Trustworthy cyber-physical power systems using AI: dueling algorithms for PMU anomaly detection and cybersecurity

Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary decentralization, decarbonization, and digitalization techniques have ushered in a new global energy paradigm. Waves of disruption have been felt acr...

Full description

Saved in:
Bibliographic Details
Published in:The Artificial intelligence review Vol. 57; no. 7; p. 183
Main Authors: Cali, Umit, Catak, Ferhat Ozgur, Halden, Ugur
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.07.2024
Springer
Springer Nature B.V
Subjects:
ISSN:1573-7462, 0269-2821, 1573-7462
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary decentralization, decarbonization, and digitalization techniques have ushered in a new global energy paradigm. Waves of disruption have been felt across the electricity industry as the digitalization journey in this sector has converged with advances in artificial intelligence (AI). However, there are risks involved. As AI becomes more established, new security threats have emerged. Among the most important is the cyber-physical protection of critical infrastructure, such as the power grid. This article focuses on dueling AI algorithms designed to investigate the trustworthiness of power systems’ cyber-physical security under various scenarios using the phasor measurement units (PMU) use case. Particularly in PMU operations, the focus is on areas that manage sensitive data vital to power system operators’ activities. The initial stage deals with anomaly detection applied to energy systems and PMUs, while the subsequent stage examines adversarial attacks targeting AI models. At this stage, evaluations of the Madry attack, basic iterative method (BIM), momentum iterative method (MIM), and projected gradient descend (PGD) are carried out, which are all powerful adversarial techniques that may compromise anomaly detection methods. The final stage addresses mitigation methods for AI-based cyberattacks. All these three stages represent various uses of AI and constitute the dueling AI algorithm convention that is conceptualised and demonstrated in this work. According to the findings of this study, it is essential to investigate the trade-off between the accuracy of AI-based anomaly detection models and their digital immutability against potential cyberphysical attacks in terms of trustworthiness for the critical infrastructure under consideration.
AbstractList Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary decentralization, decarbonization, and digitalization techniques have ushered in a new global energy paradigm. Waves of disruption have been felt across the electricity industry as the digitalization journey in this sector has converged with advances in artificial intelligence (AI). However, there are risks involved. As AI becomes more established, new security threats have emerged. Among the most important is the cyber-physical protection of critical infrastructure, such as the power grid. This article focuses on dueling AI algorithms designed to investigate the trustworthiness of power systems’ cyber-physical security under various scenarios using the phasor measurement units (PMU) use case. Particularly in PMU operations, the focus is on areas that manage sensitive data vital to power system operators’ activities. The initial stage deals with anomaly detection applied to energy systems and PMUs, while the subsequent stage examines adversarial attacks targeting AI models. At this stage, evaluations of the Madry attack, basic iterative method (BIM), momentum iterative method (MIM), and projected gradient descend (PGD) are carried out, which are all powerful adversarial techniques that may compromise anomaly detection methods. The final stage addresses mitigation methods for AI-based cyberattacks. All these three stages represent various uses of AI and constitute the dueling AI algorithm convention that is conceptualised and demonstrated in this work. According to the findings of this study, it is essential to investigate the trade-off between the accuracy of AI-based anomaly detection models and their digital immutability against potential cyberphysical attacks in terms of trustworthiness for the critical infrastructure under consideration.
ArticleNumber 183
Audience Academic
Author Halden, Ugur
Cali, Umit
Catak, Ferhat Ozgur
Author_xml – sequence: 1
  givenname: Umit
  surname: Cali
  fullname: Cali, Umit
  email: umit.cali@ntnu.no
  organization: School of Physics, Engineering and Technology, University of York, Department of Electric Energy, Norwegian University of Science and Technology
– sequence: 2
  givenname: Ferhat Ozgur
  surname: Catak
  fullname: Catak, Ferhat Ozgur
  organization: The Faculty of Science and Technology, Department of Electrical Engineering and Computer Science, University of Stavanger
– sequence: 3
  givenname: Ugur
  surname: Halden
  fullname: Halden, Ugur
  organization: Department of Electric Energy, Norwegian University of Science and Technology
BookMark eNp9kU1LAzEQhoMo2Fb_gKeA59V87Ke3UvwoVPSg55DNzrYp202bZGn335u6guKh5JBhZp53mHnH6Lw1LSB0Q8kdJSS7d5TEKYsIiyNKcpZFhzM0oknGoyzkz__El2js3JoQkrCYj9Duw3bO7431qx6rvgQbbVe900o2eGv2YLHrnYeNw53T7RJP5w-46qA5xrJZGqv9KhRrY_H76yeWrdnIpscVeFBemzZkqkHXgepCd3-FLmrZOLj--Sfo8-nxY_YSLd6e57PpIlIxYT6qUqZynlZ5UVU0ZUUOiSwU5TzlSrGCsTzlNOOJlCDDKlIRKOu0LuNEQskk4xN0O-hurdl14LxYm862YaTgJCNFEGU0dN0NXUvZgNBtbbyVKrwKNlqFI9c65KdZkack4TwPABsAZY1zFmqxtXojbS8oEUcvxOCFCF6Iby_EIUD5P0hpL4_3CdN0cxrlA-rCnHYJ9neNE9QXMROitQ
CitedBy_id crossref_primary_10_1007_s42452_025_06523_2
crossref_primary_10_1109_ACCESS_2025_3549679
crossref_primary_10_3390_computers14080321
crossref_primary_10_1016_j_engappai_2025_112220
crossref_primary_10_1007_s12559_025_10483_5
crossref_primary_10_1016_j_asoc_2025_113312
crossref_primary_10_1016_j_aej_2024_09_115
crossref_primary_10_1109_ACCESS_2025_3579939
crossref_primary_10_1007_s10462_025_11318_3
Cites_doi 10.1007/978-3-030-83301-5_7
10.1109/IWCMC.2018.8450487
10.1016/j.apenergy.2021.116601
10.1109/TSG.2010.2044815
10.1016/j.advengsoft.2022.103126
10.1109/PESGM.2018.8586320
10.1109/JSTSP.2018.2833749
10.1109/ICCS.2014.7024804
10.3390/s22103933
10.1109/JESTIE.2022.3227005
10.1109/IEEESTD.1995.79050
10.1007/978-3-319-33331-1_16
10.1016/j.renene.2019.12.131
10.1109/ICSMC.2003.1245641
10.1109/GLOBECOM42002.2020.9322072
10.1109/PMAPS.2018.8440495
10.3390/electronics11182967
10.1201/9780203913673
10.1080/00031305.1994.10476030
10.1016/j.jnca.2015.11.016
10.1007/978-3-319-22264-6_5
10.1109/SP.2016.41
10.1126/science.aaw4399
10.1109/TSG.2018.2816027
10.1016/j.ijepes.2022.108916
10.1109/TPWRS.2017.2764882
10.1109/NAPS46351.2019.9000312
10.1016/j.rser.2019.109543
10.1109/COMST.2020.2975048
10.1109/TETCI.2020.2968933
10.1016/j.segan.2023.101140
10.3390/jsan9020020
10.1109/NAPS56150.2022.10012188
10.1109/IRI.2016.74
10.1109/CFEC.2018.8358730
10.1109/PESGM52003.2023.10252380
10.3390/info12110442
10.1007/s40565-018-0423-3
10.1016/j.ejcon.2021.09.005
10.1109/CIASG.2014.7011557
10.1016/j.eneco.2019.104500
10.1016/j.neucom.2018.05.017
10.1109/CYBERNIGERIA51635.2021.9428792
10.1109/ISRCS.2014.6900095
10.1016/j.segan.2024.101347
10.1016/j.scs.2020.102384
10.1162/neco.1997.9.8.1735
10.1109/PSCC.2016.7540980
10.1109/TPEC51183.2021.9384947
10.1109/ISGT45199.2020.9087782
10.1155/2012/127072
10.1007/s40565-017-0280-5
10.1007/978-3-030-83301-5
10.1109/SEST53650.2022.9898500
10.1109/TSG.2018.2830118
10.31449/inf.v45i1.3234
10.1016/j.matpr.2020.10.852
10.1109/ICC.2018.8423024
10.1109/ACCESS.2018.2878436
10.1049/iet-gtd.2020.0526
10.1145/3219819.3219845
10.1016/j.cosrev.2020.100270
10.1080/08839514.2022.2034718
10.1016/j.eswa.2021.114865
10.1109/TSG.2018.2859339
10.1145/3494107.3522778
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
Copyright Springer Nature B.V. Jul 2024
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: Copyright Springer Nature B.V. Jul 2024
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-024-10827-x
DatabaseName Springer Nature Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
Library & information science collection.
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
ExternalDocumentID A798605338
10_1007_s10462_024_10827_x
GrantInformation_xml – fundername: NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital - Trondheim University Hospital)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LLZTM
M1O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
8AO
8FE
8FG
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ABUWG
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AHPBZ
AHWEU
AIXLP
AYFIA
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CNYFK
DWQXO
FRNLG
GNUQQ
ICD
K6V
K7-
M0C
MK~
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PRQQA
PSYQQ
Q2X
3V.
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c402t-d62c836d89dd16298e5a9c13363cc29228631735aaea524ac0ebf6fb45aeb2a23
IEDL.DBID 7WY
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251543100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7462
0269-2821
IngestDate Fri Nov 14 01:21:57 EST 2025
Sat Nov 29 10:31:05 EST 2025
Tue Nov 18 21:55:57 EST 2025
Sat Nov 29 02:43:28 EST 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-d62c836d89dd16298e5a9c13363cc29228631735aaea524ac0ebf6fb45aeb2a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10462-024-10827-x
PQID 3070916221
PQPubID 36790
ParticipantIDs proquest_journals_3070916221
gale_infotracacademiconefile_A798605338
crossref_primary_10_1007_s10462_024_10827_x
crossref_citationtrail_10_1007_s10462_024_10827_x
springer_journals_10_1007_s10462_024_10827_x
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2024
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Pal S, Sikdar B (2014) A mechanism for detecting data manipulation attacks on pmu data, In: 2014 IEEE international conference on communication systems, IEEE, pp 253–257
Roy P, Bhattacharjee S, Das SK (2020) Real time stream mining based attack detection in distribution level pmus for smart grids, In: GLOBECOM 2020-2020 IEEE global communications conference, IEEE, pp 1–6
Bhattacharjee S, Islam MJ, Abedzadeh S (2022) Robust anomaly based attack detection in smart grids under data poisoning attacks, In: Proceedings of the 8th ACM on Cyber-physical system security workshop, pp 3–14
DengXBianDWangWJiangZYaoWQiuWTongNShiDLiuYDeep learning model to detect various synchrophasor data anomaliesIET Gener Trans Distrib202014245739574510.1049/iet-gtd.2020.0526
KrishnaVBGunterCASandersWHEvaluating detectors on optimal attack vectors that enable electricity theft and der fraudIEEE J Select Top Signal Process201812479080510.1109/JSTSP.2018.2833749
Henriksen E, Halden U, Kuzlu M, Cali U (2022) Electrical load forecasting utilizing an explainable artificial intelligence (xai) tool on Norwegian residential buildings, In: 2022 international conference on smart energy systems and technologies (SEST), pp 1–6. https://doi.org/10.1109/SEST53650.2022.9898500
AmuthaAUthraRARoselynJPBrunetRGAnomaly detection in multivariate streaming pmu data using density estimation technique in wide area monitoring systemExpert Syst Appl202117510.1016/j.eswa.2021.114865
Ford V, Siraj A, Eberle W (2014) Smart grid energy fraud detection using artificial neural networks, In: 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG), IEEE, pp 1–6
Garza LF, Mandal P (2022) Lstm based hybrid neural network for pmu data forecasting and anomaly detection, In: 2022 North American Power Symposium (NAPS), IEEE, pp 1–6
Badrinath Krishna V, Weaver GA, Sanders WH (2015) Pca-based method for detecting integrity attacks on advanced metering infrastructure, In: Quantitative evaluation of systems: 12th international conference, QEST 2015, Madrid, Spain, September 1–3, proceedings 12, Springer, 2015, pp 70–85
Hink RCB, Beaver JM, Buckner MA, Morris T, Adhikari U, Pan S (2014) Machine learning for power system disturbance and cyber-attack discrimination, In: 2014 7th international symposium on resilient control systems (ISRCS), IEEE, pp 1–8
Uslar M, Delfs C, Gottschalk M (2017) The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains
Kurakin A, Goodfellow I, Bengio S (2016) Adversarial machine learning at scale. arXiv:1611.01236
Rafferty M, Brogan P, Hastings J, Laverty D, Liu XA, Khan R (2018) Local anomaly detection by application of regression analysis on pmu data, In: 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5
Summary for Policymakers—Global Warming of 1.5 °C. https://www.ipcc.ch/sr15/chapter/spm
Vicol B, Gavrilas M, Ivanov O (2013) Modern Technologies for Power Systems Monitoring, ELS International Symposium (June)
Ozgur Catak F, Sivaslioglu S, Sahinbas K (2020) A generative model based adversarial security of deep learning and linear classifier models. 2010.08546
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. arXiv:1312.6199
AminiAKanfoudJGanT-HAn artificial intelligence neural network predictive model for anomaly detection and monitoring of wind turbines using scada dataAppl Artif Intell202210.1080/08839514.2022.2034718
BauknechtDFunckeSVogelMIs small beautiful? A framework for assessing decentralised electricity systemsRenew Sustain Energy Rev2020118201910954310.1016/j.rser.2019.109543
Styvaktakis E, Gu IYH, Bollen MHJ (2003) Event-based transient categorization and analysis in electric power systems, In: SMC’03 Conference Proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme-system security and assurance (Cat. No.03CH37483), vol 5, pp. 4176–4183. https://doi.org/10.1109/ICSMC.2003.1245641
BakerMFardAYAlthuwainiHShadmandMBReal-time ai-based anomaly detection and classification in power electronics dominated gridsIEEE J Emerg Select Top Ind Electron20234254955910.1109/JESTIE.2022.3227005
AburAExpositoAGPower system state estimation: theory and implementation2004Boca RatonCRC Press10.1201/9780203913673
QayyumAUsamaMQadirJAl-FuqahaASecuring connected autonomous vehicles: challenges posed by adversarial machine learning and the way forwardIEEE Commun Surv Tutor2020222998102610.1109/COMST.2020.2975048
PukelsheimFThe three sigma ruleAm Stat19944828891129252410.1080/00031305.1994.10476030
RamasubramanianBRajanMAGirish ChandraMCleavelandRMarcusSIResilience to denial-of-service and integrity attacks: a structured systems approachEur J Control2022636169436485510.1016/j.ejcon.2021.09.005
FinlaysonSGBowersJDItoJZittrainJLBeamALKohaneISAdversarial attacks on medical machine learningScience201936364331287128910.1126/science.aaw4399
Jimada-Ojuolape B, Teh J (2020) Surveys on the reliability impacts of power system cyber-physical layers. Sustain Cities Soc 62:102384
ArefinAABabaMSinghNSSNorNBMSheikhMAKannanRAbroGEMMathurNReview of the techniques of the data analytics and islanding detection of distribution systems using phasor measurement unit dataElectronics20221118296710.3390/electronics11182967
Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2023) Anomaly detection in power markets and systems, In: 2023 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5
Ogu RE, Ikerionwu CI, Ayogu II (2021) Leveraging artificial intelligence of things for anomaly detection in advanced metering infrastructures, In: 2020 IEEE 2nd international conference on cyberspac (CYBER NIGERIA), pp 16–20. https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428792
Valdes A, Macwan R, Backes M (2016) Anomaly detection in electrical substation circuits via unsupervised machine learning, In: 2016 IEEE 17th international conference on information reuse and integration (IRI), IEEE, pp 500–505
ChoiD-HXieLImpact of power system network topology errors on real-time locational marginal priceJ Mod Power Syst Clean Energy20175579780910.1007/s40565-017-0280-5
RisbudPGatsisNTahaAVulnerability analysis of smart grids to GPS spoofingIEEE Trans Smart Grid20191043535354810.1109/TSG.2018.2830118
De BenedettiMLeonardiFMessinaFSantoroCVasilakosAAnomaly detection and predictive maintenance for photovoltaic systemsNeurocomputing2018310596810.1016/j.neucom.2018.05.017
GaggeroGBRossiMGirdinioPMarcheseMDetecting system fault/cyberattack within a photovoltaic system connected to the grid: a neural network-based solutionJ Sens Actuator Netw2020922010.3390/jsan9020020
AhmedMMahmoodANHuJA survey of network anomaly detection techniquesJ Netw Comput Appl201660193110.1016/j.jnca.2015.11.016
Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T (2018) Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 387–395
Bruinenberg J, Colton L, Darmois E, Dorn J, Doyle J, Elloumi O, Englert H, Forbes R, Heiles J, Hermans P, Uslar M (2012) CEN -CENELEC-ETSI: smart grid coordination group-smart grid reference architecture report 2.0 (November)
SadeghiKBanerjeeAGuptaSKSA system-driven taxonomy of attacks and defenses in adversarial machine learningIEEE Trans Emerg Top Comput Intell20204445046710.1109/TETCI.2020.2968933
Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2022) Anomaly detection in power markets and systems. https://arxiv.org/abs/2212.02182
Jafarnia-JahromiABroumandanANielsenJLachapelleGGPS vulnerability to spoofing threats and a review of antispoofing techniquesInt J Navig Observ201210.1155/2012/127072
O’TooleZMoyaCRubinCSchnabelAWangJA cyber-physical testbed design for the electric power grid, InN Am Power Symp201920191510.1109/NAPS46351.2019.9000312
Karpilow A, Cherkaoui R, D’Arco S, Duong TD (2020) Detection of Bad PMU Data using Machine Learning Techniques, In. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT) 2020:1–5. https://doi.org/10.1109/ISGT45199.2020.9087782
KarneyDHElectricity market deregulation and environmental regulation: evidence from U.S. nuclear powerEnergy Econ20198410450010.1016/j.eneco.2019.104500
Badrinath Krishna V, Iyer RK, Sanders WH (2016) Arima-based modeling and validation of consumption readings in power grids, In: Critical information infrastructures security: 10th international conference, CRITIS 2015, Berlin, Germany, October 5–7, 2015, Revised Selected Papers 10, Springer, pp 199–210
SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131
Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L (2021) Digitalization of power markets and systems using energy informatics. https://doi.org/10.1007/978-3-030-83301-5
Zhou Y, Arghandeh R, Konstantakopoulos I, Abdullah S, von Meier A, Spanos CJ (2016) Abnormal event detection with high resolution micro-pmu data, In: 2016 Power Systems Computation Conference (PSCC), IEEE, pp 1–7
NohS-HAnalysis of gradient vanishing of rnns and performance comparisonInformation2021121144210.3390/info12110442
PhadkeAGBiTPhasor measurement units, wams, and their applications in protection and control of power systemsJ Mod Power Syst Clean Energy20186461962910.1007/s40565-018-0423-3
HuangHDavisCMDavisKRReal-time power system simulation with hardware devices through dnp3 in cyber-physical testbedIEEE Texas Power Energy Conf202120211610.1109/TPEC51183.2021.9384947
JameiMScaglioneARobertsCStewartEPeisertSMcParlandCMcEachernAAnomaly detection using optimally placed μPMU sensors in distribution gridsIEEE Trans Power Syst20173343611362310.1109/TPWRS.2017.2764882
WangJShiDLiYChenJDingHDuanXDistributed framework for detecting pmu data manipulation attacks with deep autoencodersIEEE Trans Smart Grid20181044401441010.1109/TSG.2018.2859339
Cali U, Kuzlu M, Pipattanasompor
X Deng (10827_CR18) 2020; 14
10827_CR47
M Ahmed (10827_CR2) 2016; 60
GB Gaggero (10827_CR23) 2022; 22
N Veerakumar (10827_CR71) 2023; 148
10827_CR49
K Sadeghi (10827_CR61) 2020; 4
OA Lawal (10827_CR45) 2024; 38
Z O’Toole (10827_CR48) 2019; 2019
A Qayyum (10827_CR55) 2020; 22
I Goodfellow (10827_CR25) 2016
10827_CR41
10827_CR43
10827_CR12
VB Krishna (10827_CR42) 2018; 12
10827_CR56
10827_CR11
10827_CR14
Y Himeur (10827_CR29) 2021; 287
AG Phadke (10827_CR53) 2018; 6
10827_CR58
10827_CR13
C Tu (10827_CR68) 2018; 6
GB Gaggero (10827_CR22) 2020; 9
10827_CR19
H Huang (10827_CR34) 2021; 2021
D Bauknecht (10827_CR10) 2020; 118
M Zhou (10827_CR75) 2018; 10
M Baker (10827_CR9) 2023; 4
J De La Ree (10827_CR17) 2010; 1
10827_CR50
10827_CR52
10827_CR51
N Sivasankari (10827_CR63) 2022; 169
A Abur (10827_CR1) 2004
10827_CR67
10827_CR66
10827_CR69
10827_CR24
10827_CR27
10827_CR26
10827_CR28
A Amutha (10827_CR4) 2021; 175
SG Finlayson (10827_CR20) 2019; 363
H Sharadga (10827_CR62) 2020; 150
DH Karney (10827_CR40) 2019; 84
F Pukelsheim (10827_CR54) 1994; 48
OA Lawal (10827_CR44) 2023; 35
S-H Noh (10827_CR46) 2021; 12
10827_CR6
10827_CR7
M Jamei (10827_CR38) 2017; 33
10827_CR60
10827_CR8
10827_CR21
10827_CR65
AA Arefin (10827_CR5) 2022; 11
10827_CR64
10827_CR33
10827_CR36
D-H Choi (10827_CR15) 2017; 5
10827_CR35
S Hochreiter (10827_CR32) 1997; 9
10827_CR39
P Risbud (10827_CR59) 2019; 10
A Jafarnia-Jahromi (10827_CR37) 2012
J Wang (10827_CR73) 2018; 10
10827_CR70
A Amini (10827_CR3) 2022
10827_CR72
M De Benedetti (10827_CR16) 2018; 310
B Ramasubramanian (10827_CR57) 2022; 63
10827_CR30
10827_CR74
10827_CR76
10827_CR31
References_xml – reference: SharadgaHHajimirzaSBalogRSTime series forecasting of solar power generation for large-scale photovoltaic plantsRenew Energy202015079780710.1016/j.renene.2019.12.131
– reference: NohS-HAnalysis of gradient vanishing of rnns and performance comparisonInformation2021121144210.3390/info12110442
– reference: Ashrafuzzaman M, Chakhchoukh Y, Jillepalli AA, Tosic PT, de Leon DC, Sheldon FT, Johnson BK (2018) Detecting stealthy false data injection attacks in power grids using deep learning, In: 2018 14th international wireless communications & mobile computing conference (IWCMC), IEEE, pp 219–225
– reference: ZhouMWangYSrivastavaAKWuYBanerjeePEnsemble-based algorithm for synchrophasor data anomaly detectionIEEE Trans Smart Grid20181032979298810.1109/TSG.2018.2816027
– reference: Zhou Y, Arghandeh R, Konstantakopoulos I, Abdullah S, von Meier A, Spanos CJ (2016) Abnormal event detection with high resolution micro-pmu data, In: 2016 Power Systems Computation Conference (PSCC), IEEE, pp 1–7
– reference: Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X (2020) A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput Sci Rev
– reference: AmuthaAUthraRARoselynJPBrunetRGAnomaly detection in multivariate streaming pmu data using density estimation technique in wide area monitoring systemExpert Syst Appl202117510.1016/j.eswa.2021.114865
– reference: De BenedettiMLeonardiFMessinaFSantoroCVasilakosAAnomaly detection and predictive maintenance for photovoltaic systemsNeurocomputing2018310596810.1016/j.neucom.2018.05.017
– reference: Badrinath Krishna V, Weaver GA, Sanders WH (2015) Pca-based method for detecting integrity attacks on advanced metering infrastructure, In: Quantitative evaluation of systems: 12th international conference, QEST 2015, Madrid, Spain, September 1–3, proceedings 12, Springer, 2015, pp 70–85
– reference: HuangHDavisCMDavisKRReal-time power system simulation with hardware devices through dnp3 in cyber-physical testbedIEEE Texas Power Energy Conf202120211610.1109/TPEC51183.2021.9384947
– reference: AburAExpositoAGPower system state estimation: theory and implementation2004Boca RatonCRC Press10.1201/9780203913673
– reference: Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:1503.02531
– reference: ArefinAABabaMSinghNSSNorNBMSheikhMAKannanRAbroGEMMathurNReview of the techniques of the data analytics and islanding detection of distribution systems using phasor measurement unit dataElectronics20221118296710.3390/electronics11182967
– reference: Summary for Policymakers—Global Warming of 1.5 °C. https://www.ipcc.ch/sr15/chapter/spm/
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: Badrinath Krishna V, Iyer RK, Sanders WH (2016) Arima-based modeling and validation of consumption readings in power grids, In: Critical information infrastructures security: 10th international conference, CRITIS 2015, Berlin, Germany, October 5–7, 2015, Revised Selected Papers 10, Springer, pp 199–210
– reference: Henriksen E, Halden U, Kuzlu M, Cali U (2022) Electrical load forecasting utilizing an explainable artificial intelligence (xai) tool on Norwegian residential buildings, In: 2022 international conference on smart energy systems and technologies (SEST), pp 1–6. https://doi.org/10.1109/SEST53650.2022.9898500
– reference: Kurakin A, Goodfellow I, Bengio S (2016) Adversarial machine learning at scale. arXiv:1611.01236
– reference: QayyumAUsamaMQadirJAl-FuqahaASecuring connected autonomous vehicles: challenges posed by adversarial machine learning and the way forwardIEEE Commun Surv Tutor2020222998102610.1109/COMST.2020.2975048
– reference: Tinawi I (2019) Machine learning for time series anomaly detection, Ph.D. thesis, Massachusetts Institute of Technology
– reference: Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2023) Anomaly detection in power markets and systems, In: 2023 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5
– reference: Roy P, Bhattacharjee S, Das SK (2020) Real time stream mining based attack detection in distribution level pmus for smart grids, In: GLOBECOM 2020-2020 IEEE global communications conference, IEEE, pp 1–6
– reference: BauknechtDFunckeSVogelMIs small beautiful? A framework for assessing decentralised electricity systemsRenew Sustain Energy Rev2020118201910954310.1016/j.rser.2019.109543
– reference: AminiAKanfoudJGanT-HAn artificial intelligence neural network predictive model for anomaly detection and monitoring of wind turbines using scada dataAppl Artif Intell202210.1080/08839514.2022.2034718
– reference: Karpilow A, Cherkaoui R, D’Arco S, Duong TD (2020) Detection of Bad PMU Data using Machine Learning Techniques, In. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT) 2020:1–5. https://doi.org/10.1109/ISGT45199.2020.9087782
– reference: WangJShiDLiYChenJDingHDuanXDistributed framework for detecting pmu data manipulation attacks with deep autoencodersIEEE Trans Smart Grid20181044401441010.1109/TSG.2018.2859339
– reference: RisbudPGatsisNTahaAVulnerability analysis of smart grids to GPS spoofingIEEE Trans Smart Grid20191043535354810.1109/TSG.2018.2830118
– reference: Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L, Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L (2021) Applications of artificial intelligence in the energy domain. Digitalization of power markets and systems using energy informatics. pp139–168
– reference: RamasubramanianBRajanMAGirish ChandraMCleavelandRMarcusSIResilience to denial-of-service and integrity attacks: a structured systems approachEur J Control2022636169436485510.1016/j.ejcon.2021.09.005
– reference: Ren H, Hou Z, Etingov P (2018) Online anomaly detection using machine learning and hpc for power system synchrophasor measurements, In. IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS) 2018:1–5. https://doi.org/10.1109/PMAPS.2018.8440495
– reference: Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L (2021) Digitalization of power markets and systems using energy informatics. https://doi.org/10.1007/978-3-030-83301-5
– reference: Papernot N, McDaniel P, Wu X, Jha S, Swami A (2016) Distillation as a defense to adversarial perturbations against deep neural networks. arXiv:1511.04508
– reference: TuCHeXLiuXLiPCyber-attacks in pmu-based power network and countermeasuresIEEE Access20186655946560310.1109/ACCESS.2018.2878436
– reference: VeerakumarNĆetenovićDKonguraiKPopovMJongepierATerzijaVPMU-based real-time distribution system state estimation considering anomaly detection, discrimination and identificationInt J Electr Power Energy Syst202314810891610.1016/j.ijepes.2022.108916
– reference: O’TooleZMoyaCRubinCSchnabelAWangJA cyber-physical testbed design for the electric power grid, InN Am Power Symp201920191510.1109/NAPS46351.2019.9000312
– reference: HimeurYGhanemKAlsalemiABensaaliFAmiraAArtificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectivesAppl Energy202128711660110.1016/j.apenergy.2021.116601
– reference: Jimada-Ojuolape B, Teh J (2020) Surveys on the reliability impacts of power system cyber-physical layers. Sustain Cities Soc 62:102384
– reference: KarneyDHElectricity market deregulation and environmental regulation: evidence from U.S. nuclear powerEnergy Econ20198410450010.1016/j.eneco.2019.104500
– reference: BakerMFardAYAlthuwainiHShadmandMBReal-time ai-based anomaly detection and classification in power electronics dominated gridsIEEE J Emerg Select Top Ind Electron20234254955910.1109/JESTIE.2022.3227005
– reference: Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. arXiv:1312.6199
– reference: Ieee recommended practice for monitoring electric power quality (1995) IEEE Std 1159–1995:1–80. https://doi.org/10.1109/IEEESTD.1995.79050
– reference: Jafarnia-JahromiABroumandanANielsenJLachapelleGGPS vulnerability to spoofing threats and a review of antispoofing techniquesInt J Navig Observ201210.1155/2012/127072
– reference: FinlaysonSGBowersJDItoJZittrainJLBeamALKohaneISAdversarial attacks on medical machine learningScience201936364331287128910.1126/science.aaw4399
– reference: Hink RCB, Beaver JM, Buckner MA, Morris T, Adhikari U, Pan S (2014) Machine learning for power system disturbance and cyber-attack discrimination, In: 2014 7th international symposium on resilient control systems (ISRCS), IEEE, pp 1–8
– reference: Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T (2018) Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 387–395
– reference: PhadkeAGBiTPhasor measurement units, wams, and their applications in protection and control of power systemsJ Mod Power Syst Clean Energy20186461962910.1007/s40565-018-0423-3
– reference: Yang Z, Chen N, Chen Y, Zhou N (2018) A novel pmu fog based early anomaly detection for an efficient wide area pmu network, In: 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), IEEE, pp 1–10
– reference: Halden U, Cali U, Catak FO, D’Arco S, Bilendo F (2022) Anomaly detection in power markets and systems. https://arxiv.org/abs/2212.02182
– reference: DengXBianDWangWJiangZYaoWQiuWTongNShiDLiuYDeep learning model to detect various synchrophasor data anomaliesIET Gener Trans Distrib202014245739574510.1049/iet-gtd.2020.0526
– reference: GoodfellowIBengioYCourvilleADeep Learning2016MIT Presshttp://www.deeplearningbook.org
– reference: Bhattacharjee S, Islam MJ, Abedzadeh S (2022) Robust anomaly based attack detection in smart grids under data poisoning attacks, In: Proceedings of the 8th ACM on Cyber-physical system security workshop, pp 3–14
– reference: SadeghiKBanerjeeAGuptaSKSA system-driven taxonomy of attacks and defenses in adversarial machine learningIEEE Trans Emerg Top Comput Intell20204445046710.1109/TETCI.2020.2968933
– reference: AhmedMMahmoodANHuJA survey of network anomaly detection techniquesJ Netw Comput Appl201660193110.1016/j.jnca.2015.11.016
– reference: GaggeroGBCavigliaRArmellinARossiMGirdinioPMarcheseMDetecting cyberattacks on electrical storage systems through neural network based anomaly detection algorithmSensors20222210393310.3390/s22103933
– reference: Valdes A, Macwan R, Backes M (2016) Anomaly detection in electrical substation circuits via unsupervised machine learning, In: 2016 IEEE 17th international conference on information reuse and integration (IRI), IEEE, pp 500–505
– reference: ChoiD-HXieLImpact of power system network topology errors on real-time locational marginal priceJ Mod Power Syst Clean Energy20175579780910.1007/s40565-017-0280-5
– reference: KrishnaVBGunterCASandersWHEvaluating detectors on optimal attack vectors that enable electricity theft and der fraudIEEE J Select Top Signal Process201812479080510.1109/JSTSP.2018.2833749
– reference: GaggeroGBRossiMGirdinioPMarcheseMDetecting system fault/cyberattack within a photovoltaic system connected to the grid: a neural network-based solutionJ Sens Actuator Netw2020922010.3390/jsan9020020
– reference: El Chamie M, Lore KG, Shila DM, Surana A (2018) Physics-based features for anomaly detection in power grids with micro-pmus, In: 2018 IEEE International conference on communications (ICC), IEEE, pp 1–7
– reference: Pal S, Sikdar B (2014) A mechanism for detecting data manipulation attacks on pmu data, In: 2014 IEEE international conference on communication systems, IEEE, pp 253–257
– reference: Ford V, Siraj A, Eberle W (2014) Smart grid energy fraud detection using artificial neural networks, In: 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG), IEEE, pp 1–6
– reference: JameiMScaglioneARobertsCStewartEPeisertSMcParlandCMcEachernAAnomaly detection using optimally placed μPMU sensors in distribution gridsIEEE Trans Power Syst20173343611362310.1109/TPWRS.2017.2764882
– reference: Pardha Saradhi J, Srinivasarao R, Ganesh V (2020) Wavelet based multiresolution analysis of a 5-Bus system in the presence SVC controller under fault and sudden load conditions, Mater Today. https://doi.org/10.1016/j.matpr.2020.10.852https://www.sciencedirect.com/science/article/pii/S2214785320384893
– reference: Garza LF, Mandal P (2022) Lstm based hybrid neural network for pmu data forecasting and anomaly detection, In: 2022 North American Power Symposium (NAPS), IEEE, pp 1–6
– reference: PukelsheimFThe three sigma ruleAm Stat19944828891129252410.1080/00031305.1994.10476030
– reference: Styvaktakis E, Gu IYH, Bollen MHJ (2003) Event-based transient categorization and analysis in electric power systems, In: SMC’03 Conference Proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme-system security and assurance (Cat. No.03CH37483), vol 5, pp. 4176–4183. https://doi.org/10.1109/ICSMC.2003.1245641
– reference: LawalOATehJAlharbiBLaiC-MData-driven learning-based classification model for mitigating false data injection attacks on dynamic line rating systemsSustain Energy Grids Netw20243810134710.1016/j.segan.2024.101347
– reference: Ogu RE, Ikerionwu CI, Ayogu II (2021) Leveraging artificial intelligence of things for anomaly detection in advanced metering infrastructures, In: 2020 IEEE 2nd international conference on cyberspac (CYBER NIGERIA), pp 16–20. https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428792
– reference: SivasankariNKamalakkannanSDetection and prevention of man-in-the-middle attack in iot network using regression modelingAdv Eng Softw202216910312610.1016/j.advengsoft.2022.103126
– reference: Vicol B, Gavrilas M, Ivanov O (2013) Modern Technologies for Power Systems Monitoring, ELS International Symposium (June)
– reference: Bruinenberg J, Colton L, Darmois E, Dorn J, Doyle J, Elloumi O, Englert H, Forbes R, Heiles J, Hermans P, Uslar M (2012) CEN -CENELEC-ETSI: smart grid coordination group-smart grid reference architecture report 2.0 (November)
– reference: De La ReeJCentenoVThorpJSPhadkeAGSynchronized phasor measurement applications in power systemsIEEE Trans Smart Grid201011202710.1109/TSG.2010.2044815
– reference: Ozgur Catak F, Sivaslioglu S, Sahinbas K (2020) A generative model based adversarial security of deep learning and linear classifier models. 2010.08546
– reference: Rafferty M, Brogan P, Hastings J, Laverty D, Liu XA, Khan R (2018) Local anomaly detection by application of regression analysis on pmu data, In: 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, pp 1–5
– reference: Uslar M, Delfs C, Gottschalk M (2017) The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains
– reference: LawalOATehJA framework for modelling the reliability of dynamic line rating operations in a cyber-physical power system networkSustain Energy Grids Netw20233510114010.1016/j.segan.2023.101140
– ident: 10827_CR12
– ident: 10827_CR14
  doi: 10.1007/978-3-030-83301-5_7
– ident: 10827_CR6
  doi: 10.1109/IWCMC.2018.8450487
– volume: 287
  start-page: 116601
  year: 2021
  ident: 10827_CR29
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116601
– ident: 10827_CR31
– volume: 1
  start-page: 20
  issue: 1
  year: 2010
  ident: 10827_CR17
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2010.2044815
– volume: 169
  start-page: 103126
  year: 2022
  ident: 10827_CR63
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103126
– ident: 10827_CR56
  doi: 10.1109/PESGM.2018.8586320
– volume: 12
  start-page: 790
  issue: 4
  year: 2018
  ident: 10827_CR42
  publication-title: IEEE J Select Top Signal Process
  doi: 10.1109/JSTSP.2018.2833749
– ident: 10827_CR50
  doi: 10.1109/ICCS.2014.7024804
– volume: 22
  start-page: 3933
  issue: 10
  year: 2022
  ident: 10827_CR23
  publication-title: Sensors
  doi: 10.3390/s22103933
– volume: 4
  start-page: 549
  issue: 2
  year: 2023
  ident: 10827_CR9
  publication-title: IEEE J Emerg Select Top Ind Electron
  doi: 10.1109/JESTIE.2022.3227005
– ident: 10827_CR36
  doi: 10.1109/IEEESTD.1995.79050
– ident: 10827_CR8
  doi: 10.1007/978-3-319-33331-1_16
– volume: 150
  start-page: 797
  year: 2020
  ident: 10827_CR62
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.12.131
– ident: 10827_CR67
– ident: 10827_CR64
  doi: 10.1109/ICSMC.2003.1245641
– ident: 10827_CR60
  doi: 10.1109/GLOBECOM42002.2020.9322072
– ident: 10827_CR58
  doi: 10.1109/PMAPS.2018.8440495
– volume: 11
  start-page: 2967
  issue: 18
  year: 2022
  ident: 10827_CR5
  publication-title: Electronics
  doi: 10.3390/electronics11182967
– volume-title: Power system state estimation: theory and implementation
  year: 2004
  ident: 10827_CR1
  doi: 10.1201/9780203913673
– volume: 48
  start-page: 88
  issue: 2
  year: 1994
  ident: 10827_CR54
  publication-title: Am Stat
  doi: 10.1080/00031305.1994.10476030
– volume: 60
  start-page: 19
  year: 2016
  ident: 10827_CR2
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.11.016
– ident: 10827_CR7
  doi: 10.1007/978-3-319-22264-6_5
– ident: 10827_CR51
  doi: 10.1109/SP.2016.41
– volume: 363
  start-page: 1287
  issue: 6433
  year: 2019
  ident: 10827_CR20
  publication-title: Science
  doi: 10.1126/science.aaw4399
– volume: 10
  start-page: 2979
  issue: 3
  year: 2018
  ident: 10827_CR75
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2816027
– volume: 148
  start-page: 108916
  year: 2023
  ident: 10827_CR71
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2022.108916
– volume: 33
  start-page: 3611
  issue: 4
  year: 2017
  ident: 10827_CR38
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2764882
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10827_CR48
  publication-title: N Am Power Symp
  doi: 10.1109/NAPS46351.2019.9000312
– volume: 118
  start-page: 109543
  issue: 2019
  year: 2020
  ident: 10827_CR10
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109543
– volume: 22
  start-page: 998
  issue: 2
  year: 2020
  ident: 10827_CR55
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2020.2975048
– ident: 10827_CR43
– volume: 4
  start-page: 450
  issue: 4
  year: 2020
  ident: 10827_CR61
  publication-title: IEEE Trans Emerg Top Comput Intell
  doi: 10.1109/TETCI.2020.2968933
– volume: 35
  start-page: 101140
  year: 2023
  ident: 10827_CR44
  publication-title: Sustain Energy Grids Netw
  doi: 10.1016/j.segan.2023.101140
– volume: 9
  start-page: 20
  issue: 2
  year: 2020
  ident: 10827_CR22
  publication-title: J Sens Actuator Netw
  doi: 10.3390/jsan9020020
– ident: 10827_CR24
  doi: 10.1109/NAPS56150.2022.10012188
– ident: 10827_CR70
  doi: 10.1109/IRI.2016.74
– ident: 10827_CR74
  doi: 10.1109/CFEC.2018.8358730
– ident: 10827_CR27
  doi: 10.1109/PESGM52003.2023.10252380
– volume: 12
  start-page: 442
  issue: 11
  year: 2021
  ident: 10827_CR46
  publication-title: Information
  doi: 10.3390/info12110442
– volume: 6
  start-page: 619
  issue: 4
  year: 2018
  ident: 10827_CR53
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-018-0423-3
– ident: 10827_CR72
– volume-title: Deep Learning
  year: 2016
  ident: 10827_CR25
– volume: 63
  start-page: 61
  year: 2022
  ident: 10827_CR57
  publication-title: Eur J Control
  doi: 10.1016/j.ejcon.2021.09.005
– ident: 10827_CR21
  doi: 10.1109/CIASG.2014.7011557
– volume: 84
  start-page: 104500
  year: 2019
  ident: 10827_CR40
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2019.104500
– volume: 310
  start-page: 59
  year: 2018
  ident: 10827_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.017
– ident: 10827_CR47
  doi: 10.1109/CYBERNIGERIA51635.2021.9428792
– ident: 10827_CR65
– ident: 10827_CR30
  doi: 10.1109/ISRCS.2014.6900095
– volume: 38
  start-page: 101347
  year: 2024
  ident: 10827_CR45
  publication-title: Sustain Energy Grids Netw
  doi: 10.1016/j.segan.2024.101347
– ident: 10827_CR69
– ident: 10827_CR39
  doi: 10.1016/j.scs.2020.102384
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10827_CR32
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10827_CR76
  doi: 10.1109/PSCC.2016.7540980
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10827_CR34
  publication-title: IEEE Texas Power Energy Conf
  doi: 10.1109/TPEC51183.2021.9384947
– ident: 10827_CR41
  doi: 10.1109/ISGT45199.2020.9087782
– year: 2012
  ident: 10827_CR37
  publication-title: Int J Navig Observ
  doi: 10.1155/2012/127072
– volume: 5
  start-page: 797
  issue: 5
  year: 2017
  ident: 10827_CR15
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-017-0280-5
– ident: 10827_CR13
  doi: 10.1007/978-3-030-83301-5
– ident: 10827_CR28
  doi: 10.1109/SEST53650.2022.9898500
– volume: 10
  start-page: 3535
  issue: 4
  year: 2019
  ident: 10827_CR59
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2830118
– ident: 10827_CR49
  doi: 10.31449/inf.v45i1.3234
– ident: 10827_CR52
  doi: 10.1016/j.matpr.2020.10.852
– ident: 10827_CR19
  doi: 10.1109/ICC.2018.8423024
– volume: 6
  start-page: 65594
  year: 2018
  ident: 10827_CR68
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878436
– volume: 14
  start-page: 5739
  issue: 24
  year: 2020
  ident: 10827_CR18
  publication-title: IET Gener Trans Distrib
  doi: 10.1049/iet-gtd.2020.0526
– ident: 10827_CR26
  doi: 10.1109/PESGM52003.2023.10252380
– ident: 10827_CR35
  doi: 10.1145/3219819.3219845
– ident: 10827_CR33
  doi: 10.1016/j.cosrev.2020.100270
– ident: 10827_CR66
– year: 2022
  ident: 10827_CR3
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2022.2034718
– volume: 175
  year: 2021
  ident: 10827_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114865
– volume: 10
  start-page: 4401
  issue: 4
  year: 2018
  ident: 10827_CR73
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2859339
– ident: 10827_CR11
  doi: 10.1145/3494107.3522778
SSID ssj0005243
Score 2.4417498
Snippet Energy systems require radical changes due to the conflicting needs of combating climate change and meeting rising energy demands. These revolutionary...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Algorithms
Anomalies
Artificial Intelligence
Climate change
Climatic changes
Computer Science
Credibility
Critical infrastructure
Cyber-physical systems
Cybersecurity
Cyberterrorism
Data security
Decentralization
Digital technology
Digitization
Disruption
Electric power systems
Electric power transmission
Electricity
Electricity distribution
Energy
Energy industry
Grammatical aspect
Infrastructure
International trade
Internet
Iterative methods
Measurement
Measuring instruments
Mitigation
Operators
Phasors
Power
Security
Trustworthiness
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHrz4FtcXOQgetOCmbZp6W0TRgyL4wFuYPKrC2l23Vdx_7ySb-lbQa_NomFdmyHwzhGwanaZxYm3ECgVRopxKGYxScoXOCPrjhUmVbzaRnZ6K6-v8LIDCqibbvXmS9Jb6Hdgt4SzCOwVNh2BZhJ7jROqqzbgY_fzqXWJHEgd4zPfrPlxBnw3xlxdRf9EczvzviLNkOjiWtDOShDkyZst5MtM0baBBhxfIw4VDWfjMwCHVQ2UHUT_wivZdyzQ6Ku5cUZcSf0M7x3vUPHrUOoXuTW9wV9_iIPq69OzkkkLZu4fukBpb-6SuEr-Y0b5VaI23SC4PDy72j6LQdyHSGE3WkeFMi5gbkRvT5iwXNoVcYzDLY61Zzpjg6HXEKYAFJDboXasKXqgkBYzTgcVLZLzslXaZ0KJQnKcg4qKwCUafOWjIgHOVxW3YtaJF2g0rpA5FyV1vjK58K6fsaCqRptLTVD63yPbrmv6oJMevs7cch6XTV9xZQ4Ad4Plc5SvZyXLBHSAZz7LWCIEMilxJZxLRg2as3SI7DdPfhn_-78rfpq-SKebkxicCr5HxevBo18mkfqrvqsGGF_AXCHz5gw
  priority: 102
  providerName: Springer Nature
Title Trustworthy cyber-physical power systems using AI: dueling algorithms for PMU anomaly detection and cybersecurity
URI https://link.springer.com/article/10.1007/s10462-024-10827-x
https://www.proquest.com/docview/3070916221
Volume 57
WOSCitedRecordID wos001251543100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: M1O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: C24
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 1573-7462
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCF8hRbSuUDEgew2DixY3NBy6oVCHVZlRYKF8uvFKRtdrtJUfffM3YclofohctIedmOvrE9k8zMh9ATZxnLC-8JrYwmhQlTyoGXIg0YI2CPV46ZSDZRTibi5ERO0we3JoVV9mtiXKjd3IZv5C-CboIpQ2n2anFOAmtU-LuaKDSuo03YqFlgMCg_ff4lxKOLmqNcEnAtspQ0k1LnCk4J7FCwEAlaksvfNqY_l-e__pPG7Wd_638HfhvdSoYnHnWacgdd8_VdtNWTOuA0x--h86OQhREjB1fYroxfkkXCEi8CpRruij83OITMn-LR25fYXcSsdqxnp9Bz-xUugi2MpwfHWNfzMz1bYefbGPRVwxnXtdsk6rz76Hh_72j8hiReBmLB22yJ49SKnDshnYMXk8IzLS04uzy3lkpKBQerJGdaew0QaDv0puKVKZgGP17T_AHaqOe1f4hwVRnOmRZ5VfkCvFOprS4156bMMz30YoCyHhRlU9HywJ0xU-tyywFIBUCqCKS6HKBnP59ZdCU7rrz7acBahfkMLVud0hJgfKEylhqVUvCQsAxj2ekBVmmiN2qN7gA971Vkffnf_W5f3dojdJMG5YyBwTtoo11e-Mfohv3efmuWu1HNd9Hm673J9BCOxrQA-a4kIA-G4yCz9yCn7AvIww8ffwAFsgvU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFgkulKe6fYAPIA5g0TiJ4yBVaAVUXbW79LCVejOO7RSkJbvdpKX7p_iNzDgOy0P01gPXOHHi5JtXPN8MIc-sSdM4cY7xstAsKVCkLEQpeQHOCPjjpU0L32wiG43k6Wl-vEK-d1wYTKvsdKJX1HZq8B_5a8QmuDKcR29n5wy7RuHuatdCo4XFoVt8g5Ct3hu8h-_7nPP9D-N3Byx0FWAGYqWGWcGNjIWVubUwXy5dqnMDoZqIjeE551KATY1TrZ1OeaLNritKURZJqiEK1VjoAFT-GtbVQ4kaRh9_SSlps_S4yBmEMlEg6QSqXiI4A4sIik_yjF39Zgj_NAd_7ct6c7e__r-9qHvkbnCsab-VhPtkxVUPyHrXtIIGHfaQnI-RZeIzIxfULAo3Z7OAVTrDlnG0LW5dU6QEnNH-4A21F561T_XkDFbafIZB8PXp8fCE6mr6VU8W1LrGJ7VVcMS289ahNeAjcnIjC39MVqtp5TYILctCiFTLuCxdAtF3ro3OtBBFFkd618keiToQKBOKsmNvkIlalpNG4CgAjvLAUVc98vLnNbO2JMm1Z79AbCnUVzCz0YF2Ac-Hlb9UP8ulQEI2PMt2BygVFFmtlmjqkVcdJJfD_77v5vWzPSW3D8bDI3U0GB1ukTscBcMnQW-T1WZ-4XbILXPZfKnnT7yIUfLppqH6A4RGYYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S4tDzVbQv4AOIAVrtO4tiVEFpoV6wKqxVqpd6MYzst0pLdblLo_rX-OsaJw_IQvfXANU4mcfLNjL94HgDPrEmSKHaOsjzTNM68SllkKTLDxQiux3ObZHWziXQ0EicncrwCV20ujA-rbG1ibajt1Ph_5Dsem7iUYay3k4ewiPH-4M3snPoOUn6ntW2n0UDk0C2-I30rXw_38Vs_Z2xwcPTuPQ0dBqhB3lRRy5kREbdCWouypXCJlgZpG4-MYZIxwdG_RonWTics1mbXZTnPszjRyEi1L3qA5n81jZD0dGD17cFo_OmXAJMmZo9xSZHY9ELKTkjcizmj6B_RDAqW0svf3OKfzuGvXdra-Q3W_-fXdhfWwpKb9BsduQcrrrgP6207CxKs2wM4P_L5J3XM5IKYRebmdBZQTGa-mRxpyl6XxCcLnJL-cI_Yizqfn-jJKc60OsNBZAFk_PGY6GL6VU8WxLqqDncr8Iht5JahaeBDOL6RiT-CTjEt3AaQPM84T7SI8tzFyMulNjrVnGdp1NO7TnSh1wJCmVCu3XcNmahloWkPIoUgUjWI1GUXXv68ZtYUK7n27BceZ8pbMpRsdEjIwOfzNcFUP5WC-1RtfJbtFlwqmLhSLZHVhVctPJfD_77v5vXSnsJtRKj6MBwdbsEd5nWkjo7ehk41v3CP4Zb5Vn0p50-CvhH4fNNY_QFI32uf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trustworthy+cyber-physical+power+systems+using+AI%3A+dueling+algorithms+for+PMU+anomaly+detection+and+cybersecurity&rft.jtitle=The+Artificial+intelligence+review&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=57&rft.issue=7&rft.spage=183&rft_id=info:doi/10.1007%2Fs10462-024-10827-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon