T (2018) Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 387–395 Bruinenberg J, Colton L, Darmois E, Dorn J, Doyle J, Elloumi O, Englert H, Forbes R, Heiles J, Hermans P, Uslar M (2012) CEN -CENELEC-ETSI: smart grid coordination group-smart grid reference architecture report 2.0 (November) SadeghiKBanerjeeAGuptaSKSA system-driven taxonomy of attacks and defenses in adversarial machine learningIEEE Trans Emerg Top Comput Intell20204445046710.1109/TETCI.2020.2968933 Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2022) Anomaly detection in power markets and systems. https://arxiv.org/abs/2212.02182 Jafarnia-JahromiABroumandanANielsenJLachapelleGGPS vulnerability to spoofing threats and a review of antispoofing techniquesInt J Navig Observ201210.1155/2012/127072 O’TooleZMoyaCRubinCSchnabelAWangJA cyber-physical testbed design for the electric power grid, InN Am Power Symp201920191510.1109/NAPS46351.2019.9000312 Karpilow A, Cherkaoui R, D’Arco S, Duong TD (2020) Detection of Bad PMU Data using Machine Learning Techniques, In. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT) 2020:1–5. https://doi.org/10.1109/ISGT45199.2020.9087782 KarneyDHElectricity market deregulation and environmental regulation: evidence from U.S. nuclear powerEnergy Econ20198410450010.1016/j.eneco.2019.104500 Badrinath Krishna V, Iyer RK, Sanders WH (2016) Arima-based modeling and validation of consumption readings in power grids, In: Critical information infrastructures security: 10th international conference, CRITIS 2015, Berlin, Germany, October 5–7, 2015, Revised Selected Papers 10, Springer, pp 199–210 SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131 Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L (2021) Digitalization of power markets and systems using energy informatics. https://doi.org/10.1007/978-3-030-83301-5 Zhou Y, Arghandeh R, Konstantakopoulos I, Abdullah S, von Meier A, Spanos CJ (2016) Abnormal event detection with high resolution micro-pmu data, In: 2016 Power Systems Computation Conference (PSCC), IEEE, pp 1–7 NohS-HAnalysis of gradient vanishing of rnns and performance comparisonInformation2021121144210.3390/info12110442 PhadkeAGBiTPhasor measurement units, wams, and their applications in protection and control of power systemsJ Mod Power Syst Clean Energy20186461962910.1007/s40565-018-0423-3 HuangHDavisCMDavisKRReal-time power system simulation with hardware devices through dnp3 in cyber-physical testbedIEEE Texas Power Energy Conf202120211610.1109/TPEC51183.2021.9384947 JameiMScaglioneARobertsCStewartEPeisertSMcParlandCMcEachernAAnomaly detection using optimally placed μPMU sensors in distribution gridsIEEE Trans Power Syst20173343611362310.1109/TPWRS.2017.2764882 WangJShiDLiYChenJDingHDuanXDistributed framework for detecting pmu data manipulation attacks with deep autoencodersIEEE Trans Smart Grid20181044401441010.1109/TSG.2018.2859339 Cali U, Kuzlu M, Pipattanasompor X Deng (10827_CR18) 2020; 14 10827_CR47 M Ahmed (10827_CR2) 2016; 60 GB Gaggero (10827_CR23) 2022; 22 N Veerakumar (10827_CR71) 2023; 148 10827_CR49 K Sadeghi (10827_CR61) 2020; 4 OA Lawal (10827_CR45) 2024; 38 Z O’Toole (10827_CR48) 2019; 2019 A Qayyum (10827_CR55) 2020; 22 I Goodfellow (10827_CR25) 2016 10827_CR41 10827_CR43 10827_CR12 VB Krishna (10827_CR42) 2018; 12 10827_CR56 10827_CR11 10827_CR14 Y Himeur (10827_CR29) 2021; 287 AG Phadke (10827_CR53) 2018; 6 10827_CR58 10827_CR13 C Tu (10827_CR68) 2018; 6 GB Gaggero (10827_CR22) 2020; 9 10827_CR19 H Huang (10827_CR34) 2021; 2021 D Bauknecht (10827_CR10) 2020; 118 M Zhou (10827_CR75) 2018; 10 M Baker (10827_CR9) 2023; 4 J De La Ree (10827_CR17) 2010; 1 10827_CR50 10827_CR52 10827_CR51 N Sivasankari (10827_CR63) 2022; 169 A Abur (10827_CR1) 2004 10827_CR67 10827_CR66 10827_CR69 10827_CR24 10827_CR27 10827_CR26 10827_CR28 A Amutha (10827_CR4) 2021; 175 SG Finlayson (10827_CR20) 2019; 363 H Sharadga (10827_CR62) 2020; 150 DH Karney (10827_CR40) 2019; 84 F Pukelsheim (10827_CR54) 1994; 48 OA Lawal (10827_CR44) 2023; 35 S-H Noh (10827_CR46) 2021; 12 10827_CR6 10827_CR7 M Jamei (10827_CR38) 2017; 33 10827_CR60 10827_CR8 10827_CR21 10827_CR65 AA Arefin (10827_CR5) 2022; 11 10827_CR64 10827_CR33 10827_CR36 D-H Choi (10827_CR15) 2017; 5 10827_CR35 S Hochreiter (10827_CR32) 1997; 9 10827_CR39 P Risbud (10827_CR59) 2019; 10 A Jafarnia-Jahromi (10827_CR37) 2012 J Wang (10827_CR73) 2018; 10 10827_CR70 A Amini (10827_CR3) 2022 10827_CR72 M De Benedetti (10827_CR16) 2018; 310 B Ramasubramanian (10827_CR57) 2022; 63 10827_CR30 10827_CR74 10827_CR76 10827_CR31 |
| References_xml | – reference: SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131 – reference: NohS-HAnalysis of gradient vanishing of rnns and performance comparisonInformation2021121144210.3390/info12110442 – reference: Ashrafuzzaman M, Chakhchoukh Y, Jillepalli AA, Tosic PT, de Leon DC, Sheldon FT, Johnson BK (2018) Detecting stealthy false data injection attacks in power grids using deep learning, In: 2018 14th international wireless communications & mobile computing conference (IWCMC), IEEE, pp 219–225 – reference: ZhouMWangYSrivastavaAKWuYBanerjeePEnsemble-based algorithm for synchrophasor data anomaly detectionIEEE Trans Smart Grid20181032979298810.1109/TSG.2018.2816027 – reference: Zhou Y, Arghandeh R, Konstantakopoulos I, Abdullah S, von Meier A, Spanos CJ (2016) Abnormal event detection with high resolution micro-pmu data, In: 2016 Power Systems Computation Conference (PSCC), IEEE, pp 1–7 – reference: Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X (2020) A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput Sci Rev – reference: AmuthaAUthraRARoselynJPBrunetRGAnomaly detection in multivariate streaming pmu data using density estimation technique in wide area monitoring systemExpert Syst Appl202117510.1016/j.eswa.2021.114865 – reference: De BenedettiMLeonardiFMessinaFSantoroCVasilakosAAnomaly detection and predictive maintenance for photovoltaic systemsNeurocomputing2018310596810.1016/j.neucom.2018.05.017 – reference: Badrinath Krishna V, Weaver GA, Sanders WH (2015) Pca-based method for detecting integrity attacks on advanced metering infrastructure, In: Quantitative evaluation of systems: 12th international conference, QEST 2015, Madrid, Spain, September 1–3, proceedings 12, Springer, 2015, pp 70–85 – reference: HuangHDavisCMDavisKRReal-time power system simulation with hardware devices through dnp3 in cyber-physical testbedIEEE Texas Power Energy Conf202120211610.1109/TPEC51183.2021.9384947 – reference: AburAExpositoAGPower system state estimation: theory and implementation2004Boca RatonCRC Press10.1201/9780203913673 – reference: Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:1503.02531 – reference: ArefinAABabaMSinghNSSNorNBMSheikhMAKannanRAbroGEMMathurNReview of the techniques of the data analytics and islanding detection of distribution systems using phasor measurement unit dataElectronics20221118296710.3390/electronics11182967 – reference: Summary for Policymakers—Global Warming of 1.5 °C. https://www.ipcc.ch/sr15/chapter/spm/ – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 – reference: Badrinath Krishna V, Iyer RK, Sanders WH (2016) Arima-based modeling and validation of consumption readings in power grids, In: Critical information infrastructures security: 10th international conference, CRITIS 2015, Berlin, Germany, October 5–7, 2015, Revised Selected Papers 10, Springer, pp 199–210 – reference: Henriksen E, Halden U, Kuzlu M, Cali U (2022) Electrical load forecasting utilizing an explainable artificial intelligence (xai) tool on Norwegian residential buildings, In: 2022 international conference on smart energy systems and technologies (SEST), pp 1–6. https://doi.org/10.1109/SEST53650.2022.9898500 – reference: Kurakin A, Goodfellow I, Bengio S (2016) Adversarial machine learning at scale. arXiv:1611.01236 – reference: QayyumAUsamaMQadirJAl-FuqahaASecuring connected autonomous vehicles: challenges posed by adversarial machine learning and the way forwardIEEE Commun Surv Tutor2020222998102610.1109/COMST.2020.2975048 – reference: Tinawi I (2019) Machine learning for time series anomaly detection, Ph.D. thesis, Massachusetts Institute of Technology – reference: Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2023) Anomaly detection in power markets and systems, In: 2023 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5 – reference: Roy P, Bhattacharjee S, Das SK (2020) Real time stream mining based attack detection in distribution level pmus for smart grids, In: GLOBECOM 2020-2020 IEEE global communications conference, IEEE, pp 1–6 – reference: BauknechtDFunckeSVogelMIs small beautiful? A framework for assessing decentralised electricity systemsRenew Sustain Energy Rev2020118201910954310.1016/j.rser.2019.109543 – reference: AminiAKanfoudJGanT-HAn artificial intelligence neural network predictive model for anomaly detection and monitoring of wind turbines using scada dataAppl Artif Intell202210.1080/08839514.2022.2034718 – reference: Karpilow A, Cherkaoui R, D’Arco S, Duong TD (2020) Detection of Bad PMU Data using Machine Learning Techniques, In. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT) 2020:1–5. https://doi.org/10.1109/ISGT45199.2020.9087782 – reference: WangJShiDLiYChenJDingHDuanXDistributed framework for detecting pmu data manipulation attacks with deep autoencodersIEEE Trans Smart Grid20181044401441010.1109/TSG.2018.2859339 – reference: RisbudPGatsisNTahaAVulnerability analysis of smart grids to GPS spoofingIEEE Trans Smart Grid20191043535354810.1109/TSG.2018.2830118 – reference: Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L, Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L (2021) Applications of artificial intelligence in the energy domain. Digitalization of power markets and systems using energy informatics. pp139–168 – reference: RamasubramanianBRajanMAGirish ChandraMCleavelandRMarcusSIResilience to denial-of-service and integrity attacks: a structured systems approachEur J Control2022636169436485510.1016/j.ejcon.2021.09.005 – reference: Ren H, Hou Z, Etingov P (2018) Online anomaly detection using machine learning and hpc for power system synchrophasor measurements, In. IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS) 2018:1–5. https://doi.org/10.1109/PMAPS.2018.8440495 – reference: Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L (2021) Digitalization of power markets and systems using energy informatics. https://doi.org/10.1007/978-3-030-83301-5 – reference: Papernot N, McDaniel P, Wu X, Jha S, Swami A (2016) Distillation as a defense to adversarial perturbations against deep neural networks. arXiv:1511.04508 – reference: TuCHeXLiuXLiPCyber-attacks in pmu-based power network and countermeasuresIEEE Access20186655946560310.1109/ACCESS.2018.2878436 – reference: VeerakumarNĆetenovićDKonguraiKPopovMJongepierATerzijaVPMU-based real-time distribution system state estimation considering anomaly detection, discrimination and identificationInt J Electr Power Energy Syst202314810891610.1016/j.ijepes.2022.108916 – reference: O’TooleZMoyaCRubinCSchnabelAWangJA cyber-physical testbed design for the electric power grid, InN Am Power Symp201920191510.1109/NAPS46351.2019.9000312 – reference: HimeurYGhanemKAlsalemiABensaaliFAmiraAArtificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectivesAppl Energy202128711660110.1016/j.apenergy.2021.116601 – reference: Jimada-Ojuolape B, Teh J (2020) Surveys on the reliability impacts of power system cyber-physical layers. Sustain Cities Soc 62:102384 – reference: KarneyDHElectricity market deregulation and environmental regulation: evidence from U.S. nuclear powerEnergy Econ20198410450010.1016/j.eneco.2019.104500 – reference: BakerMFardAYAlthuwainiHShadmandMBReal-time ai-based anomaly detection and classification in power electronics dominated gridsIEEE J Emerg Select Top Ind Electron20234254955910.1109/JESTIE.2022.3227005 – reference: Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. arXiv:1312.6199 – reference: Ieee recommended practice for monitoring electric power quality (1995) IEEE Std 1159–1995:1–80. https://doi.org/10.1109/IEEESTD.1995.79050 – reference: Jafarnia-JahromiABroumandanANielsenJLachapelleGGPS vulnerability to spoofing threats and a review of antispoofing techniquesInt J Navig Observ201210.1155/2012/127072 – reference: FinlaysonSGBowersJDItoJZittrainJLBeamALKohaneISAdversarial attacks on medical machine learningScience201936364331287128910.1126/science.aaw4399 – reference: Hink RCB, Beaver JM, Buckner MA, Morris T, Adhikari U, Pan S (2014) Machine learning for power system disturbance and cyber-attack discrimination, In: 2014 7th international symposium on resilient control systems (ISRCS), IEEE, pp 1–8 – reference: Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T (2018) Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 387–395 – reference: PhadkeAGBiTPhasor measurement units, wams, and their applications in protection and control of power systemsJ Mod Power Syst Clean Energy20186461962910.1007/s40565-018-0423-3 – reference: Yang Z, Chen N, Chen Y, Zhou N (2018) A novel pmu fog based early anomaly detection for an efficient wide area pmu network, In: 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), IEEE, pp 1–10 – reference: Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2022) Anomaly detection in power markets and systems. https://arxiv.org/abs/2212.02182 – reference: DengXBianDWangWJiangZYaoWQiuWTongNShiDLiuYDeep learning model to detect various synchrophasor data anomaliesIET Gener Trans Distrib202014245739574510.1049/iet-gtd.2020.0526 – reference: GoodfellowIBengioYCourvilleADeep Learning2016MIT Presshttp://www.deeplearningbook.org – reference: Bhattacharjee S, Islam MJ, Abedzadeh S (2022) Robust anomaly based attack detection in smart grids under data poisoning attacks, In: Proceedings of the 8th ACM on Cyber-physical system security workshop, pp 3–14 – reference: SadeghiKBanerjeeAGuptaSKSA system-driven taxonomy of attacks and defenses in adversarial machine learningIEEE Trans Emerg Top Comput Intell20204445046710.1109/TETCI.2020.2968933 – reference: AhmedMMahmoodANHuJA survey of network anomaly detection techniquesJ Netw Comput Appl201660193110.1016/j.jnca.2015.11.016 – reference: GaggeroGBCavigliaRArmellinARossiMGirdinioPMarcheseMDetecting cyberattacks on electrical storage systems through neural network based anomaly detection algorithmSensors20222210393310.3390/s22103933 – reference: Valdes A, Macwan R, Backes M (2016) Anomaly detection in electrical substation circuits via unsupervised machine learning, In: 2016 IEEE 17th international conference on information reuse and integration (IRI), IEEE, pp 500–505 – reference: ChoiD-HXieLImpact of power system network topology errors on real-time locational marginal priceJ Mod Power Syst Clean Energy20175579780910.1007/s40565-017-0280-5 – reference: KrishnaVBGunterCASandersWHEvaluating detectors on optimal attack vectors that enable electricity theft and der fraudIEEE J Select Top Signal Process201812479080510.1109/JSTSP.2018.2833749 – reference: GaggeroGBRossiMGirdinioPMarcheseMDetecting system fault/cyberattack within a photovoltaic system connected to the grid: a neural network-based solutionJ Sens Actuator Netw2020922010.3390/jsan9020020 – reference: El Chamie M, Lore KG, Shila DM, Surana A (2018) Physics-based features for anomaly detection in power grids with micro-pmus, In: 2018 IEEE International conference on communications (ICC), IEEE, pp 1–7 – reference: Pal S, Sikdar B (2014) A mechanism for detecting data manipulation attacks on pmu data, In: 2014 IEEE international conference on communication systems, IEEE, pp 253–257 – reference: Ford V, Siraj A, Eberle W (2014) Smart grid energy fraud detection using artificial neural networks, In: 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG), IEEE, pp 1–6 – reference: JameiMScaglioneARobertsCStewartEPeisertSMcParlandCMcEachernAAnomaly detection using optimally placed μPMU sensors in distribution gridsIEEE Trans Power Syst20173343611362310.1109/TPWRS.2017.2764882 – reference: Pardha Saradhi J, Srinivasarao R, Ganesh V (2020) Wavelet based multiresolution analysis of a 5-Bus system in the presence SVC controller under fault and sudden load conditions, Mater Today. https://doi.org/10.1016/j.matpr.2020.10.852https://www.sciencedirect.com/science/article/pii/S2214785320384893 – reference: Garza LF, Mandal P (2022) Lstm based hybrid neural network for pmu data forecasting and anomaly detection, In: 2022 North American Power Symposium (NAPS), IEEE, pp 1–6 – reference: PukelsheimFThe three sigma ruleAm Stat19944828891129252410.1080/00031305.1994.10476030 – reference: Styvaktakis E, Gu IYH, Bollen MHJ (2003) Event-based transient categorization and analysis in electric power systems, In: SMC’03 Conference Proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme-system security and assurance (Cat. No.03CH37483), vol 5, pp. 4176–4183. https://doi.org/10.1109/ICSMC.2003.1245641 – reference: LawalOATehJAlharbiBLaiC-MData-driven learning-based classification model for mitigating false data injection attacks on dynamic line rating systemsSustain Energy Grids Netw20243810134710.1016/j.segan.2024.101347 – reference: Ogu RE, Ikerionwu CI, Ayogu II (2021) Leveraging artificial intelligence of things for anomaly detection in advanced metering infrastructures, In: 2020 IEEE 2nd international conference on cyberspac (CYBER NIGERIA), pp 16–20. https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428792 – reference: SivasankariNKamalakkannanSDetection and prevention of man-in-the-middle attack in iot network using regression modelingAdv Eng Softw202216910312610.1016/j.advengsoft.2022.103126 – reference: Vicol B, Gavrilas M, Ivanov O (2013) Modern Technologies for Power Systems Monitoring, ELS International Symposium (June) – reference: Bruinenberg J, Colton L, Darmois E, Dorn J, Doyle J, Elloumi O, Englert H, Forbes R, Heiles J, Hermans P, Uslar M (2012) CEN -CENELEC-ETSI: smart grid coordination group-smart grid reference architecture report 2.0 (November) – reference: De La ReeJCentenoVThorpJSPhadkeAGSynchronized phasor measurement applications in power systemsIEEE Trans Smart Grid201011202710.1109/TSG.2010.2044815 – reference: Ozgur Catak F, Sivaslioglu S, Sahinbas K (2020) A generative model based adversarial security of deep learning and linear classifier models. 2010.08546 – reference: Rafferty M, Brogan P, Hastings J, Laverty D, Liu XA, Khan R (2018) Local anomaly detection by application of regression analysis on pmu data, In: 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5 – reference: Uslar M, Delfs C, Gottschalk M (2017) The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains – reference: LawalOATehJA framework for modelling the reliability of dynamic line rating operations in a cyber-physical power system networkSustain Energy Grids Netw20233510114010.1016/j.segan.2023.101140 – ident: 10827_CR12 – ident: 10827_CR14 doi: 10.1007/978-3-030-83301-5_7 – ident: 10827_CR6 doi: 10.1109/IWCMC.2018.8450487 – volume: 287 start-page: 116601 year: 2021 ident: 10827_CR29 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116601 – ident: 10827_CR31 – volume: 1 start-page: 20 issue: 1 year: 2010 ident: 10827_CR17 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2010.2044815 – volume: 169 start-page: 103126 year: 2022 ident: 10827_CR63 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103126 – ident: 10827_CR56 doi: 10.1109/PESGM.2018.8586320 – volume: 12 start-page: 790 issue: 4 year: 2018 ident: 10827_CR42 publication-title: IEEE J Select Top Signal Process doi: 10.1109/JSTSP.2018.2833749 – ident: 10827_CR50 doi: 10.1109/ICCS.2014.7024804 – volume: 22 start-page: 3933 issue: 10 year: 2022 ident: 10827_CR23 publication-title: Sensors doi: 10.3390/s22103933 – volume: 4 start-page: 549 issue: 2 year: 2023 ident: 10827_CR9 publication-title: IEEE J Emerg Select Top Ind Electron doi: 10.1109/JESTIE.2022.3227005 – ident: 10827_CR36 doi: 10.1109/IEEESTD.1995.79050 – ident: 10827_CR8 doi: 10.1007/978-3-319-33331-1_16 – volume: 150 start-page: 797 year: 2020 ident: 10827_CR62 publication-title: Renew Energy doi: 10.1016/j.renene.2019.12.131 – ident: 10827_CR67 – ident: 10827_CR64 doi: 10.1109/ICSMC.2003.1245641 – ident: 10827_CR60 doi: 10.1109/GLOBECOM42002.2020.9322072 – ident: 10827_CR58 doi: 10.1109/PMAPS.2018.8440495 – volume: 11 start-page: 2967 issue: 18 year: 2022 ident: 10827_CR5 publication-title: Electronics doi: 10.3390/electronics11182967 – volume-title: Power system state estimation: theory and implementation year: 2004 ident: 10827_CR1 doi: 10.1201/9780203913673 – volume: 48 start-page: 88 issue: 2 year: 1994 ident: 10827_CR54 publication-title: Am Stat doi: 10.1080/00031305.1994.10476030 – volume: 60 start-page: 19 year: 2016 ident: 10827_CR2 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2015.11.016 – ident: 10827_CR7 doi: 10.1007/978-3-319-22264-6_5 – ident: 10827_CR51 doi: 10.1109/SP.2016.41 – volume: 363 start-page: 1287 issue: 6433 year: 2019 ident: 10827_CR20 publication-title: Science doi: 10.1126/science.aaw4399 – volume: 10 start-page: 2979 issue: 3 year: 2018 ident: 10827_CR75 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2816027 – volume: 148 start-page: 108916 year: 2023 ident: 10827_CR71 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2022.108916 – volume: 33 start-page: 3611 issue: 4 year: 2017 ident: 10827_CR38 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2764882 – volume: 2019 start-page: 1 year: 2019 ident: 10827_CR48 publication-title: N Am Power Symp doi: 10.1109/NAPS46351.2019.9000312 – volume: 118 start-page: 109543 issue: 2019 year: 2020 ident: 10827_CR10 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109543 – volume: 22 start-page: 998 issue: 2 year: 2020 ident: 10827_CR55 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2020.2975048 – ident: 10827_CR43 – volume: 4 start-page: 450 issue: 4 year: 2020 ident: 10827_CR61 publication-title: IEEE Trans Emerg Top Comput Intell doi: 10.1109/TETCI.2020.2968933 – volume: 35 start-page: 101140 year: 2023 ident: 10827_CR44 publication-title: Sustain Energy Grids Netw doi: 10.1016/j.segan.2023.101140 – volume: 9 start-page: 20 issue: 2 year: 2020 ident: 10827_CR22 publication-title: J Sens Actuator Netw doi: 10.3390/jsan9020020 – ident: 10827_CR24 doi: 10.1109/NAPS56150.2022.10012188 – ident: 10827_CR70 doi: 10.1109/IRI.2016.74 – ident: 10827_CR74 doi: 10.1109/CFEC.2018.8358730 – ident: 10827_CR27 doi: 10.1109/PESGM52003.2023.10252380 – volume: 12 start-page: 442 issue: 11 year: 2021 ident: 10827_CR46 publication-title: Information doi: 10.3390/info12110442 – volume: 6 start-page: 619 issue: 4 year: 2018 ident: 10827_CR53 publication-title: J Mod Power Syst Clean Energy doi: 10.1007/s40565-018-0423-3 – ident: 10827_CR72 – volume-title: Deep Learning year: 2016 ident: 10827_CR25 – volume: 63 start-page: 61 year: 2022 ident: 10827_CR57 publication-title: Eur J Control doi: 10.1016/j.ejcon.2021.09.005 – ident: 10827_CR21 doi: 10.1109/CIASG.2014.7011557 – volume: 84 start-page: 104500 year: 2019 ident: 10827_CR40 publication-title: Energy Econ doi: 10.1016/j.eneco.2019.104500 – volume: 310 start-page: 59 year: 2018 ident: 10827_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.017 – ident: 10827_CR47 doi: 10.1109/CYBERNIGERIA51635.2021.9428792 – ident: 10827_CR65 – ident: 10827_CR30 doi: 10.1109/ISRCS.2014.6900095 – volume: 38 start-page: 101347 year: 2024 ident: 10827_CR45 publication-title: Sustain Energy Grids Netw doi: 10.1016/j.segan.2024.101347 – ident: 10827_CR69 – ident: 10827_CR39 doi: 10.1016/j.scs.2020.102384 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10827_CR32 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 10827_CR76 doi: 10.1109/PSCC.2016.7540980 – volume: 2021 start-page: 1 year: 2021 ident: 10827_CR34 publication-title: IEEE Texas Power Energy Conf doi: 10.1109/TPEC51183.2021.9384947 – ident: 10827_CR41 doi: 10.1109/ISGT45199.2020.9087782 – year: 2012 ident: 10827_CR37 publication-title: Int J Navig Observ doi: 10.1155/2012/127072 – volume: 5 start-page: 797 issue: 5 year: 2017 ident: 10827_CR15 publication-title: J Mod Power Syst Clean Energy doi: 10.1007/s40565-017-0280-5 – ident: 10827_CR13 doi: 10.1007/978-3-030-83301-5 – ident: 10827_CR28 doi: 10.1109/SEST53650.2022.9898500 – volume: 10 start-page: 3535 issue: 4 year: 2019 ident: 10827_CR59 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2830118 – ident: 10827_CR49 doi: 10.31449/inf.v45i1.3234 – ident: 10827_CR52 doi: 10.1016/j.matpr.2020.10.852 – ident: 10827_CR19 doi: 10.1109/ICC.2018.8423024 – volume: 6 start-page: 65594 year: 2018 ident: 10827_CR68 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878436 – volume: 14 start-page: 5739 issue: 24 year: 2020 ident: 10827_CR18 publication-title: IET Gener Trans Distrib doi: 10.1049/iet-gtd.2020.0526 – ident: 10827_CR26 doi: 10.1109/PESGM52003.2023.10252380 – ident: 10827_CR35 doi: 10.1145/3219819.3219845 – ident: 10827_CR33 doi: 10.1016/j.cosrev.2020.100270 – ident: 10827_CR66 – year: 2022 ident: 10827_CR3 publication-title: Appl Artif Intell doi: 10.1080/08839514.2022.2034718 – volume: 175 year: 2021 ident: 10827_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114865 – volume: 10 start-page: 4401 issue: 4 year: 2018 ident: 10827_CR73 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2859339 – ident: 10827_CR11 doi: 10.1145/3494107.3522778 |
| SSID | ssj0005243 |
| Score | 2.4417498 |
| Snippet | Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 183 |
| SubjectTerms | Algorithms Anomalies Artificial Intelligence Climate change Climatic changes Computer Science Credibility Critical infrastructure Cyber-physical systems Cybersecurity Cyberterrorism Data security Decentralization Digital technology Digitization Disruption Electric power systems Electric power transmission Electricity Electricity distribution Energy Energy industry Grammatical aspect Infrastructure International trade Internet Iterative methods Measurement Measuring instruments Mitigation Operators Phasors Power Security Trustworthiness |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHrz4FtcXOQgetOCmbZp6W0TRgyL4wFuYPKrC2l23Vdx_7ySb-lbQa_NomFdmyHwzhGwanaZxYm3ECgVRopxKGYxScoXOCPrjhUmVbzaRnZ6K6-v8LIDCqibbvXmS9Jb6Hdgt4SzCOwVNh2BZhJ7jROqqzbgY_fzqXWJHEgd4zPfrPlxBnw3xlxdRf9EczvzviLNkOjiWtDOShDkyZst5MtM0baBBhxfIw4VDWfjMwCHVQ2UHUT_wivZdyzQ6Ku5cUZcSf0M7x3vUPHrUOoXuTW9wV9_iIPq69OzkkkLZu4fukBpb-6SuEr-Y0b5VaI23SC4PDy72j6LQdyHSGE3WkeFMi5gbkRvT5iwXNoVcYzDLY61Zzpjg6HXEKYAFJDboXasKXqgkBYzTgcVLZLzslXaZ0KJQnKcg4qKwCUafOWjIgHOVxW3YtaJF2g0rpA5FyV1vjK58K6fsaCqRptLTVD63yPbrmv6oJMevs7cch6XTV9xZQ4Ad4Plc5SvZyXLBHSAZz7LWCIEMilxJZxLRg2as3SI7DdPfhn_-78rfpq-SKebkxicCr5HxevBo18mkfqrvqsGGF_AXCHz5gw priority: 102 providerName: Springer Nature |
| Title | Trustworthy cyber-physical power systems using AI: dueling algorithms for PMU anomaly detection and cybersecurity |
| URI | https://link.springer.com/article/10.1007/s10462-024-10827-x https://www.proquest.com/docview/3070916221 |
| Volume | 57 |
| WOSCitedRecordID | wos001251543100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: M1O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: C24 dateStart: 20240101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 1573-7462 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCF8hRbSuUDEgew2DixY3NBy6oVCHVZlRYKF8uvFKRtdrtJUfffM3YclofohctIedmOvrE9k8zMh9ATZxnLC-8JrYwmhQlTyoGXIg0YI2CPV46ZSDZRTibi5ERO0we3JoVV9mtiXKjd3IZv5C-CboIpQ2n2anFOAmtU-LuaKDSuo03YqFlgMCg_ff4lxKOLmqNcEnAtspQ0k1LnCk4J7FCwEAlaksvfNqY_l-e__pPG7Wd_638HfhvdSoYnHnWacgdd8_VdtNWTOuA0x--h86OQhREjB1fYroxfkkXCEi8CpRruij83OITMn-LR25fYXcSsdqxnp9Bz-xUugi2MpwfHWNfzMz1bYefbGPRVwxnXtdsk6rz76Hh_72j8hiReBmLB22yJ49SKnDshnYMXk8IzLS04uzy3lkpKBQerJGdaew0QaDv0puKVKZgGP17T_AHaqOe1f4hwVRnOmRZ5VfkCvFOprS4156bMMz30YoCyHhRlU9HywJ0xU-tyywFIBUCqCKS6HKBnP59ZdCU7rrz7acBahfkMLVud0hJgfKEylhqVUvCQsAxj2ekBVmmiN2qN7gA971Vkffnf_W5f3dojdJMG5YyBwTtoo11e-Mfohv3efmuWu1HNd9Hm673J9BCOxrQA-a4kIA-G4yCz9yCn7AvIww8ffwAFsgvU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFgkulKe6fYAPIA5g0TiJ4yBVaAVUXbW79LCVejOO7RSkJbvdpKX7p_iNzDgOy0P01gPXOHHi5JtXPN8MIc-sSdM4cY7xstAsKVCkLEQpeQHOCPjjpU0L32wiG43k6Wl-vEK-d1wYTKvsdKJX1HZq8B_5a8QmuDKcR29n5wy7RuHuatdCo4XFoVt8g5Ct3hu8h-_7nPP9D-N3Byx0FWAGYqWGWcGNjIWVubUwXy5dqnMDoZqIjeE551KATY1TrZ1OeaLNritKURZJqiEK1VjoAFT-GtbVQ4kaRh9_SSlps_S4yBmEMlEg6QSqXiI4A4sIik_yjF39Zgj_NAd_7ct6c7e__r-9qHvkbnCsab-VhPtkxVUPyHrXtIIGHfaQnI-RZeIzIxfULAo3Z7OAVTrDlnG0LW5dU6QEnNH-4A21F561T_XkDFbafIZB8PXp8fCE6mr6VU8W1LrGJ7VVcMS289ahNeAjcnIjC39MVqtp5TYILctCiFTLuCxdAtF3ro3OtBBFFkd618keiToQKBOKsmNvkIlalpNG4CgAjvLAUVc98vLnNbO2JMm1Z79AbCnUVzCz0YF2Ac-Hlb9UP8ulQEI2PMt2BygVFFmtlmjqkVcdJJfD_77v5vWzPSW3D8bDI3U0GB1ukTscBcMnQW-T1WZ-4XbILXPZfKnnT7yIUfLppqH6A4RGYYA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S4tDzVbQv4AOIAVrtO4tiVEFpoV6wKqxVqpd6MYzst0pLdblLo_rX-OsaJw_IQvfXANU4mcfLNjL94HgDPrEmSKHaOsjzTNM68SllkKTLDxQiux3ObZHWziXQ0EicncrwCV20ujA-rbG1ibajt1Ph_5Dsem7iUYay3k4ewiPH-4M3snPoOUn6ntW2n0UDk0C2-I30rXw_38Vs_Z2xwcPTuPQ0dBqhB3lRRy5kREbdCWouypXCJlgZpG4-MYZIxwdG_RonWTics1mbXZTnPszjRyEi1L3qA5n81jZD0dGD17cFo_OmXAJMmZo9xSZHY9ELKTkjcizmj6B_RDAqW0svf3OKfzuGvXdra-Q3W_-fXdhfWwpKb9BsduQcrrrgP6207CxKs2wM4P_L5J3XM5IKYRebmdBZQTGa-mRxpyl6XxCcLnJL-cI_Yizqfn-jJKc60OsNBZAFk_PGY6GL6VU8WxLqqDncr8Iht5JahaeBDOL6RiT-CTjEt3AaQPM84T7SI8tzFyMulNjrVnGdp1NO7TnSh1wJCmVCu3XcNmahloWkPIoUgUjWI1GUXXv68ZtYUK7n27BceZ8pbMpRsdEjIwOfzNcFUP5WC-1RtfJbtFlwqmLhSLZHVhVctPJfD_77v5vXSnsJtRKj6MBwdbsEd5nWkjo7ehk41v3CP4Zb5Vn0p50-CvhH4fNNY_QFI32uf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trustworthy+cyber-physical+power+systems+using+AI%3A+dueling+algorithms+for+PMU+anomaly+detection+and+cybersecurity&rft.jtitle=The+Artificial+intelligence+review&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=57&rft.issue=7&rft.spage=183&rft_id=info:doi/10.1007%2Fs10462-024-10827-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon |