A Discontinuous Galerkin Material Point Method for the solution of impact problems in solid dynamics
An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagran...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 369; s. 80 - 102 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge
Elsevier Inc
15.09.2018
Elsevier Science Ltd Elsevier |
| Predmet: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver [3]. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method (DGFEM) with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations.
•Development of the Discontinuous Galerkin Material Point method.•von Neumann stability analysis of the DGMPM.•Analytical solution of a one-dimensional hyperbolic problem for a hyperelastic Saint–Venant–Kirchhoff material. |
|---|---|
| AbstractList | An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver [3]. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method (DGFEM) with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations.
•Development of the Discontinuous Galerkin Material Point method.•von Neumann stability analysis of the DGMPM.•Analytical solution of a one-dimensional hyperbolic problem for a hyperelastic Saint–Venant–Kirchhoff material. An extension of the Material Point Method based on the Discontinuous Galerkin approximation (DG) is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations. An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a collection of particles that can move and carry the fields of the problem inside an arbitrary computational grid in order to provide a Lagrangian description of the deformation without mesh tangling issues. The background mesh is then used as a support for the Discontinuous Galerkin approximation that leads to a weak form of conservation laws involving numerical fluxes defined at element faces. Those terms allow the introduction of the characteristic structure of hyperbolic problems within the numerical method by using an approximate Riemann solver [3]. The Discontinuous Galerkin Material Point Method, which can be viewed as a Discontinuous Galerkin Finite Element Method (DGFEM) with modified quadrature rule, aims at meeting advantages of both mesh-free and DG methods. The method is derived within the finite deformation framework for multidimensional problems by using a total Lagrangian formulation. A particular attention is paid to one specific discretization leading to a stability condition that allows to set the CFL number at one. The approach is illustrated and compared to existing or developed analytical solutions on one-dimensional problems and compared to the finite element method on two-dimensional simulations. |
| Author | Heuzé, Thomas Stainier, Laurent Renaud, Adrien |
| Author_xml | – sequence: 1 givenname: Adrien surname: Renaud fullname: Renaud, Adrien email: adrien.renaud@ec-nantes.fr – sequence: 2 givenname: Thomas surname: Heuzé fullname: Heuzé, Thomas email: thomas.heuze@ec-nantes.fr – sequence: 3 givenname: Laurent surname: Stainier fullname: Stainier, Laurent email: laurent.stainier@ec-nantes.fr |
| BackLink | https://hal.science/hal-01913188$$DView record in HAL |
| BookMark | eNp9kMFu1DAQhi1UJLaFB-BmiROHhBkn2cTitCrQIm0FBzhbXnuidcjai-1U6tvjaBEHDj2NNPN_v0bfNbvywRNjbxFqBNx-mOrJnGsBONTQ1QD4gm0QJFSix-0V2wAIrKSU-IpdpzQBwNC1w4bZHf_kkgk-O7-EJfE7PVP85Tx_0Jmi0zP_HpzP_IHyMVg-hsjzkXgK85Jd8DyM3J3O2mR-juEw0ynxApezs9w-eX1yJr1mL0c9J3rzd96wn18-_7i9r_bf7r7e7vaVaUHkyuhu1C21rRCNlSPYvkchD2S3A46CrDGjQGh1Q8J02FGrdSNF27ea9EFQ09yw95feo57VObqTjk8qaKfud3u17gAlNjgMj1iy7y7Z8vbvhVJWU1iiL-8pAYMctl0n1xReUiaGlCKN_2oR1CpeTaqIV6t4BZ0q4gvT_8cYl_UqK0ft5mfJjxeSiqRHR1El48gbsi6SycoG9wz9B57fn6I |
| CitedBy_id | crossref_primary_10_1002_nme_6506 crossref_primary_10_1002_cnm_70012 crossref_primary_10_1002_nme_6138 crossref_primary_10_1002_nme_6239 crossref_primary_10_1007_s11071_024_10665_0 crossref_primary_10_1007_s00466_025_02627_z crossref_primary_10_1002_nme_7231 crossref_primary_10_1002_nme_7365 crossref_primary_10_1016_j_cma_2020_112987 crossref_primary_10_1016_j_cma_2024_117480 |
| Cites_doi | 10.1016/0021-9991(86)90211-1 10.1007/s00161-008-0078-9 10.1016/j.cma.2004.01.035 10.1016/j.jmatprotec.2010.12.012 10.1007/BF00279992 10.1016/0021-9991(92)90323-Q 10.1016/j.jcp.2005.09.008 10.1016/j.cma.2005.06.013 10.1016/0168-9274(94)00048-4 10.1016/0021-9991(82)90107-3 10.1016/j.proeng.2017.01.022 10.1016/j.jcp.2017.06.027 10.1016/0021-9991(83)90136-5 10.1002/nme.5293 10.1002/cpa.3160440103 10.1016/0021-9991(90)90233-Q 10.1016/j.compstruc.2012.12.008 10.1016/j.cageo.2016.11.008 10.1016/0196-8858(88)90025-5 10.1137/0721016 10.1016/j.cma.2005.06.027 10.1016/0045-7825(94)90112-0 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright Elsevier Science Ltd. Sep 15, 2018 Attribution |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Sep 15, 2018 – notice: Attribution |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.jcp.2018.05.001 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 102 |
| ExternalDocumentID | oai:HAL:hal-01913188v1 10_1016_j_jcp_2018_05_001 S0021999118302936 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH 1XC VOOES |
| ID | FETCH-LOGICAL-c402t-ca5fa4e44223d9f0d77129bed681f2edccf2104a3e2c515e4aa392474aeab2e33 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436477200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Tue Oct 14 20:41:48 EDT 2025 Fri Jul 25 05:56:06 EDT 2025 Sat Nov 29 03:10:20 EST 2025 Tue Nov 18 22:42:21 EST 2025 Fri Feb 23 02:46:25 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Impact Solid mechanics Material Point Method Finite deformation Discontinuous Galerkin approximation Hyperelasticity finite deformation hyperelasticity solid mechanics impact |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-ca5fa4e44223d9f0d77129bed681f2edccf2104a3e2c515e4aa392474aeab2e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6721-1003 0000-0001-6719-6616 |
| OpenAccessLink | https://hal.science/hal-01913188 |
| PQID | 2089865591 |
| PQPubID | 2047462 |
| PageCount | 23 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01913188v1 proquest_journals_2089865591 crossref_primary_10_1016_j_jcp_2018_05_001 crossref_citationtrail_10_1016_j_jcp_2018_05_001 elsevier_sciencedirect_doi_10_1016_j_jcp_2018_05_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-15 |
| PublicationDateYYYYMMDD | 2018-09-15 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
| References | Harten (br0090) 1983; 49 Lee, Gil, Bonet (br0120) 2013; 118 Colella (br0260) 1990; 87 Haider, Lee, Gil, Bonet (br0130) 2017; 109 Simo, Hughes (br0060) 2006; vol. 7 Kluth (br0270) 2008 Heuzé (br0110) 2017; 346 Jacobs, Hesthaven (br0150) 2006; 214 Ball (br0170) 1976; 63 Cockburn (br0140) 1999 Wiȩkowski (br0070) 2004; 193 Tielen (br0410) 2016 Leveque (br0080) 2002 Reed, Hill (br0340) 1973 Burgess, Sulsky, Brackbill (br0290) 1992; 103 Tielen, Wobbes, Möller, Beuth (br0420) 2017; 175 Kluth, Després (br0250) 2008; 20 M. Smith, ABAQUS/Standard User's Manual, Version 6.9, Simulia, 2009. Hirsch (br0330) 2007 Abedi, Petracovici, Haber (br0360) 2006; 195 Plohr, Sharp (br0160) 1988; 9 Di Pietro, Ern (br0180) 2011; vol. 69 Toro (br0030) 2013 Liu, Li, Liu (br0400) 2017; 99 Trangenstein, Colella (br0240) 1991; 44 Zhang, Chen, Liu (br0320) 2016 Steffen, Wallstedt, Guilkey, Kirby, Berzins (br0280) 2008; 32 Richter (br0350) 1994; 16 Ayachit (br0380) 2015 Belytschko, Liu, Moran, Elkhodary (br0050) 2013 Sulsky, Chen, Schreyer (br0010) 1994; 118 Hesthaven, Warburton (br0020) 2007 Trangenstein (br0200) 2009 Buzzi, Pedroso, Giacomini (br0310) 2008; 1 Psyk, Risch, Kinsey, Tekkaya, Kleiner (br0040) 2011; 211 Love, Sulsky (br0210) 2006; 195 Brackbill, Ruppel Flip (br0300) 1986; 65 Feng, Karakashian, Xing (br0190) 2013; vol. 157 Wang (br0370) 2011 Chavent, Salzano (br0220) 1982; 45 Favrie, Gavrilyuk (br0100) 2011; vol. 33 Osher (br0230) 1984; 21 Toro (10.1016/j.jcp.2018.05.001_br0030) 2013 Buzzi (10.1016/j.jcp.2018.05.001_br0310) 2008; 1 Chavent (10.1016/j.jcp.2018.05.001_br0220) 1982; 45 Heuzé (10.1016/j.jcp.2018.05.001_br0110) 2017; 346 Cockburn (10.1016/j.jcp.2018.05.001_br0140) 1999 Kluth (10.1016/j.jcp.2018.05.001_br0250) 2008; 20 Trangenstein (10.1016/j.jcp.2018.05.001_br0240) 1991; 44 Steffen (10.1016/j.jcp.2018.05.001_br0280) 2008; 32 Hesthaven (10.1016/j.jcp.2018.05.001_br0020) 2007 Richter (10.1016/j.jcp.2018.05.001_br0350) 1994; 16 Kluth (10.1016/j.jcp.2018.05.001_br0270) 2008 Burgess (10.1016/j.jcp.2018.05.001_br0290) 1992; 103 Colella (10.1016/j.jcp.2018.05.001_br0260) 1990; 87 Favrie (10.1016/j.jcp.2018.05.001_br0100) 2011; vol. 33 Belytschko (10.1016/j.jcp.2018.05.001_br0050) 2013 Sulsky (10.1016/j.jcp.2018.05.001_br0010) 1994; 118 Plohr (10.1016/j.jcp.2018.05.001_br0160) 1988; 9 Reed (10.1016/j.jcp.2018.05.001_br0340) 1973 10.1016/j.jcp.2018.05.001_br0390 Harten (10.1016/j.jcp.2018.05.001_br0090) 1983; 49 Feng (10.1016/j.jcp.2018.05.001_br0190) 2013; vol. 157 Psyk (10.1016/j.jcp.2018.05.001_br0040) 2011; 211 Wang (10.1016/j.jcp.2018.05.001_br0370) 2011 Tielen (10.1016/j.jcp.2018.05.001_br0410) 2016 Zhang (10.1016/j.jcp.2018.05.001_br0320) 2016 Tielen (10.1016/j.jcp.2018.05.001_br0420) 2017; 175 Liu (10.1016/j.jcp.2018.05.001_br0400) 2017; 99 Ball (10.1016/j.jcp.2018.05.001_br0170) 1976; 63 Abedi (10.1016/j.jcp.2018.05.001_br0360) 2006; 195 Haider (10.1016/j.jcp.2018.05.001_br0130) 2017; 109 Brackbill (10.1016/j.jcp.2018.05.001_br0300) 1986; 65 Hirsch (10.1016/j.jcp.2018.05.001_br0330) 2007 Simo (10.1016/j.jcp.2018.05.001_br0060) 2006; vol. 7 Di Pietro (10.1016/j.jcp.2018.05.001_br0180) 2011; vol. 69 Jacobs (10.1016/j.jcp.2018.05.001_br0150) 2006; 214 Love (10.1016/j.jcp.2018.05.001_br0210) 2006; 195 Leveque (10.1016/j.jcp.2018.05.001_br0080) 2002 Ayachit (10.1016/j.jcp.2018.05.001_br0380) 2015 Osher (10.1016/j.jcp.2018.05.001_br0230) 1984; 21 Wiȩkowski (10.1016/j.jcp.2018.05.001_br0070) 2004; 193 Lee (10.1016/j.jcp.2018.05.001_br0120) 2013; 118 Trangenstein (10.1016/j.jcp.2018.05.001_br0200) 2009 |
| References_xml | – year: 1973 ident: br0340 article-title: Triangular Mesh Methods for the Neutron Transport Equation – volume: 118 start-page: 179 year: 1994 end-page: 196 ident: br0010 article-title: A particle method for history-dependent materials publication-title: Comput. Methods Appl. Mech. Eng. – volume: 49 start-page: 357 year: 1983 end-page: 393 ident: br0090 article-title: High resolution schemes for hyperbolic conservation laws publication-title: J. Comput. Phys. – reference: M. Smith, ABAQUS/Standard User's Manual, Version 6.9, Simulia, 2009. – volume: vol. 157 year: 2013 ident: br0190 article-title: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations: 2012 John H Barrett Memorial Lectures – volume: 45 start-page: 307 year: 1982 end-page: 344 ident: br0220 article-title: A finite-element method for the 1-d water flooding problem with gravity publication-title: J. Comput. Phys. – volume: 21 start-page: 217 year: 1984 end-page: 235 ident: br0230 article-title: Riemann solvers, the entropy condition, and difference publication-title: SIAM J. Numer. Anal. – start-page: 69 year: 1999 end-page: 224 ident: br0140 article-title: Discontinuous Galerkin methods for convection-dominated problems publication-title: High-Order Methods for Computational Physics – volume: 211 start-page: 787 year: 2011 end-page: 829 ident: br0040 article-title: Electromagnetic forming—A review publication-title: J. Mater. Process. Technol. – volume: 118 start-page: 13 year: 2013 end-page: 38 ident: br0120 article-title: Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics publication-title: Comput. Struct. – year: 2002 ident: br0080 article-title: Finite Volume Methods for Hyperbolic Problems – volume: 20 start-page: 173 year: 2008 end-page: 192 ident: br0250 article-title: Perfect plasticity and hyperelastic models for isotropic materials publication-title: Contin. Mech. Thermodyn. – volume: 195 start-page: 3903 year: 2006 end-page: 3925 ident: br0210 article-title: An unconditionally stable, energy–momentum consistent implementation of the material-point method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 346 start-page: 369 year: 2017 end-page: 388 ident: br0110 article-title: Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic–plastic solids publication-title: J. Comput. Phys. – year: 2008 ident: br0270 article-title: Analyse mathématique et numérique de systèmes hyperélastiques et introduction de la plasticité – volume: 1 start-page: 1 year: 2008 end-page: 21 ident: br0310 article-title: Caveats on the implementation of the generalized material point method publication-title: Comput. Model. Eng. Sci. – volume: 214 start-page: 96 year: 2006 end-page: 121 ident: br0150 article-title: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids publication-title: J. Comput. Phys. – year: 2015 ident: br0380 article-title: The Paraview Guide: A Parallel Visualization Application publication-title: Kitware, Inc. – volume: 65 start-page: 314 year: 1986 end-page: 343 ident: br0300 article-title: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions publication-title: J. Comput. Phys. – year: 2013 ident: br0050 article-title: Nonlinear Finite Elements for Continua and Structures – year: 2011 ident: br0370 article-title: Foundations of Stress Waves – volume: 99 start-page: 135 year: 2017 end-page: 144 ident: br0400 article-title: Paraview visualization of abaqus output on the mechanical deformation of complex microstructures publication-title: Comput. Geosci. – volume: vol. 7 year: 2006 ident: br0060 article-title: Computational Inelasticity – volume: 63 start-page: 337 year: 1976 end-page: 403 ident: br0170 article-title: Convexity conditions and existence theorems in nonlinear elasticity publication-title: Arch. Ration. Mech. Anal. – volume: 9 start-page: 481 year: 1988 end-page: 499 ident: br0160 article-title: A conservative Eulerian formulation of the equations for elastic flow publication-title: Adv. Appl. Math. – year: 2013 ident: br0030 article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction – year: 2009 ident: br0200 article-title: Numerical Solution of Hyperbolic Partial Differential Equations – volume: 32 start-page: 107 year: 2008 end-page: 127 ident: br0280 article-title: Examination and analysis of implementation choices within the material point method (MPM) publication-title: Comput. Model. Eng. Sci. – volume: 109 start-page: 407 year: 2017 end-page: 456 ident: br0130 article-title: A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred total Lagrangian scheme publication-title: Int. J. Numer. Methods Eng. – volume: vol. 69 year: 2011 ident: br0180 article-title: Mathematical Aspects of Discontinuous Galerkin Methods – volume: 193 start-page: 4417 year: 2004 end-page: 4438 ident: br0070 article-title: The material point method in large strain engineering problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: vol. 33 start-page: 50 year: 2011 end-page: 67 ident: br0100 article-title: Dynamics of Shock Waves in Elastic-Plastic Solids publication-title: ESAIM: Proceedings – volume: 87 start-page: 171 year: 1990 end-page: 200 ident: br0260 article-title: Multidimensional upwind methods for hyperbolic conservation laws publication-title: J. Comput. Phys. – volume: 103 start-page: 1 year: 1992 end-page: 15 ident: br0290 article-title: Mass matrix formulation of the flip particle-in-cell method publication-title: J. Comput. Phys. – volume: 44 start-page: 41 year: 1991 end-page: 100 ident: br0240 article-title: A higher-order Godunov method for modeling finite deformation in elastic-plastic solids publication-title: Commun. Pure Appl. Math. – year: 2016 ident: br0320 article-title: The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases – year: 2007 ident: br0330 article-title: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics – volume: 195 start-page: 3247 year: 2006 end-page: 3273 ident: br0360 article-title: A space–time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance publication-title: Comput. Methods Appl. Mech. Eng. – year: 2007 ident: br0020 article-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications – volume: 175 start-page: 265 year: 2017 end-page: 272 ident: br0420 article-title: A high order material point method publication-title: Proc. Eng. – volume: 16 start-page: 65 year: 1994 end-page: 80 ident: br0350 article-title: An explicit finite element method for the wave equation publication-title: Appl. Numer. Math. – year: 2016 ident: br0410 article-title: High-Order Material Point Method – year: 2007 ident: 10.1016/j.jcp.2018.05.001_br0020 – year: 2007 ident: 10.1016/j.jcp.2018.05.001_br0330 – volume: 65 start-page: 314 issue: 2 year: 1986 ident: 10.1016/j.jcp.2018.05.001_br0300 article-title: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(86)90211-1 – year: 2015 ident: 10.1016/j.jcp.2018.05.001_br0380 article-title: The Paraview Guide: A Parallel Visualization Application publication-title: Kitware, Inc. – volume: 20 start-page: 173 issue: 3 year: 2008 ident: 10.1016/j.jcp.2018.05.001_br0250 article-title: Perfect plasticity and hyperelastic models for isotropic materials publication-title: Contin. Mech. Thermodyn. doi: 10.1007/s00161-008-0078-9 – volume: vol. 69 year: 2011 ident: 10.1016/j.jcp.2018.05.001_br0180 – volume: 193 start-page: 4417 issue: 39 year: 2004 ident: 10.1016/j.jcp.2018.05.001_br0070 article-title: The material point method in large strain engineering problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.01.035 – volume: vol. 33 start-page: 50 year: 2011 ident: 10.1016/j.jcp.2018.05.001_br0100 article-title: Dynamics of Shock Waves in Elastic-Plastic Solids – volume: vol. 157 year: 2013 ident: 10.1016/j.jcp.2018.05.001_br0190 – volume: 211 start-page: 787 issue: 5 year: 2011 ident: 10.1016/j.jcp.2018.05.001_br0040 article-title: Electromagnetic forming—A review publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2010.12.012 – volume: 63 start-page: 337 issue: 4 year: 1976 ident: 10.1016/j.jcp.2018.05.001_br0170 article-title: Convexity conditions and existence theorems in nonlinear elasticity publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00279992 – volume: 32 start-page: 107 issue: 2 year: 2008 ident: 10.1016/j.jcp.2018.05.001_br0280 article-title: Examination and analysis of implementation choices within the material point method (MPM) publication-title: Comput. Model. Eng. Sci. – volume: 103 start-page: 1 issue: 1 year: 1992 ident: 10.1016/j.jcp.2018.05.001_br0290 article-title: Mass matrix formulation of the flip particle-in-cell method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90323-Q – volume: 214 start-page: 96 issue: 1 year: 2006 ident: 10.1016/j.jcp.2018.05.001_br0150 article-title: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.09.008 – year: 2013 ident: 10.1016/j.jcp.2018.05.001_br0030 – volume: 195 start-page: 3247 issue: 25 year: 2006 ident: 10.1016/j.jcp.2018.05.001_br0360 article-title: A space–time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.06.013 – volume: 16 start-page: 65 issue: 1 year: 1994 ident: 10.1016/j.jcp.2018.05.001_br0350 article-title: An explicit finite element method for the wave equation publication-title: Appl. Numer. Math. doi: 10.1016/0168-9274(94)00048-4 – start-page: 69 year: 1999 ident: 10.1016/j.jcp.2018.05.001_br0140 article-title: Discontinuous Galerkin methods for convection-dominated problems – year: 2016 ident: 10.1016/j.jcp.2018.05.001_br0410 – volume: 45 start-page: 307 issue: 3 year: 1982 ident: 10.1016/j.jcp.2018.05.001_br0220 article-title: A finite-element method for the 1-d water flooding problem with gravity publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90107-3 – year: 2011 ident: 10.1016/j.jcp.2018.05.001_br0370 – volume: 175 start-page: 265 year: 2017 ident: 10.1016/j.jcp.2018.05.001_br0420 article-title: A high order material point method publication-title: Proc. Eng. doi: 10.1016/j.proeng.2017.01.022 – volume: 346 start-page: 369 year: 2017 ident: 10.1016/j.jcp.2018.05.001_br0110 article-title: Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic–plastic solids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.06.027 – year: 2009 ident: 10.1016/j.jcp.2018.05.001_br0200 – year: 2016 ident: 10.1016/j.jcp.2018.05.001_br0320 – year: 2002 ident: 10.1016/j.jcp.2018.05.001_br0080 – volume: 49 start-page: 357 issue: 3 year: 1983 ident: 10.1016/j.jcp.2018.05.001_br0090 article-title: High resolution schemes for hyperbolic conservation laws publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90136-5 – volume: 109 start-page: 407 issue: 3 year: 2017 ident: 10.1016/j.jcp.2018.05.001_br0130 article-title: A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred total Lagrangian scheme publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5293 – volume: vol. 7 year: 2006 ident: 10.1016/j.jcp.2018.05.001_br0060 – volume: 44 start-page: 41 year: 1991 ident: 10.1016/j.jcp.2018.05.001_br0240 article-title: A higher-order Godunov method for modeling finite deformation in elastic-plastic solids publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160440103 – volume: 87 start-page: 171 issue: 1 year: 1990 ident: 10.1016/j.jcp.2018.05.001_br0260 article-title: Multidimensional upwind methods for hyperbolic conservation laws publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90233-Q – volume: 118 start-page: 13 year: 2013 ident: 10.1016/j.jcp.2018.05.001_br0120 article-title: Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.12.008 – year: 1973 ident: 10.1016/j.jcp.2018.05.001_br0340 – volume: 99 start-page: 135 issue: C year: 2017 ident: 10.1016/j.jcp.2018.05.001_br0400 article-title: Paraview visualization of abaqus output on the mechanical deformation of complex microstructures publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.11.008 – year: 2008 ident: 10.1016/j.jcp.2018.05.001_br0270 – volume: 9 start-page: 481 issue: 4 year: 1988 ident: 10.1016/j.jcp.2018.05.001_br0160 article-title: A conservative Eulerian formulation of the equations for elastic flow publication-title: Adv. Appl. Math. doi: 10.1016/0196-8858(88)90025-5 – volume: 21 start-page: 217 issue: 2 year: 1984 ident: 10.1016/j.jcp.2018.05.001_br0230 article-title: Riemann solvers, the entropy condition, and difference publication-title: SIAM J. Numer. Anal. doi: 10.1137/0721016 – volume: 195 start-page: 3903 issue: 33–36 year: 2006 ident: 10.1016/j.jcp.2018.05.001_br0210 article-title: An unconditionally stable, energy–momentum consistent implementation of the material-point method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.06.027 – volume: 1 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.jcp.2018.05.001_br0310 article-title: Caveats on the implementation of the generalized material point method publication-title: Comput. Model. Eng. Sci. – ident: 10.1016/j.jcp.2018.05.001_br0390 – volume: 118 start-page: 179 issue: 1–2 year: 1994 ident: 10.1016/j.jcp.2018.05.001_br0010 article-title: A particle method for history-dependent materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(94)90112-0 – year: 2013 ident: 10.1016/j.jcp.2018.05.001_br0050 |
| SSID | ssj0008548 |
| Score | 2.3479848 |
| Snippet | An extension of the Material Point Method [1] based on the Discontinuous Galerkin approximation (DG) [2] is presented here. A solid domain is represented by a... An extension of the Material Point Method based on the Discontinuous Galerkin approximation (DG) is presented here. A solid domain is represented by a... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 80 |
| SubjectTerms | Approximation Computational grids Computational physics Computer simulation Conservation laws Deformation Discontinuous Galerkin approximation Engineering Sciences Finite deformation Finite element analysis Finite element method Fluxes Galerkin method Hyperelasticity Impact Inverse problems Material Point Method Mechanics Meshless methods Multidimensional methods Numerical analysis Numerical methods Riemann solver Solid mechanics Structural mechanics Tangling |
| Title | A Discontinuous Galerkin Material Point Method for the solution of impact problems in solid dynamics |
| URI | https://dx.doi.org/10.1016/j.jcp.2018.05.001 https://www.proquest.com/docview/2089865591 https://hal.science/hal-01913188 |
| Volume | 369 |
| WOSCitedRecordID | wos000436477200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvfKMVBrIQT1SZ4sRJ7McINjroqkoM1DfLdRytVZVO64cm_ir-RM5f7Vq0aTzwElVO7aS-X-8ul9_dIfRBJSRVTOZRDf53REdVHvE0U1HFJPhyKs8z23nuZ6_o99lwyAet1u-QC7OaFk3Drq_55X8VNYyBsE3q7D-Ie70oDMBnEDocQexwvJfgS1NR0zDQx83S8Fu_gAkwAfHOmVzY63cGs3Gz6JzZ3tFrmmG4KVtDwqVO-mYzljELp8dVp3L96-e3uLTKtogI4UUXNNlw6XUjly6KXZniypso7PKXe12_Q1iybGPTwMKhymRwB5aOD1MQy6lwiZouduYN_U1dbMgh3PXqOtJO_cY8jpLCZV8G_Zy6Xi5ew7q-T95WE5ut_bcZcBGJydFEmZKkhNnirD5oslVyu1t-F4PPJ6J32v-2ffYGT7Fb9uB4IacR-MMElCBbwfP2flJkHPTofnl6PPy6tv4so876-18X3qRbTuHO_dzmCz24MKTcHd_AOjznT9FjL1ZcOoQ9Qy3dPEdP_FML9jZh_gJVJd4CHA6AwwFw2AIOO8BhABwGwOEAODyrsQMcDoDDMNkCDgfAvUQ_To7PP3Uj37sjUjROFpGSWS2pphTcz4rXcVUU4FmOdJUzUie6UqpOSExlqhMFLrWmUoKnTgsqtRwlOk1fob1m1ugDhLkkGhYlnFUJrUnONewrp5JwNWJU8jaKwy4K5Qvbm_4qUxEYjBMBGy_Mxos4MyzONvq4nnLpqrrc9WUaRCO8W-rcTQFwu2vaexDjenlTxh2AJMzYBkZtdBikLLwOmcMijJt8cU5e32eNN-jR5g93iPYWV0v9Fj1Uq8V4fvXO4_MPcCDCSg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Discontinuous+Galerkin+Material+Point+Method+for+the+solution+of+impact+problems+in+solid+dynamics&rft.jtitle=Journal+of+computational+physics&rft.au=Renaud%2C+Adrien&rft.au=Heuz%C3%A9%2C+Thomas&rft.au=Stainier%2C+Laurent&rft.date=2018-09-15&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=369&rft.spage=80&rft.epage=102&rft_id=info:doi/10.1016%2Fj.jcp.2018.05.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01913188v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |