Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution

Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 25; číslo 3; s. 595 - 607
Hlavní autori: Tang, Ke, Liu, Shengcai, Yang, Peng, Yao, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of "training" problem instances, which is often referred to as PAP construction. However, compared to the traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This article proposes a novel competitive co-evolution scheme, named co-evolution of parameterized search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this article. Two concrete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW, are presented for the traveling salesman problem (TSP) and the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW), respectively. The experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2021.3059661