A Discontinuous Galerkin Material Point Method for the solution of impact problems in solid dynamics

An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagran...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 369; s. 80 - 102
Hlavní autoři: Renaud, Adrien, Heuzé, Thomas, Stainier, Laurent
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Inc 15.09.2018
Elsevier Science Ltd
Elsevier
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver [3]. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method (DGFEM) with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations. •Development of the Discontinuous Galerkin Material Point method.•von Neumann stability analysis of the DGMPM.•Analytical solution of a one-dimensional hyperbolic problem for a hyperelastic Saint–Venant–Kirchhoff material.
AbstractList An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver [3]. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method (DGFEM) with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations. •Development of the Discontinuous Galerkin Material Point method.•von Neumann stability analysis of the DGMPM.•Analytical solution of a one-dimensional hyperbolic problem for a hyperelastic Saint–Venant–Kirchhoff material.
An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver [3]. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method (DGFEM) with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations.
An extension of the Material Point Method based on the Discontinuous Galerkin approximation (DG) is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations.
Author Heuzé, Thomas
Stainier, Laurent
Renaud, Adrien
Author_xml – sequence: 1
  givenname: Adrien
  surname: Renaud
  fullname: Renaud, Adrien
  email: adrien.renaud@ec-nantes.fr
– sequence: 2
  givenname: Thomas
  surname: Heuzé
  fullname: Heuzé, Thomas
  email: thomas.heuze@ec-nantes.fr
– sequence: 3
  givenname: Laurent
  surname: Stainier
  fullname: Stainier, Laurent
  email: laurent.stainier@ec-nantes.fr
BackLink https://hal.science/hal-01913188$$DView record in HAL
BookMark eNp9kMFu1DAQhi1UJLaFB-BmiROHhBkn2cTitCrQIm0FBzhbXnuidcjai-1U6tvjaBEHDj2NNPN_v0bfNbvywRNjbxFqBNx-mOrJnGsBONTQ1QD4gm0QJFSix-0V2wAIrKSU-IpdpzQBwNC1w4bZHf_kkgk-O7-EJfE7PVP85Tx_0Jmi0zP_HpzP_IHyMVg-hsjzkXgK85Jd8DyM3J3O2mR-juEw0ynxApezs9w-eX1yJr1mL0c9J3rzd96wn18-_7i9r_bf7r7e7vaVaUHkyuhu1C21rRCNlSPYvkchD2S3A46CrDGjQGh1Q8J02FGrdSNF27ea9EFQ09yw95feo57VObqTjk8qaKfud3u17gAlNjgMj1iy7y7Z8vbvhVJWU1iiL-8pAYMctl0n1xReUiaGlCKN_2oR1CpeTaqIV6t4BZ0q4gvT_8cYl_UqK0ft5mfJjxeSiqRHR1El48gbsi6SycoG9wz9B57fn6I
CitedBy_id crossref_primary_10_1002_nme_6506
crossref_primary_10_1002_cnm_70012
crossref_primary_10_1002_nme_6138
crossref_primary_10_1002_nme_6239
crossref_primary_10_1007_s11071_024_10665_0
crossref_primary_10_1007_s00466_025_02627_z
crossref_primary_10_1002_nme_7231
crossref_primary_10_1002_nme_7365
crossref_primary_10_1016_j_cma_2020_112987
crossref_primary_10_1016_j_cma_2024_117480
Cites_doi 10.1016/0021-9991(86)90211-1
10.1007/s00161-008-0078-9
10.1016/j.cma.2004.01.035
10.1016/j.jmatprotec.2010.12.012
10.1007/BF00279992
10.1016/0021-9991(92)90323-Q
10.1016/j.jcp.2005.09.008
10.1016/j.cma.2005.06.013
10.1016/0168-9274(94)00048-4
10.1016/0021-9991(82)90107-3
10.1016/j.proeng.2017.01.022
10.1016/j.jcp.2017.06.027
10.1016/0021-9991(83)90136-5
10.1002/nme.5293
10.1002/cpa.3160440103
10.1016/0021-9991(90)90233-Q
10.1016/j.compstruc.2012.12.008
10.1016/j.cageo.2016.11.008
10.1016/0196-8858(88)90025-5
10.1137/0721016
10.1016/j.cma.2005.06.027
10.1016/0045-7825(94)90112-0
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier Science Ltd. Sep 15, 2018
Attribution
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Sep 15, 2018
– notice: Attribution
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.jcp.2018.05.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 102
ExternalDocumentID oai:HAL:hal-01913188v1
10_1016_j_jcp_2018_05_001
S0021999118302936
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
1XC
VOOES
ID FETCH-LOGICAL-c402t-ca5fa4e44223d9f0d77129bed681f2edccf2104a3e2c515e4aa392474aeab2e33
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436477200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Tue Oct 14 20:41:48 EDT 2025
Fri Jul 25 05:56:06 EDT 2025
Sat Nov 29 03:10:20 EST 2025
Tue Nov 18 22:42:21 EST 2025
Fri Feb 23 02:46:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Impact
Solid mechanics
Material Point Method
Finite deformation
Discontinuous Galerkin approximation
Hyperelasticity
finite deformation
hyperelasticity
solid mechanics
impact
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-ca5fa4e44223d9f0d77129bed681f2edccf2104a3e2c515e4aa392474aeab2e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6721-1003
0000-0001-6719-6616
OpenAccessLink https://hal.science/hal-01913188
PQID 2089865591
PQPubID 2047462
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01913188v1
proquest_journals_2089865591
crossref_primary_10_1016_j_jcp_2018_05_001
crossref_citationtrail_10_1016_j_jcp_2018_05_001
elsevier_sciencedirect_doi_10_1016_j_jcp_2018_05_001
PublicationCentury 2000
PublicationDate 2018-09-15
PublicationDateYYYYMMDD 2018-09-15
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Harten (br0090) 1983; 49
Lee, Gil, Bonet (br0120) 2013; 118
Colella (br0260) 1990; 87
Haider, Lee, Gil, Bonet (br0130) 2017; 109
Simo, Hughes (br0060) 2006; vol. 7
Kluth (br0270) 2008
Heuzé (br0110) 2017; 346
Jacobs, Hesthaven (br0150) 2006; 214
Ball (br0170) 1976; 63
Cockburn (br0140) 1999
Wiȩkowski (br0070) 2004; 193
Tielen (br0410) 2016
Leveque (br0080) 2002
Reed, Hill (br0340) 1973
Burgess, Sulsky, Brackbill (br0290) 1992; 103
Tielen, Wobbes, Möller, Beuth (br0420) 2017; 175
Kluth, Després (br0250) 2008; 20
M. Smith, ABAQUS/Standard User's Manual, Version 6.9, Simulia, 2009.
Hirsch (br0330) 2007
Abedi, Petracovici, Haber (br0360) 2006; 195
Plohr, Sharp (br0160) 1988; 9
Di Pietro, Ern (br0180) 2011; vol. 69
Toro (br0030) 2013
Liu, Li, Liu (br0400) 2017; 99
Trangenstein, Colella (br0240) 1991; 44
Zhang, Chen, Liu (br0320) 2016
Steffen, Wallstedt, Guilkey, Kirby, Berzins (br0280) 2008; 32
Richter (br0350) 1994; 16
Ayachit (br0380) 2015
Belytschko, Liu, Moran, Elkhodary (br0050) 2013
Sulsky, Chen, Schreyer (br0010) 1994; 118
Hesthaven, Warburton (br0020) 2007
Trangenstein (br0200) 2009
Buzzi, Pedroso, Giacomini (br0310) 2008; 1
Psyk, Risch, Kinsey, Tekkaya, Kleiner (br0040) 2011; 211
Love, Sulsky (br0210) 2006; 195
Brackbill, Ruppel Flip (br0300) 1986; 65
Feng, Karakashian, Xing (br0190) 2013; vol. 157
Wang (br0370) 2011
Chavent, Salzano (br0220) 1982; 45
Favrie, Gavrilyuk (br0100) 2011; vol. 33
Osher (br0230) 1984; 21
Toro (10.1016/j.jcp.2018.05.001_br0030) 2013
Buzzi (10.1016/j.jcp.2018.05.001_br0310) 2008; 1
Chavent (10.1016/j.jcp.2018.05.001_br0220) 1982; 45
Heuzé (10.1016/j.jcp.2018.05.001_br0110) 2017; 346
Cockburn (10.1016/j.jcp.2018.05.001_br0140) 1999
Kluth (10.1016/j.jcp.2018.05.001_br0250) 2008; 20
Trangenstein (10.1016/j.jcp.2018.05.001_br0240) 1991; 44
Steffen (10.1016/j.jcp.2018.05.001_br0280) 2008; 32
Hesthaven (10.1016/j.jcp.2018.05.001_br0020) 2007
Richter (10.1016/j.jcp.2018.05.001_br0350) 1994; 16
Kluth (10.1016/j.jcp.2018.05.001_br0270) 2008
Burgess (10.1016/j.jcp.2018.05.001_br0290) 1992; 103
Colella (10.1016/j.jcp.2018.05.001_br0260) 1990; 87
Favrie (10.1016/j.jcp.2018.05.001_br0100) 2011; vol. 33
Belytschko (10.1016/j.jcp.2018.05.001_br0050) 2013
Sulsky (10.1016/j.jcp.2018.05.001_br0010) 1994; 118
Plohr (10.1016/j.jcp.2018.05.001_br0160) 1988; 9
Reed (10.1016/j.jcp.2018.05.001_br0340) 1973
10.1016/j.jcp.2018.05.001_br0390
Harten (10.1016/j.jcp.2018.05.001_br0090) 1983; 49
Feng (10.1016/j.jcp.2018.05.001_br0190) 2013; vol. 157
Psyk (10.1016/j.jcp.2018.05.001_br0040) 2011; 211
Wang (10.1016/j.jcp.2018.05.001_br0370) 2011
Tielen (10.1016/j.jcp.2018.05.001_br0410) 2016
Zhang (10.1016/j.jcp.2018.05.001_br0320) 2016
Tielen (10.1016/j.jcp.2018.05.001_br0420) 2017; 175
Liu (10.1016/j.jcp.2018.05.001_br0400) 2017; 99
Ball (10.1016/j.jcp.2018.05.001_br0170) 1976; 63
Abedi (10.1016/j.jcp.2018.05.001_br0360) 2006; 195
Haider (10.1016/j.jcp.2018.05.001_br0130) 2017; 109
Brackbill (10.1016/j.jcp.2018.05.001_br0300) 1986; 65
Hirsch (10.1016/j.jcp.2018.05.001_br0330) 2007
Simo (10.1016/j.jcp.2018.05.001_br0060) 2006; vol. 7
Di Pietro (10.1016/j.jcp.2018.05.001_br0180) 2011; vol. 69
Jacobs (10.1016/j.jcp.2018.05.001_br0150) 2006; 214
Love (10.1016/j.jcp.2018.05.001_br0210) 2006; 195
Leveque (10.1016/j.jcp.2018.05.001_br0080) 2002
Ayachit (10.1016/j.jcp.2018.05.001_br0380) 2015
Osher (10.1016/j.jcp.2018.05.001_br0230) 1984; 21
Wiȩkowski (10.1016/j.jcp.2018.05.001_br0070) 2004; 193
Lee (10.1016/j.jcp.2018.05.001_br0120) 2013; 118
Trangenstein (10.1016/j.jcp.2018.05.001_br0200) 2009
References_xml – year: 1973
  ident: br0340
  article-title: Triangular Mesh Methods for the Neutron Transport Equation
– volume: 118
  start-page: 179
  year: 1994
  end-page: 196
  ident: br0010
  article-title: A particle method for history-dependent materials
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 49
  start-page: 357
  year: 1983
  end-page: 393
  ident: br0090
  article-title: High resolution schemes for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– reference: M. Smith, ABAQUS/Standard User's Manual, Version 6.9, Simulia, 2009.
– volume: vol. 157
  year: 2013
  ident: br0190
  article-title: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations: 2012 John H Barrett Memorial Lectures
– volume: 45
  start-page: 307
  year: 1982
  end-page: 344
  ident: br0220
  article-title: A finite-element method for the 1-d water flooding problem with gravity
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 217
  year: 1984
  end-page: 235
  ident: br0230
  article-title: Riemann solvers, the entropy condition, and difference
  publication-title: SIAM J. Numer. Anal.
– start-page: 69
  year: 1999
  end-page: 224
  ident: br0140
  article-title: Discontinuous Galerkin methods for convection-dominated problems
  publication-title: High-Order Methods for Computational Physics
– volume: 211
  start-page: 787
  year: 2011
  end-page: 829
  ident: br0040
  article-title: Electromagnetic forming—A review
  publication-title: J. Mater. Process. Technol.
– volume: 118
  start-page: 13
  year: 2013
  end-page: 38
  ident: br0120
  article-title: Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics
  publication-title: Comput. Struct.
– year: 2002
  ident: br0080
  article-title: Finite Volume Methods for Hyperbolic Problems
– volume: 20
  start-page: 173
  year: 2008
  end-page: 192
  ident: br0250
  article-title: Perfect plasticity and hyperelastic models for isotropic materials
  publication-title: Contin. Mech. Thermodyn.
– volume: 195
  start-page: 3903
  year: 2006
  end-page: 3925
  ident: br0210
  article-title: An unconditionally stable, energy–momentum consistent implementation of the material-point method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 346
  start-page: 369
  year: 2017
  end-page: 388
  ident: br0110
  article-title: Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic–plastic solids
  publication-title: J. Comput. Phys.
– year: 2008
  ident: br0270
  article-title: Analyse mathématique et numérique de systèmes hyperélastiques et introduction de la plasticité
– volume: 1
  start-page: 1
  year: 2008
  end-page: 21
  ident: br0310
  article-title: Caveats on the implementation of the generalized material point method
  publication-title: Comput. Model. Eng. Sci.
– volume: 214
  start-page: 96
  year: 2006
  end-page: 121
  ident: br0150
  article-title: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids
  publication-title: J. Comput. Phys.
– year: 2015
  ident: br0380
  article-title: The Paraview Guide: A Parallel Visualization Application
  publication-title: Kitware, Inc.
– volume: 65
  start-page: 314
  year: 1986
  end-page: 343
  ident: br0300
  article-title: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions
  publication-title: J. Comput. Phys.
– year: 2013
  ident: br0050
  article-title: Nonlinear Finite Elements for Continua and Structures
– year: 2011
  ident: br0370
  article-title: Foundations of Stress Waves
– volume: 99
  start-page: 135
  year: 2017
  end-page: 144
  ident: br0400
  article-title: Paraview visualization of abaqus output on the mechanical deformation of complex microstructures
  publication-title: Comput. Geosci.
– volume: vol. 7
  year: 2006
  ident: br0060
  article-title: Computational Inelasticity
– volume: 63
  start-page: 337
  year: 1976
  end-page: 403
  ident: br0170
  article-title: Convexity conditions and existence theorems in nonlinear elasticity
  publication-title: Arch. Ration. Mech. Anal.
– volume: 9
  start-page: 481
  year: 1988
  end-page: 499
  ident: br0160
  article-title: A conservative Eulerian formulation of the equations for elastic flow
  publication-title: Adv. Appl. Math.
– year: 2013
  ident: br0030
  article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
– year: 2009
  ident: br0200
  article-title: Numerical Solution of Hyperbolic Partial Differential Equations
– volume: 32
  start-page: 107
  year: 2008
  end-page: 127
  ident: br0280
  article-title: Examination and analysis of implementation choices within the material point method (MPM)
  publication-title: Comput. Model. Eng. Sci.
– volume: 109
  start-page: 407
  year: 2017
  end-page: 456
  ident: br0130
  article-title: A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred total Lagrangian scheme
  publication-title: Int. J. Numer. Methods Eng.
– volume: vol. 69
  year: 2011
  ident: br0180
  article-title: Mathematical Aspects of Discontinuous Galerkin Methods
– volume: 193
  start-page: 4417
  year: 2004
  end-page: 4438
  ident: br0070
  article-title: The material point method in large strain engineering problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 33
  start-page: 50
  year: 2011
  end-page: 67
  ident: br0100
  article-title: Dynamics of Shock Waves in Elastic-Plastic Solids
  publication-title: ESAIM: Proceedings
– volume: 87
  start-page: 171
  year: 1990
  end-page: 200
  ident: br0260
  article-title: Multidimensional upwind methods for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– volume: 103
  start-page: 1
  year: 1992
  end-page: 15
  ident: br0290
  article-title: Mass matrix formulation of the flip particle-in-cell method
  publication-title: J. Comput. Phys.
– volume: 44
  start-page: 41
  year: 1991
  end-page: 100
  ident: br0240
  article-title: A higher-order Godunov method for modeling finite deformation in elastic-plastic solids
  publication-title: Commun. Pure Appl. Math.
– year: 2016
  ident: br0320
  article-title: The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases
– year: 2007
  ident: br0330
  article-title: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
– volume: 195
  start-page: 3247
  year: 2006
  end-page: 3273
  ident: br0360
  article-title: A space–time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2007
  ident: br0020
  article-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
– volume: 175
  start-page: 265
  year: 2017
  end-page: 272
  ident: br0420
  article-title: A high order material point method
  publication-title: Proc. Eng.
– volume: 16
  start-page: 65
  year: 1994
  end-page: 80
  ident: br0350
  article-title: An explicit finite element method for the wave equation
  publication-title: Appl. Numer. Math.
– year: 2016
  ident: br0410
  article-title: High-Order Material Point Method
– year: 2007
  ident: 10.1016/j.jcp.2018.05.001_br0020
– year: 2007
  ident: 10.1016/j.jcp.2018.05.001_br0330
– volume: 65
  start-page: 314
  issue: 2
  year: 1986
  ident: 10.1016/j.jcp.2018.05.001_br0300
  article-title: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(86)90211-1
– year: 2015
  ident: 10.1016/j.jcp.2018.05.001_br0380
  article-title: The Paraview Guide: A Parallel Visualization Application
  publication-title: Kitware, Inc.
– volume: 20
  start-page: 173
  issue: 3
  year: 2008
  ident: 10.1016/j.jcp.2018.05.001_br0250
  article-title: Perfect plasticity and hyperelastic models for isotropic materials
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/s00161-008-0078-9
– volume: vol. 69
  year: 2011
  ident: 10.1016/j.jcp.2018.05.001_br0180
– volume: 193
  start-page: 4417
  issue: 39
  year: 2004
  ident: 10.1016/j.jcp.2018.05.001_br0070
  article-title: The material point method in large strain engineering problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.01.035
– volume: vol. 33
  start-page: 50
  year: 2011
  ident: 10.1016/j.jcp.2018.05.001_br0100
  article-title: Dynamics of Shock Waves in Elastic-Plastic Solids
– volume: vol. 157
  year: 2013
  ident: 10.1016/j.jcp.2018.05.001_br0190
– volume: 211
  start-page: 787
  issue: 5
  year: 2011
  ident: 10.1016/j.jcp.2018.05.001_br0040
  article-title: Electromagnetic forming—A review
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2010.12.012
– volume: 63
  start-page: 337
  issue: 4
  year: 1976
  ident: 10.1016/j.jcp.2018.05.001_br0170
  article-title: Convexity conditions and existence theorems in nonlinear elasticity
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00279992
– volume: 32
  start-page: 107
  issue: 2
  year: 2008
  ident: 10.1016/j.jcp.2018.05.001_br0280
  article-title: Examination and analysis of implementation choices within the material point method (MPM)
  publication-title: Comput. Model. Eng. Sci.
– volume: 103
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.1016/j.jcp.2018.05.001_br0290
  article-title: Mass matrix formulation of the flip particle-in-cell method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90323-Q
– volume: 214
  start-page: 96
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2018.05.001_br0150
  article-title: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.09.008
– year: 2013
  ident: 10.1016/j.jcp.2018.05.001_br0030
– volume: 195
  start-page: 3247
  issue: 25
  year: 2006
  ident: 10.1016/j.jcp.2018.05.001_br0360
  article-title: A space–time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.06.013
– volume: 16
  start-page: 65
  issue: 1
  year: 1994
  ident: 10.1016/j.jcp.2018.05.001_br0350
  article-title: An explicit finite element method for the wave equation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(94)00048-4
– start-page: 69
  year: 1999
  ident: 10.1016/j.jcp.2018.05.001_br0140
  article-title: Discontinuous Galerkin methods for convection-dominated problems
– year: 2016
  ident: 10.1016/j.jcp.2018.05.001_br0410
– volume: 45
  start-page: 307
  issue: 3
  year: 1982
  ident: 10.1016/j.jcp.2018.05.001_br0220
  article-title: A finite-element method for the 1-d water flooding problem with gravity
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90107-3
– year: 2011
  ident: 10.1016/j.jcp.2018.05.001_br0370
– volume: 175
  start-page: 265
  year: 2017
  ident: 10.1016/j.jcp.2018.05.001_br0420
  article-title: A high order material point method
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2017.01.022
– volume: 346
  start-page: 369
  year: 2017
  ident: 10.1016/j.jcp.2018.05.001_br0110
  article-title: Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic–plastic solids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.06.027
– year: 2009
  ident: 10.1016/j.jcp.2018.05.001_br0200
– year: 2016
  ident: 10.1016/j.jcp.2018.05.001_br0320
– year: 2002
  ident: 10.1016/j.jcp.2018.05.001_br0080
– volume: 49
  start-page: 357
  issue: 3
  year: 1983
  ident: 10.1016/j.jcp.2018.05.001_br0090
  article-title: High resolution schemes for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90136-5
– volume: 109
  start-page: 407
  issue: 3
  year: 2017
  ident: 10.1016/j.jcp.2018.05.001_br0130
  article-title: A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred total Lagrangian scheme
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5293
– volume: vol. 7
  year: 2006
  ident: 10.1016/j.jcp.2018.05.001_br0060
– volume: 44
  start-page: 41
  year: 1991
  ident: 10.1016/j.jcp.2018.05.001_br0240
  article-title: A higher-order Godunov method for modeling finite deformation in elastic-plastic solids
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160440103
– volume: 87
  start-page: 171
  issue: 1
  year: 1990
  ident: 10.1016/j.jcp.2018.05.001_br0260
  article-title: Multidimensional upwind methods for hyperbolic conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90233-Q
– volume: 118
  start-page: 13
  year: 2013
  ident: 10.1016/j.jcp.2018.05.001_br0120
  article-title: Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.12.008
– year: 1973
  ident: 10.1016/j.jcp.2018.05.001_br0340
– volume: 99
  start-page: 135
  issue: C
  year: 2017
  ident: 10.1016/j.jcp.2018.05.001_br0400
  article-title: Paraview visualization of abaqus output on the mechanical deformation of complex microstructures
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.11.008
– year: 2008
  ident: 10.1016/j.jcp.2018.05.001_br0270
– volume: 9
  start-page: 481
  issue: 4
  year: 1988
  ident: 10.1016/j.jcp.2018.05.001_br0160
  article-title: A conservative Eulerian formulation of the equations for elastic flow
  publication-title: Adv. Appl. Math.
  doi: 10.1016/0196-8858(88)90025-5
– volume: 21
  start-page: 217
  issue: 2
  year: 1984
  ident: 10.1016/j.jcp.2018.05.001_br0230
  article-title: Riemann solvers, the entropy condition, and difference
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0721016
– volume: 195
  start-page: 3903
  issue: 33–36
  year: 2006
  ident: 10.1016/j.jcp.2018.05.001_br0210
  article-title: An unconditionally stable, energy–momentum consistent implementation of the material-point method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.06.027
– volume: 1
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.jcp.2018.05.001_br0310
  article-title: Caveats on the implementation of the generalized material point method
  publication-title: Comput. Model. Eng. Sci.
– ident: 10.1016/j.jcp.2018.05.001_br0390
– volume: 118
  start-page: 179
  issue: 1–2
  year: 1994
  ident: 10.1016/j.jcp.2018.05.001_br0010
  article-title: A particle method for history-dependent materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)90112-0
– year: 2013
  ident: 10.1016/j.jcp.2018.05.001_br0050
SSID ssj0008548
Score 2.3479843
Snippet An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a...
An extension of the Material Point Method based on the Discontinuous Galerkin approximation (DG) is presented here. A solid domain is represented by a...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 80
SubjectTerms Approximation
Computational grids
Computational physics
Computer simulation
Conservation laws
Deformation
Discontinuous Galerkin approximation
Engineering Sciences
Finite deformation
Finite element analysis
Finite element method
Fluxes
Galerkin method
Hyperelasticity
Impact
Inverse problems
Material Point Method
Mechanics
Meshless methods
Multidimensional methods
Numerical analysis
Numerical methods
Riemann solver
Solid mechanics
Structural mechanics
Tangling
Title A Discontinuous Galerkin Material Point Method for the solution of impact problems in solid dynamics
URI https://dx.doi.org/10.1016/j.jcp.2018.05.001
https://www.proquest.com/docview/2089865591
https://hal.science/hal-01913188
Volume 369
WOSCitedRecordID wos000436477200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQcuvBGFUq0QJyIjP9bZ9dFCpQW1VQ8F5bZa70MkqpyqcaKKK3-c2ZdDU6VqD-RgRRt7vcl8mZkdfzOD0EctDcup0glpNIENSpMmYBVN0uSjUqSZKIwL5vw8pqenbDyuzgaDPzEXZnlB25ZdX1eX_1XUMAbCtqmzDxB3PykMwHsQOhxB7HC8l-BrW1HTMtAn7cLyWw_BBNiA-PBEdO7-w7PZpO2GJ653dE8zjItyNSR86mRoNuMYs_DxRA2V718_3-DSStciIoYXfdBkxaXXrVj4KLayxZVXUdjFb_-4fo2w5NjGtoGFR5XN4I4snRCmyBynwidq9mkDWWK90X9Vb-HbtATl6Vs6BTOcuUTs2xreBxumn6fSVhvNmKu7GuIhN6ppr1m5nnsYaW1TDlNwOwVPS0vt20I7OS0rUI079beD8ffeoLOSeIMevkF8OO5ogmvr2OTebP2yPNs1c-98mPNn6EmQFK49aJ6jgW5foKdhI4KDmp-_RKrGNzCEI4ZwxBB2GMIeQxgwhAFDOGIIzwz2GMIRQxgudhjCEUOv0I-vB-dfjpLQjiORJM27RIrSCKIJAY9SVSZVlIKz2Gg1YpnJtZLS5LC5F4XOJXjJmggBzjehRGjR5LooXqPtdtbqNwg3QmmRgptABSMZEbDnNvCSFez2aTMiuyiNvyKXoVa9bZlywTdKbxd96i-59IVa7jqZRNHw4Gl6D5IDzO667AOIsZ_eVmY_qo-5HYOdUgbmkS3hpL0oZR7UwhwmYZVNAa-ytw9Z5zv0ePVf2kPb3dVCv0eP5LKbzK_2A07_AlBrt18
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Discontinuous+Galerkin+Material+Point+Method+for+the+solution+of+impact+problems+in+solid+dynamics&rft.jtitle=Journal+of+computational+physics&rft.au=Renaud%2C+Adrien&rft.au=Heuz%C3%A9%2C+Thomas&rft.au=Stainier%2C+Laurent&rft.date=2018-09-15&rft.issn=0021-9991&rft.volume=369&rft.spage=80&rft.epage=102&rft_id=info:doi/10.1016%2Fj.jcp.2018.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2018_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon