Data-Driven Evolutionary Optimization: An Overview and Case Studies
Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly phy...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 23; číslo 3; s. 442 - 458 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this paper, we provide a taxonomy of different data driven evolutionary optimization problems, discuss main challenges in data-driven evolutionary optimization with respect to the nature and amount of data, and the availability of new data during optimization. Real-world application examples are given to illustrate different model management strategies for different categories of data-driven optimization problems. |
|---|---|
| AbstractList | Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this paper, we provide a taxonomy of different data driven evolutionary optimization problems, discuss main challenges in data-driven evolutionary optimization with respect to the nature and amount of data, and the availability of new data during optimization. Real-world application examples are given to illustrate different model management strategies for different categories of data-driven optimization problems. |
| Author | Wang, Handing Chugh, Tinkle Miettinen, Kaisa Jin, Yaochu Guo, Dan |
| Author_xml | – sequence: 1 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K – sequence: 2 givenname: Handing orcidid: 0000-0002-4805-3780 surname: Wang fullname: Wang, Handing email: hdwang@xidian.edu.cn organization: Department of Computer Science, University of Surrey, Guildford, U.K – sequence: 3 givenname: Tinkle orcidid: 0000-0001-5123-8148 surname: Chugh fullname: Chugh, Tinkle email: t.chugh@exeter.ac.uk organization: Department of Computer Science, University of Exeter, Exeter, U.K – sequence: 4 givenname: Dan orcidid: 0000-0002-0334-0145 surname: Guo fullname: Guo, Dan email: guodan717@163.com organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 5 givenname: Kaisa orcidid: 0000-0003-1013-4689 surname: Miettinen fullname: Miettinen, Kaisa email: kaisa.miettinen@jyu.fi organization: Faculty of Information Technology, University of Jyvaskyla, Finland |
| BookMark | eNp9UE1LAzEUDFLBtvoDxMuC561JdvPlrWzXDyj0YBVvIWazkNLu1iS7or_erC0ePHh4vDcw84aZCRg1bWMAuERwhhAUN-vypZhhiPgMcyogRCdgjESOUggxHcUbcpEyxl_PwMT7TSTkBIkxKBYqqHThbG-apOzbbRds2yj3maz2we7slxrwbTJvklVvXG_NR6KaKimUN8lT6Cpr_Dk4rdXWm4vjnoLnu3JdPKTL1f1jMV-mOoc4pJpUdS54hQSklBnFck5RpiFSTOhMEaoV17Q2nFVaoUroKnvDjHDKicY8oim4Pvzdu_a9Mz7ITdu5JlpKjDPMaJw8stCBpV3rvTO13Du7i4kkgnLoSg5dyaEreewqatgfjbbhJ3lwym7_VV4dlNYY8-vEc0IJEdk36XJ4QQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1002_marc_202500482 crossref_primary_10_1016_j_swevo_2022_101081 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1016_j_swevo_2022_101080 crossref_primary_10_2118_201237_PA crossref_primary_10_1109_TASE_2025_3551716 crossref_primary_10_1109_TCYB_2020_2967553 crossref_primary_10_1016_j_enconman_2025_120170 crossref_primary_10_1016_j_ins_2023_02_049 crossref_primary_10_1109_TEVC_2023_3255263 crossref_primary_10_1016_j_ynexs_2024_100044 crossref_primary_10_1109_TCYB_2022_3214825 crossref_primary_10_1109_TEVC_2020_2986348 crossref_primary_10_1016_j_conbuildmat_2024_138863 crossref_primary_10_1016_j_tsep_2025_103454 crossref_primary_10_1007_s10586_025_05459_x crossref_primary_10_1016_j_ins_2021_06_054 crossref_primary_10_1007_s00158_022_03419_2 crossref_primary_10_1109_TII_2023_3281661 crossref_primary_10_1007_s10489_024_05612_w crossref_primary_10_1007_s40747_021_00568_7 crossref_primary_10_1007_s40747_022_00717_6 crossref_primary_10_1016_j_swevo_2020_100787 crossref_primary_10_1061__ASCE_HE_1943_5584_0002214 crossref_primary_10_1016_j_ins_2023_119899 crossref_primary_10_1016_j_trc_2022_103827 crossref_primary_10_1016_j_knosys_2021_107532 crossref_primary_10_1016_j_knosys_2020_106262 crossref_primary_10_1109_TSMC_2023_3259947 crossref_primary_10_1016_j_asoc_2022_109957 crossref_primary_10_1016_j_ijepes_2023_109237 crossref_primary_10_1007_s12293_021_00351_8 crossref_primary_10_1007_s40747_020_00249_x crossref_primary_10_1016_j_ifacol_2021_10_146 crossref_primary_10_1016_j_neucom_2022_10_075 crossref_primary_10_1109_TEVC_2019_2954411 crossref_primary_10_1007_s12293_022_00380_x crossref_primary_10_1109_TCYB_2021_3126341 crossref_primary_10_1109_TII_2022_3232774 crossref_primary_10_3390_math13010158 crossref_primary_10_1016_j_ins_2024_120250 crossref_primary_10_1016_j_swevo_2025_101926 crossref_primary_10_1016_j_swevo_2025_101924 crossref_primary_10_1109_TEVC_2022_3170638 crossref_primary_10_1109_TEVC_2023_3306017 crossref_primary_10_1109_TFUZZ_2020_2973121 crossref_primary_10_1109_TCYB_2024_3489885 crossref_primary_10_1016_j_jclepro_2023_139039 crossref_primary_10_1016_j_compstruc_2021_106546 crossref_primary_10_1109_TSMC_2021_3102298 crossref_primary_10_1016_j_knosys_2022_108436 crossref_primary_10_1080_08839514_2021_1901034 crossref_primary_10_1016_j_petrol_2021_110050 crossref_primary_10_1007_s11047_022_09907_0 crossref_primary_10_1007_s40747_022_00923_2 crossref_primary_10_1016_j_eswa_2024_123517 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1007_s10617_019_09220_7 crossref_primary_10_3390_w16233380 crossref_primary_10_3390_jmse9010018 crossref_primary_10_1007_s00500_023_09546_2 crossref_primary_10_1016_j_ins_2022_01_052 crossref_primary_10_1016_j_energy_2019_06_115 crossref_primary_10_1109_TSMC_2020_3044418 crossref_primary_10_1371_journal_pone_0291383 crossref_primary_10_3390_computation11120245 crossref_primary_10_1007_s40747_021_00506_7 crossref_primary_10_1016_j_cma_2023_116704 crossref_primary_10_1007_s10489_022_04080_4 crossref_primary_10_1109_TETCI_2019_2961190 crossref_primary_10_1016_j_rser_2023_113860 crossref_primary_10_1109_TETCI_2023_3240221 crossref_primary_10_1007_s00521_022_07097_5 crossref_primary_10_1016_j_swevo_2022_101096 crossref_primary_10_1109_TPWRS_2020_3041866 crossref_primary_10_1016_j_engappai_2019_103469 crossref_primary_10_1109_TSC_2024_3433487 crossref_primary_10_1109_ACCESS_2023_3274490 crossref_primary_10_1016_j_swevo_2025_101905 crossref_primary_10_1016_j_cja_2022_09_020 crossref_primary_10_1016_j_compchemeng_2025_109236 crossref_primary_10_1016_j_asoc_2021_108353 crossref_primary_10_1016_j_cirp_2024_04_101 crossref_primary_10_1016_j_asoc_2025_112727 crossref_primary_10_1016_j_asoc_2021_107268 crossref_primary_10_1109_TEVC_2022_3177605 crossref_primary_10_1016_j_swevo_2019_100574 crossref_primary_10_1016_j_knosys_2021_107049 crossref_primary_10_1080_15435075_2022_2131433 crossref_primary_10_1109_TSMC_2021_3067785 crossref_primary_10_3390_en18112837 crossref_primary_10_1016_j_asoc_2020_106812 crossref_primary_10_1016_j_jprocont_2025_103448 crossref_primary_10_1016_j_ijpe_2024_109325 crossref_primary_10_1016_j_swevo_2025_102093 crossref_primary_10_1109_TAP_2022_3153080 crossref_primary_10_1016_j_engappai_2024_108229 crossref_primary_10_1016_j_swevo_2021_100988 crossref_primary_10_1109_TCSS_2022_3188295 crossref_primary_10_1080_00207543_2023_2251064 crossref_primary_10_1109_TEVC_2021_3060833 crossref_primary_10_3390_e23070874 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_asoc_2022_109775 crossref_primary_10_1016_j_ins_2024_121137 crossref_primary_10_1109_TNNLS_2019_2919699 crossref_primary_10_1109_TCYB_2021_3105696 crossref_primary_10_1109_TEVC_2019_2924461 crossref_primary_10_1016_j_knosys_2024_111559 crossref_primary_10_1016_j_petsci_2023_08_028 crossref_primary_10_1080_09544828_2025_2450763 crossref_primary_10_1109_ACCESS_2021_3065741 crossref_primary_10_1016_j_apor_2024_104158 crossref_primary_10_1016_j_engstruct_2021_113479 crossref_primary_10_1007_s11630_024_1949_5 crossref_primary_10_1016_j_asoc_2025_113367 crossref_primary_10_1016_j_fuel_2021_123101 crossref_primary_10_1109_TGRS_2024_3443412 crossref_primary_10_1109_TETCI_2022_3221483 crossref_primary_10_1109_TEVC_2024_3379756 crossref_primary_10_1016_j_asoc_2025_113359 crossref_primary_10_3390_app15094847 crossref_primary_10_1109_TCYB_2021_3108977 crossref_primary_10_1109_TEVC_2021_3078486 crossref_primary_10_1109_TEVC_2021_3084119 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1109_TEVC_2022_3152582 crossref_primary_10_1016_j_swevo_2023_101288 crossref_primary_10_1007_s10489_023_04916_7 crossref_primary_10_1016_j_eswa_2023_122179 crossref_primary_10_1109_TSMC_2023_3306085 crossref_primary_10_1007_s10462_020_09882_x crossref_primary_10_1016_j_infsof_2022_107068 crossref_primary_10_1016_j_asoc_2021_107603 crossref_primary_10_1155_2022_7982261 crossref_primary_10_1109_TEVC_2022_3175226 crossref_primary_10_1109_TEVC_2023_3300181 crossref_primary_10_1109_TIV_2022_3145343 crossref_primary_10_1016_j_knosys_2021_107747 crossref_primary_10_1016_j_rser_2023_113251 crossref_primary_10_1109_TCSVT_2024_3407138 crossref_primary_10_1109_TEVC_2022_3144880 crossref_primary_10_1016_j_swevo_2025_102071 crossref_primary_10_1109_TEVC_2021_3063217 crossref_primary_10_1080_08839514_2024_2398895 crossref_primary_10_1109_TCYB_2021_3118783 crossref_primary_10_3390_s22103836 crossref_primary_10_1109_JIOT_2021_3098331 crossref_primary_10_1016_j_ins_2023_119308 crossref_primary_10_1109_TCYB_2022_3170344 crossref_primary_10_3390_electronics14183613 crossref_primary_10_1016_j_petsci_2025_06_001 crossref_primary_10_1108_EC_10_2020_0587 crossref_primary_10_1016_j_asoc_2023_110013 crossref_primary_10_1109_TETCI_2022_3211004 crossref_primary_10_1007_s40747_023_01179_0 crossref_primary_10_1016_j_asoc_2023_111105 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1007_s00366_019_00844_8 crossref_primary_10_2514_1_J060718 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1016_j_ast_2025_110685 crossref_primary_10_1016_j_asoc_2022_109430 crossref_primary_10_1109_TNNLS_2023_3297624 crossref_primary_10_1109_TEVC_2023_3307244 crossref_primary_10_3390_math10060943 crossref_primary_10_1109_TCYB_2023_3329947 crossref_primary_10_1007_s00366_022_01642_5 crossref_primary_10_1109_TEVC_2021_3120980 crossref_primary_10_1007_s10898_021_01119_7 crossref_primary_10_1016_j_knosys_2020_105711 crossref_primary_10_1016_j_rcim_2022_102472 crossref_primary_10_1109_TCYB_2021_3125071 crossref_primary_10_1109_MCI_2020_3039067 crossref_primary_10_1016_j_swevo_2024_101809 crossref_primary_10_1016_j_aei_2025_103129 crossref_primary_10_1038_s41598_023_27990_w crossref_primary_10_1016_j_knosys_2021_107190 crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_3390_electronics13214199 crossref_primary_10_1109_TG_2022_3145886 crossref_primary_10_1109_TCYB_2021_3120188 crossref_primary_10_1109_TIM_2023_3261905 crossref_primary_10_1016_j_compchemeng_2024_108723 crossref_primary_10_1109_TCYB_2020_3008280 crossref_primary_10_1109_ACCESS_2023_3286027 crossref_primary_10_1016_j_swevo_2021_100972 crossref_primary_10_1016_j_cja_2024_03_026 crossref_primary_10_1016_j_engappai_2022_105397 crossref_primary_10_1016_j_compbiomed_2024_109596 crossref_primary_10_1016_j_ins_2021_03_002 crossref_primary_10_1016_j_swevo_2020_100828 crossref_primary_10_3390_math10111797 crossref_primary_10_1016_j_eswa_2022_119075 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1007_s40747_021_00421_x crossref_primary_10_1109_TCYB_2022_3175533 crossref_primary_10_1007_s00158_024_03859_y crossref_primary_10_1016_j_oceaneng_2025_122600 crossref_primary_10_1007_s00170_023_12595_4 crossref_primary_10_3390_biomimetics10090557 crossref_primary_10_1007_s40747_021_00541_4 crossref_primary_10_1007_s40747_022_00751_4 crossref_primary_10_1016_j_neucom_2020_04_079 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1109_TETCI_2023_3306351 crossref_primary_10_1016_j_asr_2022_01_037 crossref_primary_10_3390_math13182909 crossref_primary_10_1007_s40747_022_00929_w crossref_primary_10_1016_j_swevo_2025_101997 crossref_primary_10_1007_s00521_022_07295_1 crossref_primary_10_3389_fenrg_2022_1030034 crossref_primary_10_1155_2022_9873112 crossref_primary_10_1016_j_asoc_2022_109333 crossref_primary_10_1016_j_swevo_2025_102068 crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_1155_2024_2311998 crossref_primary_10_1016_j_jmsy_2023_07_003 crossref_primary_10_1109_TIP_2024_3374070 crossref_primary_10_1007_s40747_023_01214_0 crossref_primary_10_1016_j_asoc_2025_113440 crossref_primary_10_1016_j_engappai_2024_108897 crossref_primary_10_1016_j_asoc_2025_113320 crossref_primary_10_2118_199357_PA crossref_primary_10_1016_j_knosys_2020_106418 crossref_primary_10_1016_j_asoc_2023_110724 crossref_primary_10_1109_TFUZZ_2023_3273308 crossref_primary_10_1109_TSMC_2024_3519675 crossref_primary_10_1016_j_ecolind_2025_113850 crossref_primary_10_1007_s10489_025_06698_6 crossref_primary_10_1109_TEVC_2023_3268076 crossref_primary_10_1016_j_swevo_2025_102034 crossref_primary_10_1109_TEVC_2024_3417325 crossref_primary_10_1007_s11081_021_09627_x crossref_primary_10_1016_j_cma_2024_117680 crossref_primary_10_1109_TIM_2023_3302910 crossref_primary_10_1109_MCI_2022_3155330 crossref_primary_10_1109_TAI_2020_3022339 crossref_primary_10_1109_TEVC_2022_3162993 crossref_primary_10_2118_201229_PA crossref_primary_10_1016_j_asoc_2023_110061 crossref_primary_10_1007_s41965_024_00169_6 crossref_primary_10_1109_TCYB_2021_3113575 crossref_primary_10_1109_TEVC_2020_2979740 crossref_primary_10_1007_s40747_024_01668_w crossref_primary_10_1109_TCYB_2024_3443396 crossref_primary_10_1016_j_swevo_2025_101978 crossref_primary_10_1016_j_asoc_2023_110733 crossref_primary_10_1109_TEVC_2024_3361000 crossref_primary_10_1109_TETCI_2023_3313412 crossref_primary_10_1007_s11222_025_10613_x crossref_primary_10_1002_admt_202402075 crossref_primary_10_1016_j_jai_2022_100002 crossref_primary_10_1109_TEVC_2022_3149601 crossref_primary_10_1007_s40747_023_01276_0 crossref_primary_10_3390_app15169068 crossref_primary_10_1007_s10479_023_05262_0 crossref_primary_10_1016_j_segan_2025_101620 crossref_primary_10_1016_j_compstruct_2022_116354 crossref_primary_10_1016_j_eswa_2024_126050 crossref_primary_10_1109_TSTE_2021_3101520 crossref_primary_10_1016_j_asoc_2023_110866 crossref_primary_10_1016_j_asoc_2024_111857 crossref_primary_10_1109_TEVC_2022_3168060 crossref_primary_10_1016_j_eswa_2023_121783 crossref_primary_10_1016_j_knosys_2023_110630 crossref_primary_10_1109_TCDS_2020_2974509 crossref_primary_10_1016_j_asoc_2020_106276 crossref_primary_10_1016_j_eswa_2023_120451 crossref_primary_10_1109_TEVC_2020_3017865 crossref_primary_10_1007_s40747_024_01715_6 crossref_primary_10_1371_journal_pone_0270191 crossref_primary_10_3390_ma15031138 crossref_primary_10_3390_math13061007 crossref_primary_10_1007_s11227_025_07785_8 crossref_primary_10_1016_j_ins_2024_121408 crossref_primary_10_1007_s00170_020_06209_6 crossref_primary_10_1109_TSMC_2023_3281822 crossref_primary_10_1007_s12293_021_00326_9 crossref_primary_10_1007_s12559_020_09777_7 crossref_primary_10_1109_MCI_2025_3563425 crossref_primary_10_1007_s40747_024_01499_9 crossref_primary_10_1016_j_ins_2022_11_045 crossref_primary_10_1109_TEVC_2021_3103936 crossref_primary_10_1109_TEVC_2021_3051608 crossref_primary_10_3390_math11020431 crossref_primary_10_1016_j_eswa_2023_120826 crossref_primary_10_1109_TMTT_2024_3359703 crossref_primary_10_1007_s00158_025_03994_0 crossref_primary_10_1109_TEVC_2022_3154231 crossref_primary_10_1007_s00500_022_07362_8 crossref_primary_10_1016_j_ins_2025_122585 crossref_primary_10_1108_JM2_10_2023_0246 crossref_primary_10_1002_asjc_3019 crossref_primary_10_1016_j_asoc_2024_111967 crossref_primary_10_3390_aerospace10010089 crossref_primary_10_1016_j_cjche_2020_12_022 crossref_primary_10_1109_ACCESS_2020_2970992 crossref_primary_10_1109_TEVC_2024_3380327 crossref_primary_10_3390_en16145580 crossref_primary_10_1093_jcde_qwaf023 crossref_primary_10_1016_j_ins_2020_01_048 crossref_primary_10_1109_JAS_2022_105425 crossref_primary_10_1109_TCYB_2022_3200517 crossref_primary_10_1016_j_compind_2021_103471 crossref_primary_10_1016_j_conengprac_2022_105222 crossref_primary_10_1109_TEVC_2024_3373131 crossref_primary_10_1111_mice_13094 crossref_primary_10_1016_j_ins_2020_11_056 crossref_primary_10_1016_j_joes_2025_08_003 crossref_primary_10_3390_en15041320 crossref_primary_10_1016_j_buildenv_2021_107661 crossref_primary_10_1016_j_compstruct_2025_119423 crossref_primary_10_1007_s40747_024_01465_5 crossref_primary_10_1016_j_est_2024_113338 crossref_primary_10_1016_j_engappai_2024_108616 crossref_primary_10_1016_j_rineng_2024_103072 crossref_primary_10_1080_03610918_2023_2240546 crossref_primary_10_1021_acs_iecr_4c03294 crossref_primary_10_3390_a18010004 crossref_primary_10_1109_TEVC_2019_2925959 crossref_primary_10_1109_TEVC_2023_3243632 crossref_primary_10_1145_3716504 crossref_primary_10_1007_s11432_022_3791_8 crossref_primary_10_1007_s42064_021_0109_x crossref_primary_10_1109_TEVC_2024_3357819 crossref_primary_10_1016_j_swevo_2024_101666 crossref_primary_10_3390_biomimetics10060379 crossref_primary_10_1016_j_neucom_2023_03_073 crossref_primary_10_1016_j_swevo_2025_102019 crossref_primary_10_1016_j_eswa_2025_128670 crossref_primary_10_1109_TCYB_2022_3166225 crossref_primary_10_3390_app13031391 crossref_primary_10_1007_s12293_023_00389_w crossref_primary_10_1007_s00158_025_04033_8 crossref_primary_10_1007_s11630_021_1479_3 crossref_primary_10_1016_j_swevo_2023_101323 crossref_primary_10_1016_j_swevo_2023_101444 crossref_primary_10_1002_qre_3513 crossref_primary_10_1007_s00366_022_01674_x crossref_primary_10_1016_j_ces_2025_122374 crossref_primary_10_1109_TEVC_2020_3040272 crossref_primary_10_1109_TEVC_2022_3231493 crossref_primary_10_1016_j_asoc_2023_111194 crossref_primary_10_1115_1_4069424 crossref_primary_10_1016_j_petrol_2022_110574 crossref_primary_10_1109_MCI_2023_3327892 crossref_primary_10_1109_JAS_2025_125111 crossref_primary_10_3390_ma15010384 crossref_primary_10_1016_j_ress_2024_110545 crossref_primary_10_1016_j_swevo_2025_102106 crossref_primary_10_1007_s41060_025_00801_3 crossref_primary_10_1007_s40747_019_00126_2 crossref_primary_10_1109_TEVC_2022_3177936 crossref_primary_10_1016_j_swevo_2022_101170 crossref_primary_10_1016_j_ast_2024_109206 crossref_primary_10_1007_s40747_022_00910_7 crossref_primary_10_1016_j_swevo_2022_101173 crossref_primary_10_1109_TEVC_2021_3073648 crossref_primary_10_1007_s40435_020_00675_2 crossref_primary_10_1007_s40747_023_01274_2 crossref_primary_10_23919_JSEE_2024_000036 crossref_primary_10_1061__ASCE_IR_1943_4774_0001699 crossref_primary_10_1109_TMAG_2021_3059513 crossref_primary_10_1007_s00170_024_13311_6 crossref_primary_10_1007_s11708_021_0792_6 crossref_primary_10_1016_j_knosys_2020_106520 crossref_primary_10_1109_TEVC_2023_3291697 crossref_primary_10_1016_j_aei_2024_102701 crossref_primary_10_1162_evco_a_00354 crossref_primary_10_1109_ACCESS_2021_3131587 crossref_primary_10_3390_pr12010189 crossref_primary_10_1007_s40747_025_01812_0 crossref_primary_10_1016_j_asoc_2023_110785 crossref_primary_10_3390_mca28010014 crossref_primary_10_1109_TSMC_2023_3257030 crossref_primary_10_1109_TITS_2024_3502213 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_1109_TEVC_2023_3340678 crossref_primary_10_1016_j_asoc_2025_113619 crossref_primary_10_1016_j_compag_2024_109504 |
| Cites_doi | 10.1109/TEVC.2017.2675628 10.1016/j.jhydrol.2012.10.050 10.1109/ICEC.1998.699146 10.1109/TCYB.2014.2374695 10.1097/TA.0000000000000196 10.1145/130385.130417 10.1115/DETC2009-87053 10.1109/TEVC.2009.2027359 10.1145/315891.316014 10.1016/j.knosys.2015.09.032 10.1016/j.paerosci.2008.11.001 10.1109/TSMCC.2004.841917 10.1016/j.envsoft.2013.03.016 10.1007/s10589-011-9441-z 10.1109/TEVC.2015.2458037 10.1109/TCYB.2018.2811761 10.3233/JCM-2012-0402 10.1098/rspa.2007.1900 10.1109/TCYB.2017.2710978 10.1109/MCI.2014.2350953 10.1016/S0967-0661(02)00081-3 10.1097/TA.0000000000000617 10.1007/s00500-014-1283-z 10.1109/TKDE.2014.2345380 10.1007/s40747-017-0037-9 10.1002/9780470770801 10.1007/978-3-642-41278-3_45 10.1007/978-3-642-20364-0_13 10.1109/CEC.2012.6252915 10.1016/j.surge.2013.10.001 10.1080/00401706.1987.10488205 10.1016/j.ins.2012.09.030 10.1007/978-3-540-85984-0_29 10.1109/CEC.2008.4631273 10.1080/10426914.2016.1269923 10.1109/TCYB.2016.2562674 10.1145/3205455.3205514 10.1109/CEC.2016.7744340 10.1007/s00500-003-0330-y 10.1109/TEVC.2013.2262111 10.1016/j.ins.2018.04.062 10.1007/978-3-642-15844-5_37 10.1201/b12207 10.1007/s00500-003-0329-4 10.1109/TCYB.2015.2459137 10.1109/TCYB.2013.2247594 10.1109/TEVC.2016.2555315 10.1109/TEVC.2016.2519378 10.1097/TA.0000000000000827 10.1007/978-3-319-45823-6_20 10.1145/3071178.3071276 10.1145/3205455.3205596 10.1016/j.neunet.2007.04.023 10.1109/TEVC.2016.2587749 10.1016/j.ejor.2014.07.032 10.1109/TSMCB.2012.2187280 10.1109/TKDE.2013.109 10.1007/s40747-017-0057-5 10.1109/CEC.2003.1299639 10.1007/s005000050055 10.1016/j.swevo.2011.05.001 10.1007/s00500-003-0328-5 10.1115/1.4003035 10.1109/4235.996017 10.1109/TEVC.2016.2622301 10.1109/TEVC.2018.2802784 10.1109/TEVC.2013.2288779 10.1109/MCI.2009.933094 10.1109/TEVC.2005.846356 10.1109/TEVC.2005.851274 10.1109/TEVC.2009.2039141 10.1007/s00158-006-0051-9 10.1109/TEVC.2005.859463 10.1007/978-3-642-40942-4_15 10.1016/j.jocs.2015.11.004 10.1109/TSMCC.2005.855506 10.1080/10426914.2013.872271 10.1016/j.eswa.2013.10.002 10.1145/2908961.2931714 10.1109/TEVC.2002.800884 10.1109/ICGEC.2012.64 10.1109/TEVC.2013.2248012 10.1109/TETCI.2017.2769104 10.1016/j.asoc.2017.01.039 10.1109/TEVC.2018.2834881 10.1023/A:1008306431147 10.1109/TEVC.2017.2693320 10.1007/978-3-540-44511-1 10.1109/TSMCB.2012.2214382 10.1109/CEC.2010.5586124 10.1109/CEC.2017.7969486 10.1109/CEC.2010.5586355 10.1109/TASE.2014.2309348 10.1109/TEVC.2009.2033671 10.1109/JPROC.2015.2494218 10.1145/3071178.3071264 10.1080/01605682.2018.1468860 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2018.2869001 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 458 |
| ExternalDocumentID | 10_1109_TEVC_2018_2869001 8456559 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Environment Research Council grantid: NE/P017436/1 funderid: 10.13039/501100000270 – fundername: Engineering and Physical Sciences Research Council; EPSRC grantid: EP/M017869/1 funderid: 10.13039/501100000266 – fundername: Finland Distinguished Professor Project DeCoMo at the University of Jyvaskyla – fundername: Finnish Funding Agency for Innovation (Tekes) – fundername: National Natural Science Foundation of China grantid: 61590922; 61876123 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-c5df498d190667ea748613c01a79c3a56ca8c6fe87dca1d9cd3b2758685c28cd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 481 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470018600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 30 04:46:58 EST 2025 Tue Nov 18 22:32:15 EST 2025 Sat Nov 29 03:13:48 EST 2025 Wed Aug 27 08:33:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-c5df498d190667ea748613c01a79c3a56ca8c6fe87dca1d9cd3b2758685c28cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0334-0145 0000-0001-5123-8148 0000-0003-1013-4689 0000-0003-1100-0631 0000-0002-4805-3780 |
| OpenAccessLink | https://jyx.jyu.fi/bitstreams/7acbf002-eb9c-440b-ad7f-9866a8eef33b/download |
| PQID | 2232763274 |
| PQPubID | 85418 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2018_2869001 proquest_journals_2232763274 crossref_citationtrail_10_1109_TEVC_2018_2869001 ieee_primary_8456559 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref59 ref58 ref53 ref52 ref54 kohavi (ref119) 1995; 14 villanueva (ref104) 2013 jin (ref30) 2005 ref51 ref50 min (ref114) 0 ref46 ref45 ref47 ref42 chugh (ref90) 2016 ref44 chugh (ref10) 0 ratle (ref43) 1998 ref49 (ref74) 2013 ref9 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref37 ref36 ref31 kim (ref109) 2001 ref33 ref32 ref39 tian (ref55) 0 zhang (ref66) 2008 guo (ref48) 0 ref24 ref23 emmerich (ref7) 2002 ref26 ref25 ref20 ding (ref113) 0 ref22 ref28 ref27 ref29 zhou (ref11) 2005; 3 ref13 ref12 ref15 ref14 ref97 ref96 martínez (ref17) 2013 ref99 ref98 ref19 ref18 wang (ref34) 0 jin (ref8) 2000 ref93 ref92 ref95 ref94 ref91 ref89 ref86 ref85 ref88 ref87 bartz-beielstein (ref103) 2017; 55 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref106 ref107 ref105 ref77 ref102 ref76 ref2 ref1 biswas (ref56) 1981 guo (ref41) 2016 ref71 ref111 ref70 ref112 ref73 ref72 ref110 cleveland (ref38) 1996 trev (ref75) 2012 ref68 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref65 jin (ref21) 2003 ref60 ref62 ref120 ref61 dasgupta (ref4) 2013 jin (ref16) 2004 |
| References_xml | – ident: ref20 doi: 10.1109/TEVC.2017.2675628 – start-page: 170 year: 2003 ident: ref21 article-title: Quality measures for approximate models in evolutionary computation publication-title: Proc Genet Evol Comput Conf – ident: ref76 doi: 10.1016/j.jhydrol.2012.10.050 – ident: ref72 doi: 10.1109/ICEC.1998.699146 – ident: ref24 doi: 10.1109/TCYB.2014.2374695 – ident: ref59 doi: 10.1097/TA.0000000000000196 – ident: ref73 doi: 10.1145/130385.130417 – ident: ref120 doi: 10.1115/DETC2009-87053 – year: 0 ident: ref55 article-title: Multi-objective infill criterion driven Gaussian process assisted particle swarm optimization of high-dimensional expensive problems publication-title: IEEE Trans Evol Comput – ident: ref22 doi: 10.1109/TEVC.2009.2027359 – ident: ref108 doi: 10.1145/315891.316014 – ident: ref101 doi: 10.1016/j.knosys.2015.09.032 – ident: ref58 doi: 10.1016/j.paerosci.2008.11.001 – ident: ref13 doi: 10.1109/TSMCC.2004.841917 – ident: ref84 doi: 10.1016/j.envsoft.2013.03.016 – ident: ref81 doi: 10.1007/s10589-011-9441-z – ident: ref116 doi: 10.1109/TEVC.2015.2458037 – start-page: 1 year: 2013 ident: ref104 article-title: Locating multiple candidate designs with dynamic local surrogates publication-title: Proc 10th World Congr Struct Multi Optim – ident: ref86 doi: 10.1109/TCYB.2018.2811761 – ident: ref93 doi: 10.3233/JCM-2012-0402 – ident: ref32 doi: 10.1098/rspa.2007.1900 – ident: ref49 doi: 10.1109/TCYB.2017.2710978 – ident: ref23 doi: 10.1109/MCI.2014.2350953 – ident: ref5 doi: 10.1016/S0967-0661(02)00081-3 – ident: ref63 doi: 10.1097/TA.0000000000000617 – ident: ref19 doi: 10.1007/s00500-014-1283-z – ident: ref26 doi: 10.1109/TKDE.2014.2345380 – ident: ref36 doi: 10.1007/s40747-017-0037-9 – ident: ref57 doi: 10.1002/9780470770801 – ident: ref99 doi: 10.1007/978-3-642-41278-3_45 – ident: ref98 doi: 10.1007/978-3-642-20364-0_13 – start-page: 1405 year: 2013 ident: ref17 article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems publication-title: Proc Genetic Evol Comput Conf – ident: ref85 doi: 10.1109/CEC.2012.6252915 – ident: ref60 doi: 10.1016/j.surge.2013.10.001 – year: 2008 ident: ref66 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition – ident: ref69 doi: 10.1080/00401706.1987.10488205 – ident: ref110 doi: 10.1016/j.ins.2012.09.030 – ident: ref31 doi: 10.1007/978-3-540-85984-0_29 – year: 2013 ident: ref74 publication-title: ANSYS ICEM CFD Tutorial Manual – start-page: 786 year: 2000 ident: ref8 article-title: On evolutionary optimization with approximate fitness functions publication-title: Proc Genet Evol Comput Conf – ident: ref51 doi: 10.1109/CEC.2008.4631273 – volume: 3 start-page: 2832 year: 2005 ident: ref11 article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref37 doi: 10.1080/10426914.2016.1269923 – ident: ref102 doi: 10.1109/TCYB.2016.2562674 – ident: ref87 doi: 10.1145/3205455.3205514 – ident: ref117 doi: 10.1109/CEC.2016.7744340 – ident: ref42 doi: 10.1007/s00500-003-0330-y – start-page: 688 year: 2004 ident: ref16 article-title: Reducing fitness evaluations using clustering techniques and neural network ensembles publication-title: Proc Genet Evol Comput Conf – ident: ref18 doi: 10.1109/TEVC.2013.2262111 – year: 2012 ident: ref75 publication-title: CFX Computational Fluid Dynamics Ansys HVAC – ident: ref106 doi: 10.1016/j.ins.2018.04.062 – start-page: 1 year: 2016 ident: ref41 article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces publication-title: Proc IEEE Int Comput Symp – ident: ref78 doi: 10.1007/978-3-642-15844-5_37 – start-page: 887 year: 2001 ident: ref109 article-title: An efficient genetic algorithm with less fitness evaluation by clustering publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref118 doi: 10.1201/b12207 – ident: ref45 doi: 10.1007/s00500-003-0329-4 – ident: ref28 doi: 10.1109/TCYB.2015.2459137 – ident: ref64 doi: 10.1109/TCYB.2013.2247594 – ident: ref6 doi: 10.1109/TEVC.2016.2555315 – ident: ref39 doi: 10.1109/TEVC.2016.2519378 – ident: ref61 doi: 10.1097/TA.0000000000000827 – volume: 14 start-page: 1137 year: 1995 ident: ref119 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc Int Joint Conf Artif Intell – start-page: 214 year: 2016 ident: ref90 article-title: On constraint handling in surrogate-assisted evolutionary many-objective optimization publication-title: Proc of the 5th Parallel Problem Solving from Nature doi: 10.1007/978-3-319-45823-6_20 – ident: ref79 doi: 10.1145/3071178.3071276 – ident: ref112 doi: 10.1145/3205455.3205596 – ident: ref97 doi: 10.1016/j.neunet.2007.04.023 – year: 2013 ident: ref4 publication-title: Evolutionary Algorithms in Engineering Applications – ident: ref88 doi: 10.1109/TEVC.2016.2587749 – ident: ref47 doi: 10.1016/j.ejor.2014.07.032 – ident: ref25 doi: 10.1109/TSMCB.2012.2187280 – ident: ref40 doi: 10.1109/TKDE.2013.109 – ident: ref65 doi: 10.1007/s40747-017-0057-5 – ident: ref15 doi: 10.1109/CEC.2003.1299639 – ident: ref44 doi: 10.1007/s005000050055 – ident: ref9 doi: 10.1016/j.swevo.2011.05.001 – ident: ref107 doi: 10.1007/s00500-003-0328-5 – ident: ref91 doi: 10.1115/1.4003035 – ident: ref62 doi: 10.1109/4235.996017 – ident: ref12 doi: 10.1109/TEVC.2016.2622301 – year: 0 ident: ref114 article-title: Multi-problem surrogates: Transfer evolutionary multiobjective optimization of computationally expensive problems publication-title: IEEE Trans Evol Comput – start-page: 361 year: 2002 ident: ref7 article-title: Metamodel-Assisted evolution strategies publication-title: Proc of the 5th Parallel Problem Solving from Nature – ident: ref77 doi: 10.1109/TEVC.2018.2802784 – year: 0 ident: ref34 article-title: A generic test suite for evolutionary multi-fidelity optimization publication-title: IEEE Trans Evol Comput – ident: ref100 doi: 10.1109/TEVC.2013.2288779 – ident: ref1 doi: 10.1109/MCI.2009.933094 – ident: ref27 doi: 10.1109/TEVC.2005.846356 – start-page: 87 year: 1998 ident: ref43 article-title: Accelerating the convergence of evolutionary algorithms by fitness landscape approximation publication-title: Proc Parallel Prob Solving Nat (PPSN) – ident: ref70 doi: 10.1109/TEVC.2005.851274 – ident: ref95 doi: 10.1109/TEVC.2009.2039141 – ident: ref71 doi: 10.1007/s00158-006-0051-9 – ident: ref53 doi: 10.1109/TEVC.2005.859463 – ident: ref94 doi: 10.1007/978-3-642-40942-4_15 – ident: ref33 doi: 10.1016/j.jocs.2015.11.004 – ident: ref105 doi: 10.1109/TSMCC.2005.855506 – start-page: 10 year: 1996 ident: ref38 publication-title: Smoothing by local regression Principles and methods – ident: ref83 doi: 10.1080/10426914.2013.872271 – year: 0 ident: ref48 article-title: Heterogeneous ensemble based infill criterion for evolutionary multi-objective optimization of expensive problems publication-title: IEEE Trans Cybern – ident: ref3 doi: 10.1016/j.eswa.2013.10.002 – year: 1981 ident: ref56 publication-title: Principles of Blast Furnace Ironmaking Theory and Practice – ident: ref46 doi: 10.1145/2908961.2931714 – ident: ref14 doi: 10.1109/TEVC.2002.800884 – ident: ref29 doi: 10.1109/ICGEC.2012.64 – ident: ref54 doi: 10.1109/TEVC.2013.2248012 – ident: ref115 doi: 10.1109/TETCI.2017.2769104 – volume: 55 start-page: 154 year: 2017 ident: ref103 article-title: Model-based methods for continuous and discrete global optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.01.039 – ident: ref35 doi: 10.1109/TEVC.2018.2834881 – ident: ref82 doi: 10.1023/A:1008306431147 – year: 0 ident: ref113 article-title: Generalized multi-tasking for evolutionary optimization of expensive problems publication-title: IEEE Trans Evol Comput – ident: ref52 doi: 10.1109/TEVC.2017.2693320 – year: 2005 ident: ref30 publication-title: Knowledge Incorporation in Evolutionary Computation doi: 10.1007/978-3-540-44511-1 – ident: ref111 doi: 10.1109/TSMCB.2012.2214382 – ident: ref92 doi: 10.1109/CEC.2010.5586124 – ident: ref2 doi: 10.1109/CEC.2017.7969486 – ident: ref96 doi: 10.1109/CEC.2010.5586355 – ident: ref67 doi: 10.1109/TASE.2014.2309348 – ident: ref68 doi: 10.1109/TEVC.2009.2033671 – year: 0 ident: ref10 article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms publication-title: Soft Computing – ident: ref50 doi: 10.1109/JPROC.2015.2494218 – ident: ref89 doi: 10.1145/3071178.3071264 – ident: ref80 doi: 10.1080/01605682.2018.1468860 |
| SSID | ssj0014519 |
| Score | 2.6955495 |
| Snippet | Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 442 |
| SubjectTerms | Computational modeling Computer simulation Data mining Data models Data science data-driven optimization Evolutionary algorithms evolutionary algorithms (EAs) Fitness Machine learning model management Optimization Sociology Statistics surrogate Taxonomy |
| Title | Data-Driven Evolutionary Optimization: An Overview and Case Studies |
| URI | https://ieeexplore.ieee.org/document/8456559 https://www.proquest.com/docview/2232763274 |
| Volume | 23 |
| WOSCitedRecordID | wos000470018600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8YAHUdCIotmDJ2OhhXYf3giPeAIPaLg1y-72pMVUwPjvnW2XxkRj4qFJm8xumn6z8-jOzgdwE4ZGc8GVJ1DCC1lCPU6p9vqMKkGDlVQDmZNNsNmML5fisQJ35VkYY0xefGa69jbfy9drtbW_ynrchh-RqEKVMVac1Sp3DGyblKKYXmDEyJduBzPwRW8xeR7ZIi7e7Vv-Jcf_svdBOanKD0ucu5dp438vdgxHLowkwwL3E6iYtAmNPUUDcSu2CYff-g02oW5Dy6IzcwtGY7mR3jiz5o5Mdk4FZfZJ5mhGXt35zHsyTMl8Zy2K-SAy1WSEfo-48sNTeJpOFqMHz1EqeAoTxY2nIp2EgmsMAyhlRrKQoz9XfiCZQFQiqiRXNDGcaSUDLZQerPqYUlAeqT7HpzOopevUnAOJIhmuQsxwucJZtOJ-EkRoL5KEs0EkV23w9x85Vq7fuKW9eInzvMMXscUltrjEDpc23JZD3opmG38JtywQpaDDoA2dPZKxW47vMcZAqHx4hRe_j7qEOs4tihqwDtQ22dZcwYHaISjZda5pX9pSz8s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFJwHp1NxfubgSaxruyRNvI05UdTNw5TdSpakJ60y58T_3pc2G4IieCi0kLSlv5f30bz3fgDHlFojpNCBxBEBTTIeCM5NECdcSx6NlG6pgmwi6fXEcCjvF-B0XgtjrS2Sz-yZOy328s2Lfne_yprCuR9MLsISozSOymqt-Z6Ba5RSptNL9BnF0O9hRqFsDrqPHZfGJc5ix8DkGWBmVqigVfmhiwsDc1n736utw5p3JEm7RH4DFmxeh9qMpIH4NVuH1W8dB-tQdc5l2Zt5EzoXaqKCi7FTeKQ79UKoxp-kj4rk2VdonpN2TvpTp1PsB1G5IR20fMQnIG7Bw2V30LkKPKlCoDFUnASamYxKYdAR4DyxKqECLboOI5VIxIVxrYTmmRWJ0SoyUpvWKMagggumY4FX21DJX3K7A4QxRUcUY1yh8S5GizCLGGqMLBNJi6lRA8LZR0617zjuiC-e0iLyCGXqcEkdLqnHpQEn8ymvZbuNvwZvOiDmAz0GDdifIZn6BfmWoheE4ocH3f191hGsXA3ubtPb697NHlTxObLMCNuHymT8bg9gWU8RoPFhIXVf06HTEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Evolutionary+Optimization%3A+An+Overview+and+Case+Studies&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Jin%2C+Yaochu&rft.au=Wang%2C+Handing&rft.au=Chugh%2C+Tinkle&rft.au=Guo%2C+Dan&rft.date=2019-06-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=3&rft.spage=442&rft.epage=458&rft_id=info:doi/10.1109%2FTEVC.2018.2869001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2018_2869001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |