SPULTRA: Low-Dose CT Image Reconstruction With Joint Statistical and Learned Image Models

Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 39; H. 3; S. 729 - 741
Hauptverfasser: Ye, Siqi, Ravishankar, Saiprasad, Long, Yong, Fessler, Jeffrey A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality is often degraded in low-dose scans. This paper investigates a shifted-Poisson (SP) model based likelihood function that uses the pre-log raw measurements that better represents the measurement statistics, together with a data-driven regularizer exploiting a Union of Learned TRAnsforms (SPULTRA). Both the SP induced data-fidelity term and the regularizer in the proposed framework are nonconvex. The proposed SPULTRA algorithm uses quadratic surrogate functions for the SP induced data-fidelity term. Each iteration involves a quadratic subproblem for updating the image, and a sparse coding and clustering subproblem that has a closed-form solution. The SPULTRA algorithm has a similar computational cost per iteration as its recent counterpart PWLS-ULTRA that uses post-log measurements, and it provides better image reconstruction quality than PWLS-ULTRA, especially in low-dose scans.
AbstractList Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality is often degraded in low-dose scans. This paper investigates a shifted-Poisson (SP) model based likelihood function that uses the pre-log raw measurements that better represents the measurement statistics, together with a data-driven regularizer exploiting a Union of Learned TRAnsforms (SPULTRA). Both the SP induced data-fidelity term and the regularizer in the proposed framework are nonconvex. The proposed SPULTRA algorithm uses quadratic surrogate functions for the SP induced data-fidelity term. Each iteration involves a quadratic subproblem for updating the image, and a sparse coding and clustering subproblem that has a closed-form solution. The SPULTRA algorithm has a similar computational cost per iteration as its recent counterpart PWLS-ULTRA that uses post-log measurements, and it provides better image reconstruction quality than PWLS-ULTRA, especially in low-dose scans.
Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality is often degraded in low-dose scans. This paper investigates a shifted-Poisson (SP) model based likelihood function that uses the pre-log raw measurements that better represents the measurement statistics, together with a data-driven regularizer exploiting a Union of Learned TRAnsforms (SPULTRA). Both the SP induced data-fidelity term and the regularizer in the proposed framework are nonconvex. The proposed SPULTRA algorithm uses quadratic surrogate functions for the SP induced data-fidelity term. Each iteration involves a quadratic subproblem for updating the image, and a sparse coding and clustering subproblem that has a closed-form solution. The SPULTRA algorithm has a similar computational cost per iteration as its recent counterpart PWLS-ULTRA that uses post-log measurements, and it provides better image reconstruction quality than PWLS-ULTRA, especially in low-dose scans.Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality is often degraded in low-dose scans. This paper investigates a shifted-Poisson (SP) model based likelihood function that uses the pre-log raw measurements that better represents the measurement statistics, together with a data-driven regularizer exploiting a Union of Learned TRAnsforms (SPULTRA). Both the SP induced data-fidelity term and the regularizer in the proposed framework are nonconvex. The proposed SPULTRA algorithm uses quadratic surrogate functions for the SP induced data-fidelity term. Each iteration involves a quadratic subproblem for updating the image, and a sparse coding and clustering subproblem that has a closed-form solution. The SPULTRA algorithm has a similar computational cost per iteration as its recent counterpart PWLS-ULTRA that uses post-log measurements, and it provides better image reconstruction quality than PWLS-ULTRA, especially in low-dose scans.
Author Long, Yong
Fessler, Jeffrey A.
Ye, Siqi
Ravishankar, Saiprasad
Author_xml – sequence: 1
  givenname: Siqi
  orcidid: 0000-0002-2295-3123
  surname: Ye
  fullname: Ye, Siqi
  email: yesiqi@sjtu.edu.cn
  organization: University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Saiprasad
  orcidid: 0000-0002-5792-5827
  surname: Ravishankar
  fullname: Ravishankar, Saiprasad
  email: ravisha3@msu.edu
  organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
– sequence: 3
  givenname: Yong
  orcidid: 0000-0002-2055-0662
  surname: Long
  fullname: Long, Yong
  email: yong.long@sjtu.edu.cn
  organization: University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Jeffrey A.
  orcidid: 0000-0001-9998-3315
  surname: Fessler
  fullname: Fessler, Jeffrey A.
  email: fessler@umich.edu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31425021$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vEzEQxS1URNPCHQkJrcSFywZ_7drmgFSFr6BUoDYVcLK89rh1tbHL2gviv2ejpBX0wGkO83tPb-YdoYOYIiD0lOA5IVi9Wp8u5xQTNaeKccXYAzQjTSNr2vBvB2iGqZA1xi09REc5X2NMeIPVI3TICKcNpmSGvp9_uVitz05eV6v0q36bMlSLdbXcmEuozsCmmMsw2hJSrL6GclV9SiGW6ryYEnIJ1vSVia5agRkiuL3uNDno82P00Js-w5P9PEYX79-tFx_r1ecPy8XJqrYc01JbQyVI0kjHmZG4c0xI61TnQFLXcc-9kda3vhNAvRKYOQcdp55jj7lXhB2jNzvfm7HbgLMQy2B6fTOEjRl-62SC_ncTw5W-TD-1IAITwSaDl3uDIf0YIRe9CdlC35sIacyaMtYqSWlLJ_TFPfQ6jUOczpsowVspmkZN1PO_E91Fuf36BLQ7wA4p5wG8tmH70bQNGHpNsN7Wq6d69bZeva93EuJ7wlvv_0ie7SQBAO5wKRSXE_IHdaSvgQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2021_3074783
crossref_primary_10_1016_j_sigpro_2020_107871
crossref_primary_10_1109_ACCESS_2021_3079323
crossref_primary_10_1109_TCI_2024_3430469
crossref_primary_10_1088_1361_6560_ab8fc1
crossref_primary_10_1088_1361_6560_ac556e
crossref_primary_10_1109_TMI_2021_3095310
crossref_primary_10_1002_mp_15013
crossref_primary_10_1137_21M1445697
crossref_primary_10_1002_mp_16645
crossref_primary_10_1002_mp_17406
crossref_primary_10_1002_mp_15414
crossref_primary_10_1088_1361_6560_acd238
crossref_primary_10_1002_mp_14449
crossref_primary_10_1002_mp_16307
crossref_primary_10_1109_TMI_2021_3139533
crossref_primary_10_1007_s10915_024_02638_7
crossref_primary_10_1016_j_radphyschem_2025_113140
crossref_primary_10_1515_bmt_2023_0581
crossref_primary_10_1109_MSP_2019_2951469
Cites_doi 10.1118/1.1915015
10.1118/1.2836423
10.1109/TMI.2017.2779406
10.1109/TMI.2010.2050898
10.1117/12.480302
10.1118/1.2955743
10.1117/3.831079.ch1
10.1118/1.598410
10.1117/12.465601
10.1109/TMI.2018.2805692
10.1137/17M112124X
10.1109/83.465108
10.1109/TMI.2018.2865202
10.1088/0031-9155/60/19/7437
10.1109/TMI.2015.2508780
10.1016/j.ejmp.2012.01.003
10.1109/TSP.2012.2226449
10.1088/0031-9155/57/2/309
10.1109/TMI.2014.2365179
10.1007/978-3-642-02431-3
10.1109/TMI.2012.2195669
10.1109/TSP.2015.2405503
10.1118/1.598392
10.1088/0031-9155/58/12/R63
10.1109/TMI.2016.2606338
10.1109/TMI.2018.2799231
10.1117/12.2223786
10.1118/1.3560878
10.1109/TMI.2011.2172951
10.1109/TCSVT.2016.2643009
10.1109/TMI.2017.2753138
10.1109/42.802758
10.1117/12.660281
10.1109/TMI.2006.875429
10.1137/141002293
10.1002/mp.12097
10.1109/TIP.2009.2017139
10.1118/1.3638125
10.1109/TMI.2018.2832007
10.1109/TMI.2016.2627004
10.1007/s11263-014-0761-1
10.1109/TCI.2016.2567299
10.1109/TMI.2006.882141
10.1097/RCT.0b013e318258e891
10.1118/1.4722751
10.1109/TMI.2018.2823756
10.1109/TMI.2016.2600249
10.1118/1.2789499
10.1109/TNS.2008.2004557
10.1109/TMI.2014.2350962
10.1109/42.993128
10.1364/JOSAA.1.000612
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2019.2934933
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 741
ExternalDocumentID PMC7170173
31425021
10_1109_TMI_2019_2934933
8794829
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: DARPA Young Faculty
  grantid: D14AP00086
– fundername: Office of Naval Research
  grantid: N00014-15-1-2141
  funderid: 10.13039/100000006
– fundername: National Natural Science Foundation of China
  grantid: 61501292
  funderid: 10.13039/501100001809
– fundername: National Institutes of Health
  grantid: U01 EB018753
  funderid: 10.13039/100000002
– fundername: Army Research Office
  grantid: W911NF-11-1-0391; 2015-05174-05
  funderid: 10.13039/100000183
– fundername: NIBIB NIH HHS
  grantid: U01 EB018753
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c402t-ca28e8158d43a80bd378cd9bde82db4f4fa8cf6fb7e2f9703ddeb42f40f04f913
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525262100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 15:37:38 EDT 2025
Sat Sep 27 16:51:59 EDT 2025
Mon Jun 30 04:25:20 EDT 2025
Thu Apr 03 07:08:03 EDT 2025
Tue Nov 18 22:32:51 EST 2025
Sat Nov 29 05:14:07 EST 2025
Wed Aug 27 02:30:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-ca28e8158d43a80bd378cd9bde82db4f4fa8cf6fb7e2f9703ddeb42f40f04f913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2295-3123
0000-0001-9998-3315
0000-0002-5792-5827
0000-0002-2055-0662
PMID 31425021
PQID 2374687559
PQPubID 85460
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170173
pubmed_primary_31425021
proquest_journals_2374687559
proquest_miscellaneous_2336982262
crossref_citationtrail_10_1109_TMI_2019_2934933
crossref_primary_10_1109_TMI_2019_2934933
ieee_primary_8794829
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ding (ref11) 2016
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref10
mordukhovich (ref54) 2006
ref17
ref16
ref19
ref18
ref51
ref50
xu (ref25) 2009; 18
ref46
ref47
ref42
ref41
chun (ref48) 2017
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ye (ref39) 2017
ref34
ref37
ref36
ref31
ref30
ref2
ref1
ref38
hayes (ref22) 2019; 10948
xu (ref32) 2012; 31
ref24
ref23
ref26
ref20
ref21
luo (ref33) 2016; 9847
ref28
ref27
garey (ref35) 2002; 29
ref29
han (ref45) 2016
References_xml – ident: ref23
  doi: 10.1118/1.1915015
– ident: ref27
  doi: 10.1118/1.2836423
– ident: ref26
  doi: 10.1109/TMI.2017.2779406
– year: 2006
  ident: ref54
  publication-title: Variational Analysis and Generalized Differentiation I Basic Theory II Applications
– ident: ref58
  doi: 10.1109/TMI.2010.2050898
– ident: ref8
  doi: 10.1117/12.480302
– ident: ref56
  doi: 10.1118/1.2955743
– ident: ref5
  doi: 10.1117/3.831079.ch1
– ident: ref6
  doi: 10.1118/1.598410
– ident: ref7
  doi: 10.1117/12.465601
– ident: ref43
  doi: 10.1109/TMI.2018.2805692
– ident: ref52
  doi: 10.1137/17M112124X
– ident: ref21
  doi: 10.1109/83.465108
– ident: ref44
  doi: 10.1109/TMI.2018.2865202
– ident: ref3
  doi: 10.1088/0031-9155/60/19/7437
– ident: ref50
  doi: 10.1109/TMI.2015.2508780
– ident: ref14
  doi: 10.1016/j.ejmp.2012.01.003
– start-page: 1
  year: 2017
  ident: ref39
  article-title: Adaptive sparse modeling and shifted-Poisson likelihood based approach for low-dose CT image reconstruction
  publication-title: Proc IEEE Workshop Mach Learn Signal Process
– ident: ref36
  doi: 10.1109/TSP.2012.2226449
– ident: ref2
  doi: 10.1088/0031-9155/57/2/309
– ident: ref49
  doi: 10.1109/TMI.2014.2365179
– ident: ref53
  doi: 10.1007/978-3-642-02431-3
– volume: 31
  start-page: 1682
  year: 2012
  ident: ref32
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2012.2195669
– ident: ref37
  doi: 10.1109/TSP.2015.2405503
– ident: ref1
  doi: 10.1118/1.598392
– ident: ref12
  doi: 10.1088/0031-9155/58/12/R63
– ident: ref20
  doi: 10.1109/TMI.2016.2606338
– ident: ref41
  doi: 10.1109/TMI.2018.2799231
– year: 2016
  ident: ref45
  article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis
  publication-title: arXiv 1611 06391
– volume: 9847
  start-page: 98470l
  year: 2016
  ident: ref33
  article-title: 2.5D dictionary learning based computed tomography reconstruction
  publication-title: Proc SPIE
  doi: 10.1117/12.2223786
– volume: 10948
  year: 2019
  ident: ref22
  article-title: Unbiased statistical image reconstruction in low-dose CT
  publication-title: Proc SPIE
– ident: ref28
  doi: 10.1118/1.3560878
– ident: ref29
  doi: 10.1109/TMI.2011.2172951
– ident: ref34
  doi: 10.1109/TCSVT.2016.2643009
– ident: ref42
  doi: 10.1109/TMI.2017.2753138
– ident: ref51
  doi: 10.1109/42.802758
– ident: ref19
  doi: 10.1117/12.660281
– ident: ref24
  doi: 10.1109/TMI.2006.875429
– ident: ref55
  doi: 10.1137/141002293
– ident: ref31
  doi: 10.1002/mp.12097
– volume: 18
  start-page: 1228
  year: 2009
  ident: ref25
  article-title: Electronic noise modeling in statistical iterative reconstruction
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2017139
– start-page: 399
  year: 2016
  ident: ref11
  article-title: Modeling mixed Poisson-Gaussian noise in statistical image reconstruction for X-ray CT
  publication-title: Proc 2nd Int Meeting Image Formation X-ray CT
– ident: ref30
  doi: 10.1118/1.3638125
– start-page: 115
  year: 2017
  ident: ref48
  article-title: Sparse-view X-ray CT reconstruction using $\ell_{1}$ regularization with learned sparsifying transform
  publication-title: Proc of International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine
– ident: ref38
  doi: 10.1109/TMI.2018.2832007
– ident: ref13
  doi: 10.1109/TMI.2016.2627004
– ident: ref40
  doi: 10.1007/s11263-014-0761-1
– ident: ref47
  doi: 10.1109/TCI.2016.2567299
– ident: ref18
  doi: 10.1109/TMI.2006.882141
– ident: ref9
  doi: 10.1097/RCT.0b013e318258e891
– volume: 29
  year: 2002
  ident: ref35
  publication-title: Computers and Intractability
– ident: ref10
  doi: 10.1118/1.4722751
– ident: ref46
  doi: 10.1109/TMI.2018.2823756
– ident: ref57
  doi: 10.1109/TMI.2016.2600249
– ident: ref15
  doi: 10.1118/1.2789499
– ident: ref4
  doi: 10.1109/TNS.2008.2004557
– ident: ref16
  doi: 10.1109/TMI.2014.2350962
– ident: ref17
  doi: 10.1109/42.993128
– ident: ref59
  doi: 10.1364/JOSAA.1.000612
SSID ssj0014509
Score 2.457823
Snippet Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 729
SubjectTerms Accuracy
Algorithms
Clustering
Computed tomography
Computer applications
Data models
Dictionaries
efficient algorithms
Humans
Image coding
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Inverse problems
Iterative methods
Likelihood Functions
Machine Learning
Mathematical models
nonconvex optimization
Poisson Distribution
Radiation Dosage
shifted-Poisson model
sparse representation
Statistical analysis
Statistical models
Tomography, X-Ray Computed - methods
transform learning
Transforms
Two dimensional displays
X-ray imaging
Title SPULTRA: Low-Dose CT Image Reconstruction With Joint Statistical and Learned Image Models
URI https://ieeexplore.ieee.org/document/8794829
https://www.ncbi.nlm.nih.gov/pubmed/31425021
https://www.proquest.com/docview/2374687559
https://www.proquest.com/docview/2336982262
https://pubmed.ncbi.nlm.nih.gov/PMC7170173
Volume 39
WOSCitedRecordID wos000525262100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIqIPVls_YmtZwRfB9JLdZD_6VqrFyrUUveL5FPaTHtREvKv--84mubQnRfAtsLNJyG92diYz-xuAN8FxZmSp04JTgwFKMKmxNE-lVqgt2grRdS0Zi7MzOZ2q8zV4N5yF8d63xWd-P162uXzX2Ov4q2wkUXkkVeuwLgTvzmoNGYOi7Mo5aGSMzThdpiQzNZqcnsQaLrWPW1uhGFvZgtqeKne5l39XSd7ado43_--FH8Oj3r0kh50-PIE1X2_Bw1ukg1tw_7RPp2_Dty_nF-PJ58MDMm5-p--buSdHE3LyHW0MiXHpDbss-TpbXJJPzaxekOiftvTO-CBdO9JStHrXz4vN1a7mT-Hi-MPk6GPa91pILUaQi9RqKr3MS-kKpmVmHBPSOmWcl9SZIhRBSxt4MMLToNBMoFk0BQ2IblYElbNnsFE3tX8BBE2ockowpkwMPrnWNLOxnYfLA_MlS2C0_PyV7YnIYz-Mq6oNSDJVIWBVBKzqAUvg7TDjR0fC8Q_Z7YjDINdDkMDuEuGqX6XzijJRcAzYShx-PQzj-opJE1375jrKMB45DjlN4HmnEMO9WY4WD52kBMSKqgwCkbt7daSeXbYc3iLy4Av28u633YEHNMb1ba3bLmwg2P4V3LO_EN6fe6j-U7nXqv8f0e4A-Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgigceLQFAgWMxAWJdBPbiW1uVaHqQnZVQaqWU-SnulJJqu4W_j52kg1dVCFxi-RxEuUbj2cy428A3jqTE8UzGdMcKx-gOBUrjdOYS-G1RWrGuq4lBZtO-empOFqD98NZGGttW3xmd8Nlm8s3jb4Kv8pG3CsPx-IW3M4oxUl3WmvIGdCsK-jAgTM2yfEyKZmIUTkZhyouses3NyoIWdmE2q4qNzmYf9dJXtt4Dh7-3ys_gge9g4n2Oo14DGu23oT712gHN-HupE-ob8H3b0fHRfl17wMqml_xx2Zu0X6Jxj-8lUEhMv3DL4tOZosz9LmZ1QsUPNSW4Nk_SNYGtSSt1vTzQnu18_k2HB98KvcP477bQqx9DLmItcTc8jTjhhLJE2UI49oIZSzHRlFHneTa5U4xi53whsIbRkWx8_gm1ImUPIH1uqntM0DeiAojGCFChfAzlxInOjT0MKkjNiMRjJafv9I9FXnoiHFetSFJIioPWBUAq3rAIng3zLjoaDj-IbsVcBjkeggi2FkiXPXrdF5hwmjuQ7bMD78Zhv0KC2kTWdvmKsiQPLAc5jiCp51CDPcmqbd53k2KgK2oyiAQ2LtXR-rZWcvizQITPiPPb37b17BxWE6KqhhPv7yAezhE-W3l2w6se-DtS7ijf3qoL1-1i-A3P8oDWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPULTRA%3A+Low-Dose+CT+Image+Reconstruction+With+Joint+Statistical+and+Learned+Image+Models&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ye%2C+Siqi&rft.au=Ravishankar%2C+Saiprasad&rft.au=Long%2C+Yong&rft.au=Fessler%2C+Jeffrey+A&rft.date=2020-03-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=39&rft.issue=3&rft.spage=729&rft_id=info:doi/10.1109%2FTMI.2019.2934933&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon