Data-Driven Evolutionary Optimization: An Overview and Case Studies

Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly phy...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 23; číslo 3; s. 442 - 458
Hlavní autori: Jin, Yaochu, Wang, Handing, Chugh, Tinkle, Guo, Dan, Miettinen, Kaisa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this paper, we provide a taxonomy of different data driven evolutionary optimization problems, discuss main challenges in data-driven evolutionary optimization with respect to the nature and amount of data, and the availability of new data during optimization. Real-world application examples are given to illustrate different model management strategies for different categories of data-driven optimization problems.
AbstractList Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this paper, we provide a taxonomy of different data driven evolutionary optimization problems, discuss main challenges in data-driven evolutionary optimization with respect to the nature and amount of data, and the availability of new data during optimization. Real-world application examples are given to illustrate different model management strategies for different categories of data-driven optimization problems.
Author Wang, Handing
Chugh, Tinkle
Miettinen, Kaisa
Jin, Yaochu
Guo, Dan
Author_xml – sequence: 1
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
– sequence: 2
  givenname: Handing
  orcidid: 0000-0002-4805-3780
  surname: Wang
  fullname: Wang, Handing
  email: hdwang@xidian.edu.cn
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
– sequence: 3
  givenname: Tinkle
  orcidid: 0000-0001-5123-8148
  surname: Chugh
  fullname: Chugh, Tinkle
  email: t.chugh@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 4
  givenname: Dan
  orcidid: 0000-0002-0334-0145
  surname: Guo
  fullname: Guo, Dan
  email: guodan717@163.com
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 5
  givenname: Kaisa
  orcidid: 0000-0003-1013-4689
  surname: Miettinen
  fullname: Miettinen, Kaisa
  email: kaisa.miettinen@jyu.fi
  organization: Faculty of Information Technology, University of Jyvaskyla, Finland
BookMark eNp9UE1LAzEUDFLBtvoDxMuC561JdvPlrWzXDyj0YBVvIWazkNLu1iS7or_erC0ePHh4vDcw84aZCRg1bWMAuERwhhAUN-vypZhhiPgMcyogRCdgjESOUggxHcUbcpEyxl_PwMT7TSTkBIkxKBYqqHThbG-apOzbbRds2yj3maz2we7slxrwbTJvklVvXG_NR6KaKimUN8lT6Cpr_Dk4rdXWm4vjnoLnu3JdPKTL1f1jMV-mOoc4pJpUdS54hQSklBnFck5RpiFSTOhMEaoV17Q2nFVaoUroKnvDjHDKicY8oim4Pvzdu_a9Mz7ITdu5JlpKjDPMaJw8stCBpV3rvTO13Du7i4kkgnLoSg5dyaEreewqatgfjbbhJ3lwym7_VV4dlNYY8-vEc0IJEdk36XJ4QQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1002_marc_202500482
crossref_primary_10_1016_j_swevo_2022_101081
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1016_j_swevo_2022_101080
crossref_primary_10_2118_201237_PA
crossref_primary_10_1109_TASE_2025_3551716
crossref_primary_10_1109_TCYB_2020_2967553
crossref_primary_10_1016_j_enconman_2025_120170
crossref_primary_10_1016_j_ins_2023_02_049
crossref_primary_10_1109_TEVC_2023_3255263
crossref_primary_10_1016_j_ynexs_2024_100044
crossref_primary_10_1109_TCYB_2022_3214825
crossref_primary_10_1109_TEVC_2020_2986348
crossref_primary_10_1016_j_conbuildmat_2024_138863
crossref_primary_10_1016_j_tsep_2025_103454
crossref_primary_10_1007_s10586_025_05459_x
crossref_primary_10_1016_j_ins_2021_06_054
crossref_primary_10_1007_s00158_022_03419_2
crossref_primary_10_1109_TII_2023_3281661
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1007_s40747_021_00568_7
crossref_primary_10_1007_s40747_022_00717_6
crossref_primary_10_1016_j_swevo_2020_100787
crossref_primary_10_1061__ASCE_HE_1943_5584_0002214
crossref_primary_10_1016_j_ins_2023_119899
crossref_primary_10_1016_j_trc_2022_103827
crossref_primary_10_1016_j_knosys_2021_107532
crossref_primary_10_1016_j_knosys_2020_106262
crossref_primary_10_1109_TSMC_2023_3259947
crossref_primary_10_1016_j_asoc_2022_109957
crossref_primary_10_1016_j_ijepes_2023_109237
crossref_primary_10_1007_s12293_021_00351_8
crossref_primary_10_1007_s40747_020_00249_x
crossref_primary_10_1016_j_ifacol_2021_10_146
crossref_primary_10_1016_j_neucom_2022_10_075
crossref_primary_10_1109_TEVC_2019_2954411
crossref_primary_10_1007_s12293_022_00380_x
crossref_primary_10_1109_TCYB_2021_3126341
crossref_primary_10_1109_TII_2022_3232774
crossref_primary_10_3390_math13010158
crossref_primary_10_1016_j_ins_2024_120250
crossref_primary_10_1016_j_swevo_2025_101926
crossref_primary_10_1016_j_swevo_2025_101924
crossref_primary_10_1109_TEVC_2022_3170638
crossref_primary_10_1109_TEVC_2023_3306017
crossref_primary_10_1109_TFUZZ_2020_2973121
crossref_primary_10_1109_TCYB_2024_3489885
crossref_primary_10_1016_j_jclepro_2023_139039
crossref_primary_10_1016_j_compstruc_2021_106546
crossref_primary_10_1109_TSMC_2021_3102298
crossref_primary_10_1016_j_knosys_2022_108436
crossref_primary_10_1080_08839514_2021_1901034
crossref_primary_10_1016_j_petrol_2021_110050
crossref_primary_10_1007_s11047_022_09907_0
crossref_primary_10_1007_s40747_022_00923_2
crossref_primary_10_1016_j_eswa_2024_123517
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1007_s10617_019_09220_7
crossref_primary_10_3390_w16233380
crossref_primary_10_3390_jmse9010018
crossref_primary_10_1007_s00500_023_09546_2
crossref_primary_10_1016_j_ins_2022_01_052
crossref_primary_10_1016_j_energy_2019_06_115
crossref_primary_10_1109_TSMC_2020_3044418
crossref_primary_10_1371_journal_pone_0291383
crossref_primary_10_3390_computation11120245
crossref_primary_10_1007_s40747_021_00506_7
crossref_primary_10_1016_j_cma_2023_116704
crossref_primary_10_1007_s10489_022_04080_4
crossref_primary_10_1109_TETCI_2019_2961190
crossref_primary_10_1016_j_rser_2023_113860
crossref_primary_10_1109_TETCI_2023_3240221
crossref_primary_10_1007_s00521_022_07097_5
crossref_primary_10_1016_j_swevo_2022_101096
crossref_primary_10_1109_TPWRS_2020_3041866
crossref_primary_10_1016_j_engappai_2019_103469
crossref_primary_10_1109_TSC_2024_3433487
crossref_primary_10_1109_ACCESS_2023_3274490
crossref_primary_10_1016_j_swevo_2025_101905
crossref_primary_10_1016_j_cja_2022_09_020
crossref_primary_10_1016_j_compchemeng_2025_109236
crossref_primary_10_1016_j_asoc_2021_108353
crossref_primary_10_1016_j_cirp_2024_04_101
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_1016_j_asoc_2021_107268
crossref_primary_10_1109_TEVC_2022_3177605
crossref_primary_10_1016_j_swevo_2019_100574
crossref_primary_10_1016_j_knosys_2021_107049
crossref_primary_10_1080_15435075_2022_2131433
crossref_primary_10_1109_TSMC_2021_3067785
crossref_primary_10_3390_en18112837
crossref_primary_10_1016_j_asoc_2020_106812
crossref_primary_10_1016_j_jprocont_2025_103448
crossref_primary_10_1016_j_ijpe_2024_109325
crossref_primary_10_1016_j_swevo_2025_102093
crossref_primary_10_1109_TAP_2022_3153080
crossref_primary_10_1016_j_engappai_2024_108229
crossref_primary_10_1016_j_swevo_2021_100988
crossref_primary_10_1109_TCSS_2022_3188295
crossref_primary_10_1080_00207543_2023_2251064
crossref_primary_10_1109_TEVC_2021_3060833
crossref_primary_10_3390_e23070874
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_asoc_2022_109775
crossref_primary_10_1016_j_ins_2024_121137
crossref_primary_10_1109_TNNLS_2019_2919699
crossref_primary_10_1109_TCYB_2021_3105696
crossref_primary_10_1109_TEVC_2019_2924461
crossref_primary_10_1016_j_knosys_2024_111559
crossref_primary_10_1016_j_petsci_2023_08_028
crossref_primary_10_1080_09544828_2025_2450763
crossref_primary_10_1109_ACCESS_2021_3065741
crossref_primary_10_1016_j_apor_2024_104158
crossref_primary_10_1016_j_engstruct_2021_113479
crossref_primary_10_1007_s11630_024_1949_5
crossref_primary_10_1016_j_asoc_2025_113367
crossref_primary_10_1016_j_fuel_2021_123101
crossref_primary_10_1109_TGRS_2024_3443412
crossref_primary_10_1109_TETCI_2022_3221483
crossref_primary_10_1109_TEVC_2024_3379756
crossref_primary_10_1016_j_asoc_2025_113359
crossref_primary_10_3390_app15094847
crossref_primary_10_1109_TCYB_2021_3108977
crossref_primary_10_1109_TEVC_2021_3078486
crossref_primary_10_1109_TEVC_2021_3084119
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1109_TEVC_2022_3152582
crossref_primary_10_1016_j_swevo_2023_101288
crossref_primary_10_1007_s10489_023_04916_7
crossref_primary_10_1016_j_eswa_2023_122179
crossref_primary_10_1109_TSMC_2023_3306085
crossref_primary_10_1007_s10462_020_09882_x
crossref_primary_10_1016_j_infsof_2022_107068
crossref_primary_10_1016_j_asoc_2021_107603
crossref_primary_10_1155_2022_7982261
crossref_primary_10_1109_TEVC_2022_3175226
crossref_primary_10_1109_TEVC_2023_3300181
crossref_primary_10_1109_TIV_2022_3145343
crossref_primary_10_1016_j_knosys_2021_107747
crossref_primary_10_1016_j_rser_2023_113251
crossref_primary_10_1109_TCSVT_2024_3407138
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1016_j_swevo_2025_102071
crossref_primary_10_1109_TEVC_2021_3063217
crossref_primary_10_1080_08839514_2024_2398895
crossref_primary_10_1109_TCYB_2021_3118783
crossref_primary_10_3390_s22103836
crossref_primary_10_1109_JIOT_2021_3098331
crossref_primary_10_1016_j_ins_2023_119308
crossref_primary_10_1109_TCYB_2022_3170344
crossref_primary_10_3390_electronics14183613
crossref_primary_10_1016_j_petsci_2025_06_001
crossref_primary_10_1108_EC_10_2020_0587
crossref_primary_10_1016_j_asoc_2023_110013
crossref_primary_10_1109_TETCI_2022_3211004
crossref_primary_10_1007_s40747_023_01179_0
crossref_primary_10_1016_j_asoc_2023_111105
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1007_s00366_019_00844_8
crossref_primary_10_2514_1_J060718
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1016_j_ast_2025_110685
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1109_TEVC_2023_3307244
crossref_primary_10_3390_math10060943
crossref_primary_10_1109_TCYB_2023_3329947
crossref_primary_10_1007_s00366_022_01642_5
crossref_primary_10_1109_TEVC_2021_3120980
crossref_primary_10_1007_s10898_021_01119_7
crossref_primary_10_1016_j_knosys_2020_105711
crossref_primary_10_1016_j_rcim_2022_102472
crossref_primary_10_1109_TCYB_2021_3125071
crossref_primary_10_1109_MCI_2020_3039067
crossref_primary_10_1016_j_swevo_2024_101809
crossref_primary_10_1016_j_aei_2025_103129
crossref_primary_10_1038_s41598_023_27990_w
crossref_primary_10_1016_j_knosys_2021_107190
crossref_primary_10_1109_TETCI_2024_3358377
crossref_primary_10_3390_electronics13214199
crossref_primary_10_1109_TG_2022_3145886
crossref_primary_10_1109_TCYB_2021_3120188
crossref_primary_10_1109_TIM_2023_3261905
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1109_ACCESS_2023_3286027
crossref_primary_10_1016_j_swevo_2021_100972
crossref_primary_10_1016_j_cja_2024_03_026
crossref_primary_10_1016_j_engappai_2022_105397
crossref_primary_10_1016_j_compbiomed_2024_109596
crossref_primary_10_1016_j_ins_2021_03_002
crossref_primary_10_1016_j_swevo_2020_100828
crossref_primary_10_3390_math10111797
crossref_primary_10_1016_j_eswa_2022_119075
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1007_s40747_021_00421_x
crossref_primary_10_1109_TCYB_2022_3175533
crossref_primary_10_1007_s00158_024_03859_y
crossref_primary_10_1016_j_oceaneng_2025_122600
crossref_primary_10_1007_s00170_023_12595_4
crossref_primary_10_3390_biomimetics10090557
crossref_primary_10_1007_s40747_021_00541_4
crossref_primary_10_1007_s40747_022_00751_4
crossref_primary_10_1016_j_neucom_2020_04_079
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1109_TETCI_2023_3306351
crossref_primary_10_1016_j_asr_2022_01_037
crossref_primary_10_3390_math13182909
crossref_primary_10_1007_s40747_022_00929_w
crossref_primary_10_1016_j_swevo_2025_101997
crossref_primary_10_1007_s00521_022_07295_1
crossref_primary_10_3389_fenrg_2022_1030034
crossref_primary_10_1155_2022_9873112
crossref_primary_10_1016_j_asoc_2022_109333
crossref_primary_10_1016_j_swevo_2025_102068
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_1155_2024_2311998
crossref_primary_10_1016_j_jmsy_2023_07_003
crossref_primary_10_1109_TIP_2024_3374070
crossref_primary_10_1007_s40747_023_01214_0
crossref_primary_10_1016_j_asoc_2025_113440
crossref_primary_10_1016_j_engappai_2024_108897
crossref_primary_10_1016_j_asoc_2025_113320
crossref_primary_10_2118_199357_PA
crossref_primary_10_1016_j_knosys_2020_106418
crossref_primary_10_1016_j_asoc_2023_110724
crossref_primary_10_1109_TFUZZ_2023_3273308
crossref_primary_10_1109_TSMC_2024_3519675
crossref_primary_10_1016_j_ecolind_2025_113850
crossref_primary_10_1007_s10489_025_06698_6
crossref_primary_10_1109_TEVC_2023_3268076
crossref_primary_10_1016_j_swevo_2025_102034
crossref_primary_10_1109_TEVC_2024_3417325
crossref_primary_10_1007_s11081_021_09627_x
crossref_primary_10_1016_j_cma_2024_117680
crossref_primary_10_1109_TIM_2023_3302910
crossref_primary_10_1109_MCI_2022_3155330
crossref_primary_10_1109_TAI_2020_3022339
crossref_primary_10_1109_TEVC_2022_3162993
crossref_primary_10_2118_201229_PA
crossref_primary_10_1016_j_asoc_2023_110061
crossref_primary_10_1007_s41965_024_00169_6
crossref_primary_10_1109_TCYB_2021_3113575
crossref_primary_10_1109_TEVC_2020_2979740
crossref_primary_10_1007_s40747_024_01668_w
crossref_primary_10_1109_TCYB_2024_3443396
crossref_primary_10_1016_j_swevo_2025_101978
crossref_primary_10_1016_j_asoc_2023_110733
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1109_TETCI_2023_3313412
crossref_primary_10_1007_s11222_025_10613_x
crossref_primary_10_1002_admt_202402075
crossref_primary_10_1016_j_jai_2022_100002
crossref_primary_10_1109_TEVC_2022_3149601
crossref_primary_10_1007_s40747_023_01276_0
crossref_primary_10_3390_app15169068
crossref_primary_10_1007_s10479_023_05262_0
crossref_primary_10_1016_j_segan_2025_101620
crossref_primary_10_1016_j_compstruct_2022_116354
crossref_primary_10_1016_j_eswa_2024_126050
crossref_primary_10_1109_TSTE_2021_3101520
crossref_primary_10_1016_j_asoc_2023_110866
crossref_primary_10_1016_j_asoc_2024_111857
crossref_primary_10_1109_TEVC_2022_3168060
crossref_primary_10_1016_j_eswa_2023_121783
crossref_primary_10_1016_j_knosys_2023_110630
crossref_primary_10_1109_TCDS_2020_2974509
crossref_primary_10_1016_j_asoc_2020_106276
crossref_primary_10_1016_j_eswa_2023_120451
crossref_primary_10_1109_TEVC_2020_3017865
crossref_primary_10_1007_s40747_024_01715_6
crossref_primary_10_1371_journal_pone_0270191
crossref_primary_10_3390_ma15031138
crossref_primary_10_3390_math13061007
crossref_primary_10_1007_s11227_025_07785_8
crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1007_s00170_020_06209_6
crossref_primary_10_1109_TSMC_2023_3281822
crossref_primary_10_1007_s12293_021_00326_9
crossref_primary_10_1007_s12559_020_09777_7
crossref_primary_10_1109_MCI_2025_3563425
crossref_primary_10_1007_s40747_024_01499_9
crossref_primary_10_1016_j_ins_2022_11_045
crossref_primary_10_1109_TEVC_2021_3103936
crossref_primary_10_1109_TEVC_2021_3051608
crossref_primary_10_3390_math11020431
crossref_primary_10_1016_j_eswa_2023_120826
crossref_primary_10_1109_TMTT_2024_3359703
crossref_primary_10_1007_s00158_025_03994_0
crossref_primary_10_1109_TEVC_2022_3154231
crossref_primary_10_1007_s00500_022_07362_8
crossref_primary_10_1016_j_ins_2025_122585
crossref_primary_10_1108_JM2_10_2023_0246
crossref_primary_10_1002_asjc_3019
crossref_primary_10_1016_j_asoc_2024_111967
crossref_primary_10_3390_aerospace10010089
crossref_primary_10_1016_j_cjche_2020_12_022
crossref_primary_10_1109_ACCESS_2020_2970992
crossref_primary_10_1109_TEVC_2024_3380327
crossref_primary_10_3390_en16145580
crossref_primary_10_1093_jcde_qwaf023
crossref_primary_10_1016_j_ins_2020_01_048
crossref_primary_10_1109_JAS_2022_105425
crossref_primary_10_1109_TCYB_2022_3200517
crossref_primary_10_1016_j_compind_2021_103471
crossref_primary_10_1016_j_conengprac_2022_105222
crossref_primary_10_1109_TEVC_2024_3373131
crossref_primary_10_1111_mice_13094
crossref_primary_10_1016_j_ins_2020_11_056
crossref_primary_10_1016_j_joes_2025_08_003
crossref_primary_10_3390_en15041320
crossref_primary_10_1016_j_buildenv_2021_107661
crossref_primary_10_1016_j_compstruct_2025_119423
crossref_primary_10_1007_s40747_024_01465_5
crossref_primary_10_1016_j_est_2024_113338
crossref_primary_10_1016_j_engappai_2024_108616
crossref_primary_10_1016_j_rineng_2024_103072
crossref_primary_10_1080_03610918_2023_2240546
crossref_primary_10_1021_acs_iecr_4c03294
crossref_primary_10_3390_a18010004
crossref_primary_10_1109_TEVC_2019_2925959
crossref_primary_10_1109_TEVC_2023_3243632
crossref_primary_10_1145_3716504
crossref_primary_10_1007_s11432_022_3791_8
crossref_primary_10_1007_s42064_021_0109_x
crossref_primary_10_1109_TEVC_2024_3357819
crossref_primary_10_1016_j_swevo_2024_101666
crossref_primary_10_3390_biomimetics10060379
crossref_primary_10_1016_j_neucom_2023_03_073
crossref_primary_10_1016_j_swevo_2025_102019
crossref_primary_10_1016_j_eswa_2025_128670
crossref_primary_10_1109_TCYB_2022_3166225
crossref_primary_10_3390_app13031391
crossref_primary_10_1007_s12293_023_00389_w
crossref_primary_10_1007_s00158_025_04033_8
crossref_primary_10_1007_s11630_021_1479_3
crossref_primary_10_1016_j_swevo_2023_101323
crossref_primary_10_1016_j_swevo_2023_101444
crossref_primary_10_1002_qre_3513
crossref_primary_10_1007_s00366_022_01674_x
crossref_primary_10_1016_j_ces_2025_122374
crossref_primary_10_1109_TEVC_2020_3040272
crossref_primary_10_1109_TEVC_2022_3231493
crossref_primary_10_1016_j_asoc_2023_111194
crossref_primary_10_1115_1_4069424
crossref_primary_10_1016_j_petrol_2022_110574
crossref_primary_10_1109_MCI_2023_3327892
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_3390_ma15010384
crossref_primary_10_1016_j_ress_2024_110545
crossref_primary_10_1016_j_swevo_2025_102106
crossref_primary_10_1007_s41060_025_00801_3
crossref_primary_10_1007_s40747_019_00126_2
crossref_primary_10_1109_TEVC_2022_3177936
crossref_primary_10_1016_j_swevo_2022_101170
crossref_primary_10_1016_j_ast_2024_109206
crossref_primary_10_1007_s40747_022_00910_7
crossref_primary_10_1016_j_swevo_2022_101173
crossref_primary_10_1109_TEVC_2021_3073648
crossref_primary_10_1007_s40435_020_00675_2
crossref_primary_10_1007_s40747_023_01274_2
crossref_primary_10_23919_JSEE_2024_000036
crossref_primary_10_1061__ASCE_IR_1943_4774_0001699
crossref_primary_10_1109_TMAG_2021_3059513
crossref_primary_10_1007_s00170_024_13311_6
crossref_primary_10_1007_s11708_021_0792_6
crossref_primary_10_1016_j_knosys_2020_106520
crossref_primary_10_1109_TEVC_2023_3291697
crossref_primary_10_1016_j_aei_2024_102701
crossref_primary_10_1162_evco_a_00354
crossref_primary_10_1109_ACCESS_2021_3131587
crossref_primary_10_3390_pr12010189
crossref_primary_10_1007_s40747_025_01812_0
crossref_primary_10_1016_j_asoc_2023_110785
crossref_primary_10_3390_mca28010014
crossref_primary_10_1109_TSMC_2023_3257030
crossref_primary_10_1109_TITS_2024_3502213
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1016_j_asoc_2025_113619
crossref_primary_10_1016_j_compag_2024_109504
Cites_doi 10.1109/TEVC.2017.2675628
10.1016/j.jhydrol.2012.10.050
10.1109/ICEC.1998.699146
10.1109/TCYB.2014.2374695
10.1097/TA.0000000000000196
10.1145/130385.130417
10.1115/DETC2009-87053
10.1109/TEVC.2009.2027359
10.1145/315891.316014
10.1016/j.knosys.2015.09.032
10.1016/j.paerosci.2008.11.001
10.1109/TSMCC.2004.841917
10.1016/j.envsoft.2013.03.016
10.1007/s10589-011-9441-z
10.1109/TEVC.2015.2458037
10.1109/TCYB.2018.2811761
10.3233/JCM-2012-0402
10.1098/rspa.2007.1900
10.1109/TCYB.2017.2710978
10.1109/MCI.2014.2350953
10.1016/S0967-0661(02)00081-3
10.1097/TA.0000000000000617
10.1007/s00500-014-1283-z
10.1109/TKDE.2014.2345380
10.1007/s40747-017-0037-9
10.1002/9780470770801
10.1007/978-3-642-41278-3_45
10.1007/978-3-642-20364-0_13
10.1109/CEC.2012.6252915
10.1016/j.surge.2013.10.001
10.1080/00401706.1987.10488205
10.1016/j.ins.2012.09.030
10.1007/978-3-540-85984-0_29
10.1109/CEC.2008.4631273
10.1080/10426914.2016.1269923
10.1109/TCYB.2016.2562674
10.1145/3205455.3205514
10.1109/CEC.2016.7744340
10.1007/s00500-003-0330-y
10.1109/TEVC.2013.2262111
10.1016/j.ins.2018.04.062
10.1007/978-3-642-15844-5_37
10.1201/b12207
10.1007/s00500-003-0329-4
10.1109/TCYB.2015.2459137
10.1109/TCYB.2013.2247594
10.1109/TEVC.2016.2555315
10.1109/TEVC.2016.2519378
10.1097/TA.0000000000000827
10.1007/978-3-319-45823-6_20
10.1145/3071178.3071276
10.1145/3205455.3205596
10.1016/j.neunet.2007.04.023
10.1109/TEVC.2016.2587749
10.1016/j.ejor.2014.07.032
10.1109/TSMCB.2012.2187280
10.1109/TKDE.2013.109
10.1007/s40747-017-0057-5
10.1109/CEC.2003.1299639
10.1007/s005000050055
10.1016/j.swevo.2011.05.001
10.1007/s00500-003-0328-5
10.1115/1.4003035
10.1109/4235.996017
10.1109/TEVC.2016.2622301
10.1109/TEVC.2018.2802784
10.1109/TEVC.2013.2288779
10.1109/MCI.2009.933094
10.1109/TEVC.2005.846356
10.1109/TEVC.2005.851274
10.1109/TEVC.2009.2039141
10.1007/s00158-006-0051-9
10.1109/TEVC.2005.859463
10.1007/978-3-642-40942-4_15
10.1016/j.jocs.2015.11.004
10.1109/TSMCC.2005.855506
10.1080/10426914.2013.872271
10.1016/j.eswa.2013.10.002
10.1145/2908961.2931714
10.1109/TEVC.2002.800884
10.1109/ICGEC.2012.64
10.1109/TEVC.2013.2248012
10.1109/TETCI.2017.2769104
10.1016/j.asoc.2017.01.039
10.1109/TEVC.2018.2834881
10.1023/A:1008306431147
10.1109/TEVC.2017.2693320
10.1007/978-3-540-44511-1
10.1109/TSMCB.2012.2214382
10.1109/CEC.2010.5586124
10.1109/CEC.2017.7969486
10.1109/CEC.2010.5586355
10.1109/TASE.2014.2309348
10.1109/TEVC.2009.2033671
10.1109/JPROC.2015.2494218
10.1145/3071178.3071264
10.1080/01605682.2018.1468860
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2018.2869001
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 458
ExternalDocumentID 10_1109_TEVC_2018_2869001
8456559
Genre orig-research
GrantInformation_xml – fundername: Natural Environment Research Council
  grantid: NE/P017436/1
  funderid: 10.13039/501100000270
– fundername: Engineering and Physical Sciences Research Council; EPSRC
  grantid: EP/M017869/1
  funderid: 10.13039/501100000266
– fundername: Finland Distinguished Professor Project DeCoMo at the University of Jyvaskyla
– fundername: Finnish Funding Agency for Innovation (Tekes)
– fundername: National Natural Science Foundation of China
  grantid: 61590922; 61876123
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-c5df498d190667ea748613c01a79c3a56ca8c6fe87dca1d9cd3b2758685c28cd3
IEDL.DBID RIE
ISICitedReferencesCount 481
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470018600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 04:46:58 EST 2025
Tue Nov 18 22:32:15 EST 2025
Sat Nov 29 03:13:48 EST 2025
Wed Aug 27 08:33:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-c5df498d190667ea748613c01a79c3a56ca8c6fe87dca1d9cd3b2758685c28cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0334-0145
0000-0001-5123-8148
0000-0003-1013-4689
0000-0003-1100-0631
0000-0002-4805-3780
OpenAccessLink https://jyx.jyu.fi/bitstreams/7acbf002-eb9c-440b-ad7f-9866a8eef33b/download
PQID 2232763274
PQPubID 85418
PageCount 17
ParticipantIDs crossref_primary_10_1109_TEVC_2018_2869001
proquest_journals_2232763274
crossref_citationtrail_10_1109_TEVC_2018_2869001
ieee_primary_8456559
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref59
ref58
ref53
ref52
ref54
kohavi (ref119) 1995; 14
villanueva (ref104) 2013
jin (ref30) 2005
ref51
ref50
min (ref114) 0
ref46
ref45
ref47
ref42
chugh (ref90) 2016
ref44
chugh (ref10) 0
ratle (ref43) 1998
ref49
(ref74) 2013
ref9
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref37
ref36
ref31
kim (ref109) 2001
ref33
ref32
ref39
tian (ref55) 0
zhang (ref66) 2008
guo (ref48) 0
ref24
ref23
emmerich (ref7) 2002
ref26
ref25
ref20
ding (ref113) 0
ref22
ref28
ref27
ref29
zhou (ref11) 2005; 3
ref13
ref12
ref15
ref14
ref97
ref96
martínez (ref17) 2013
ref99
ref98
ref19
ref18
wang (ref34) 0
jin (ref8) 2000
ref93
ref92
ref95
ref94
ref91
ref89
ref86
ref85
ref88
ref87
bartz-beielstein (ref103) 2017; 55
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref106
ref107
ref105
ref77
ref102
ref76
ref2
ref1
biswas (ref56) 1981
guo (ref41) 2016
ref71
ref111
ref70
ref112
ref73
ref72
ref110
cleveland (ref38) 1996
trev (ref75) 2012
ref68
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref65
jin (ref21) 2003
ref60
ref62
ref120
ref61
dasgupta (ref4) 2013
jin (ref16) 2004
References_xml – ident: ref20
  doi: 10.1109/TEVC.2017.2675628
– start-page: 170
  year: 2003
  ident: ref21
  article-title: Quality measures for approximate models in evolutionary computation
  publication-title: Proc Genet Evol Comput Conf
– ident: ref76
  doi: 10.1016/j.jhydrol.2012.10.050
– ident: ref72
  doi: 10.1109/ICEC.1998.699146
– ident: ref24
  doi: 10.1109/TCYB.2014.2374695
– ident: ref59
  doi: 10.1097/TA.0000000000000196
– ident: ref73
  doi: 10.1145/130385.130417
– ident: ref120
  doi: 10.1115/DETC2009-87053
– year: 0
  ident: ref55
  article-title: Multi-objective infill criterion driven Gaussian process assisted particle swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans Evol Comput
– ident: ref22
  doi: 10.1109/TEVC.2009.2027359
– ident: ref108
  doi: 10.1145/315891.316014
– ident: ref101
  doi: 10.1016/j.knosys.2015.09.032
– ident: ref58
  doi: 10.1016/j.paerosci.2008.11.001
– ident: ref13
  doi: 10.1109/TSMCC.2004.841917
– ident: ref84
  doi: 10.1016/j.envsoft.2013.03.016
– ident: ref81
  doi: 10.1007/s10589-011-9441-z
– ident: ref116
  doi: 10.1109/TEVC.2015.2458037
– start-page: 1
  year: 2013
  ident: ref104
  article-title: Locating multiple candidate designs with dynamic local surrogates
  publication-title: Proc 10th World Congr Struct Multi Optim
– ident: ref86
  doi: 10.1109/TCYB.2018.2811761
– ident: ref93
  doi: 10.3233/JCM-2012-0402
– ident: ref32
  doi: 10.1098/rspa.2007.1900
– ident: ref49
  doi: 10.1109/TCYB.2017.2710978
– ident: ref23
  doi: 10.1109/MCI.2014.2350953
– ident: ref5
  doi: 10.1016/S0967-0661(02)00081-3
– ident: ref63
  doi: 10.1097/TA.0000000000000617
– ident: ref19
  doi: 10.1007/s00500-014-1283-z
– ident: ref26
  doi: 10.1109/TKDE.2014.2345380
– ident: ref36
  doi: 10.1007/s40747-017-0037-9
– ident: ref57
  doi: 10.1002/9780470770801
– ident: ref99
  doi: 10.1007/978-3-642-41278-3_45
– ident: ref98
  doi: 10.1007/978-3-642-20364-0_13
– start-page: 1405
  year: 2013
  ident: ref17
  article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems
  publication-title: Proc Genetic Evol Comput Conf
– ident: ref85
  doi: 10.1109/CEC.2012.6252915
– ident: ref60
  doi: 10.1016/j.surge.2013.10.001
– year: 2008
  ident: ref66
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref69
  doi: 10.1080/00401706.1987.10488205
– ident: ref110
  doi: 10.1016/j.ins.2012.09.030
– ident: ref31
  doi: 10.1007/978-3-540-85984-0_29
– year: 2013
  ident: ref74
  publication-title: ANSYS ICEM CFD Tutorial Manual
– start-page: 786
  year: 2000
  ident: ref8
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Proc Genet Evol Comput Conf
– ident: ref51
  doi: 10.1109/CEC.2008.4631273
– volume: 3
  start-page: 2832
  year: 2005
  ident: ref11
  article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref37
  doi: 10.1080/10426914.2016.1269923
– ident: ref102
  doi: 10.1109/TCYB.2016.2562674
– ident: ref87
  doi: 10.1145/3205455.3205514
– ident: ref117
  doi: 10.1109/CEC.2016.7744340
– ident: ref42
  doi: 10.1007/s00500-003-0330-y
– start-page: 688
  year: 2004
  ident: ref16
  article-title: Reducing fitness evaluations using clustering techniques and neural network ensembles
  publication-title: Proc Genet Evol Comput Conf
– ident: ref18
  doi: 10.1109/TEVC.2013.2262111
– year: 2012
  ident: ref75
  publication-title: CFX Computational Fluid Dynamics Ansys HVAC
– ident: ref106
  doi: 10.1016/j.ins.2018.04.062
– start-page: 1
  year: 2016
  ident: ref41
  article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces
  publication-title: Proc IEEE Int Comput Symp
– ident: ref78
  doi: 10.1007/978-3-642-15844-5_37
– start-page: 887
  year: 2001
  ident: ref109
  article-title: An efficient genetic algorithm with less fitness evaluation by clustering
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref118
  doi: 10.1201/b12207
– ident: ref45
  doi: 10.1007/s00500-003-0329-4
– ident: ref28
  doi: 10.1109/TCYB.2015.2459137
– ident: ref64
  doi: 10.1109/TCYB.2013.2247594
– ident: ref6
  doi: 10.1109/TEVC.2016.2555315
– ident: ref39
  doi: 10.1109/TEVC.2016.2519378
– ident: ref61
  doi: 10.1097/TA.0000000000000827
– volume: 14
  start-page: 1137
  year: 1995
  ident: ref119
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc Int Joint Conf Artif Intell
– start-page: 214
  year: 2016
  ident: ref90
  article-title: On constraint handling in surrogate-assisted evolutionary many-objective optimization
  publication-title: Proc of the 5th Parallel Problem Solving from Nature
  doi: 10.1007/978-3-319-45823-6_20
– ident: ref79
  doi: 10.1145/3071178.3071276
– ident: ref112
  doi: 10.1145/3205455.3205596
– ident: ref97
  doi: 10.1016/j.neunet.2007.04.023
– year: 2013
  ident: ref4
  publication-title: Evolutionary Algorithms in Engineering Applications
– ident: ref88
  doi: 10.1109/TEVC.2016.2587749
– ident: ref47
  doi: 10.1016/j.ejor.2014.07.032
– ident: ref25
  doi: 10.1109/TSMCB.2012.2187280
– ident: ref40
  doi: 10.1109/TKDE.2013.109
– ident: ref65
  doi: 10.1007/s40747-017-0057-5
– ident: ref15
  doi: 10.1109/CEC.2003.1299639
– ident: ref44
  doi: 10.1007/s005000050055
– ident: ref9
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref107
  doi: 10.1007/s00500-003-0328-5
– ident: ref91
  doi: 10.1115/1.4003035
– ident: ref62
  doi: 10.1109/4235.996017
– ident: ref12
  doi: 10.1109/TEVC.2016.2622301
– year: 0
  ident: ref114
  article-title: Multi-problem surrogates: Transfer evolutionary multiobjective optimization of computationally expensive problems
  publication-title: IEEE Trans Evol Comput
– start-page: 361
  year: 2002
  ident: ref7
  article-title: Metamodel-Assisted evolution strategies
  publication-title: Proc of the 5th Parallel Problem Solving from Nature
– ident: ref77
  doi: 10.1109/TEVC.2018.2802784
– year: 0
  ident: ref34
  article-title: A generic test suite for evolutionary multi-fidelity optimization
  publication-title: IEEE Trans Evol Comput
– ident: ref100
  doi: 10.1109/TEVC.2013.2288779
– ident: ref1
  doi: 10.1109/MCI.2009.933094
– ident: ref27
  doi: 10.1109/TEVC.2005.846356
– start-page: 87
  year: 1998
  ident: ref43
  article-title: Accelerating the convergence of evolutionary algorithms by fitness landscape approximation
  publication-title: Proc Parallel Prob Solving Nat (PPSN)
– ident: ref70
  doi: 10.1109/TEVC.2005.851274
– ident: ref95
  doi: 10.1109/TEVC.2009.2039141
– ident: ref71
  doi: 10.1007/s00158-006-0051-9
– ident: ref53
  doi: 10.1109/TEVC.2005.859463
– ident: ref94
  doi: 10.1007/978-3-642-40942-4_15
– ident: ref33
  doi: 10.1016/j.jocs.2015.11.004
– ident: ref105
  doi: 10.1109/TSMCC.2005.855506
– start-page: 10
  year: 1996
  ident: ref38
  publication-title: Smoothing by local regression Principles and methods
– ident: ref83
  doi: 10.1080/10426914.2013.872271
– year: 0
  ident: ref48
  article-title: Heterogeneous ensemble based infill criterion for evolutionary multi-objective optimization of expensive problems
  publication-title: IEEE Trans Cybern
– ident: ref3
  doi: 10.1016/j.eswa.2013.10.002
– year: 1981
  ident: ref56
  publication-title: Principles of Blast Furnace Ironmaking Theory and Practice
– ident: ref46
  doi: 10.1145/2908961.2931714
– ident: ref14
  doi: 10.1109/TEVC.2002.800884
– ident: ref29
  doi: 10.1109/ICGEC.2012.64
– ident: ref54
  doi: 10.1109/TEVC.2013.2248012
– ident: ref115
  doi: 10.1109/TETCI.2017.2769104
– volume: 55
  start-page: 154
  year: 2017
  ident: ref103
  article-title: Model-based methods for continuous and discrete global optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.01.039
– ident: ref35
  doi: 10.1109/TEVC.2018.2834881
– ident: ref82
  doi: 10.1023/A:1008306431147
– year: 0
  ident: ref113
  article-title: Generalized multi-tasking for evolutionary optimization of expensive problems
  publication-title: IEEE Trans Evol Comput
– ident: ref52
  doi: 10.1109/TEVC.2017.2693320
– year: 2005
  ident: ref30
  publication-title: Knowledge Incorporation in Evolutionary Computation
  doi: 10.1007/978-3-540-44511-1
– ident: ref111
  doi: 10.1109/TSMCB.2012.2214382
– ident: ref92
  doi: 10.1109/CEC.2010.5586124
– ident: ref2
  doi: 10.1109/CEC.2017.7969486
– ident: ref96
  doi: 10.1109/CEC.2010.5586355
– ident: ref67
  doi: 10.1109/TASE.2014.2309348
– ident: ref68
  doi: 10.1109/TEVC.2009.2033671
– year: 0
  ident: ref10
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Computing
– ident: ref50
  doi: 10.1109/JPROC.2015.2494218
– ident: ref89
  doi: 10.1145/3071178.3071264
– ident: ref80
  doi: 10.1080/01605682.2018.1468860
SSID ssj0014519
Score 2.6955495
Snippet Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 442
SubjectTerms Computational modeling
Computer simulation
Data mining
Data models
Data science
data-driven optimization
Evolutionary algorithms
evolutionary algorithms (EAs)
Fitness
Machine learning
model management
Optimization
Sociology
Statistics
surrogate
Taxonomy
Title Data-Driven Evolutionary Optimization: An Overview and Case Studies
URI https://ieeexplore.ieee.org/document/8456559
https://www.proquest.com/docview/2232763274
Volume 23
WOSCitedRecordID wos000470018600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8YAHUdCIotmDJ2OhhXYf3giPeAIPaLg1y-72pMVUwPjvnW2XxkRj4qFJm8xumn6z8-jOzgdwE4ZGc8GVJ1DCC1lCPU6p9vqMKkGDlVQDmZNNsNmML5fisQJ35VkYY0xefGa69jbfy9drtbW_ynrchh-RqEKVMVac1Sp3DGyblKKYXmDEyJduBzPwRW8xeR7ZIi7e7Vv-Jcf_svdBOanKD0ucu5dp438vdgxHLowkwwL3E6iYtAmNPUUDcSu2CYff-g02oW5Dy6IzcwtGY7mR3jiz5o5Mdk4FZfZJ5mhGXt35zHsyTMl8Zy2K-SAy1WSEfo-48sNTeJpOFqMHz1EqeAoTxY2nIp2EgmsMAyhlRrKQoz9XfiCZQFQiqiRXNDGcaSUDLZQerPqYUlAeqT7HpzOopevUnAOJIhmuQsxwucJZtOJ-EkRoL5KEs0EkV23w9x85Vq7fuKW9eInzvMMXscUltrjEDpc23JZD3opmG38JtywQpaDDoA2dPZKxW47vMcZAqHx4hRe_j7qEOs4tihqwDtQ22dZcwYHaISjZda5pX9pSz8s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFJwHp1NxfubgSaxruyRNvI05UdTNw5TdSpakJ60y58T_3pc2G4IieCi0kLSlv5f30bz3fgDHlFojpNCBxBEBTTIeCM5NECdcSx6NlG6pgmwi6fXEcCjvF-B0XgtjrS2Sz-yZOy328s2Lfne_yprCuR9MLsISozSOymqt-Z6Ba5RSptNL9BnF0O9hRqFsDrqPHZfGJc5ix8DkGWBmVqigVfmhiwsDc1n736utw5p3JEm7RH4DFmxeh9qMpIH4NVuH1W8dB-tQdc5l2Zt5EzoXaqKCi7FTeKQ79UKoxp-kj4rk2VdonpN2TvpTp1PsB1G5IR20fMQnIG7Bw2V30LkKPKlCoDFUnASamYxKYdAR4DyxKqECLboOI5VIxIVxrYTmmRWJ0SoyUpvWKMagggumY4FX21DJX3K7A4QxRUcUY1yh8S5GizCLGGqMLBNJi6lRA8LZR0617zjuiC-e0iLyCGXqcEkdLqnHpQEn8ymvZbuNvwZvOiDmAz0GDdifIZn6BfmWoheE4ocH3f191hGsXA3ubtPb697NHlTxObLMCNuHymT8bg9gWU8RoPFhIXVf06HTEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Evolutionary+Optimization%3A+An+Overview+and+Case+Studies&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Jin%2C+Yaochu&rft.au=Wang%2C+Handing&rft.au=Chugh%2C+Tinkle&rft.au=Guo%2C+Dan&rft.date=2019-06-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=3&rft.spage=442&rft.epage=458&rft_id=info:doi/10.1109%2FTEVC.2018.2869001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2018_2869001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon