Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution

Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 25; H. 3; S. 595 - 607
Hauptverfasser: Tang, Ke, Liu, Shengcai, Yang, Peng, Yao, Xin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of "training" problem instances, which is often referred to as PAP construction. However, compared to the traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This article proposes a novel competitive co-evolution scheme, named co-evolution of parameterized search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this article. Two concrete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW, are presented for the traveling salesman problem (TSP) and the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW), respectively. The experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances.
AbstractList Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of "training" problem instances, which is often referred to as PAP construction. However, compared to the traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This article proposes a novel competitive co-evolution scheme, named co-evolution of parameterized search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this article. Two concrete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW, are presented for the traveling salesman problem (TSP) and the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW), respectively. The experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances.
Author Tang, Ke
Yao, Xin
Liu, Shengcai
Yang, Peng
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0002-6236-2002
  surname: Tang
  fullname: Tang, Ke
  email: tangk3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Shengcai
  orcidid: 0000-0002-4223-2438
  surname: Liu
  fullname: Liu, Shengcai
  email: liusc3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-5333-6155
  surname: Yang
  fullname: Yang, Peng
  email: yangp@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0001-8837-4442
  surname: Yao
  fullname: Yao, Xin
  email: xiny@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kF9LwzAUxYNMcJt-APGl4HNn_rd5HHNTYeDAKb6FtE1dRtbMJJ347W3Z8MEHn-7lcn73cM4IDBrXaACuEZwgBMXdev42m2CI0YRAJjhHZ2CIBEUphJgPuh3mIs2y_P0CjELYQogoQ2II7hf6K33ZuBiSlfLKWm2Tqf1w3sTNLlk5H2tnjUtmrgnRt2U0rkkORnWHdH5wtu0Pl-C8Vjboq9Mcg9fFfD17TJfPD0-z6TItKcQxLTtXJQjKFS4LWGeFgByTHFJWMoyVUFxghrRWlOIq50hTQosi11VVKV5VkIzB7fHv3rvPVocot671TWcpMSOEii4U71ToqCq9C8HrWu692Sn_LRGUfVmyL0v2ZclTWR2T_WFKE1WfLXpl7L_kzZE0WutfJ0EYzRkmP4cleJw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEVC_2023_3339506
crossref_primary_10_1093_jcde_qwad097
crossref_primary_10_1109_TASLP_2021_3130970
crossref_primary_10_1007_s12293_022_00367_8
crossref_primary_10_1049_tje2_12368
crossref_primary_10_1109_TCYB_2024_3402395
crossref_primary_10_2478_jaiscr_2025_0004
crossref_primary_10_1016_j_swevo_2021_100927
crossref_primary_10_1109_TCYB_2025_3561518
crossref_primary_10_1109_TETCI_2024_3449908
crossref_primary_10_1145_3651166
crossref_primary_10_1109_MCI_2023_3277768
crossref_primary_10_1016_j_swevo_2024_101838
crossref_primary_10_1016_j_asoc_2023_111114
crossref_primary_10_1109_TCYB_2022_3169210
crossref_primary_10_1093_nsr_nwae132
crossref_primary_10_1109_MCI_2023_3277772
crossref_primary_10_3390_electronics12224639
crossref_primary_10_1016_j_engappai_2023_106353
crossref_primary_10_1016_j_eswa_2023_120760
crossref_primary_10_1109_TETCI_2022_3182415
crossref_primary_10_3390_su16166871
crossref_primary_10_1109_TAI_2025_3545792
Cites_doi 10.1109/TEVC.2010.2040183
10.1038/nature14236
10.1287/ijoc.1120.0506
10.1016/S0004-3702(00)00081-3
10.1109/TCYB.2020.2984546
10.1109/TEVC.2019.2921598
10.1145/3299904.3340307
10.1007/0-306-48213-4_9
10.1109/CCDC.2018.8408272
10.1613/jair.2861
10.1162/evco.2006.14.4.433
10.1016/j.cie.2011.08.018
10.1016/j.orp.2016.09.002
10.1007/978-3-319-50349-3_3
10.1613/jair.2490
10.1162/evco_a_00215
10.1109/TSMCB.2008.2006910
10.1016/j.cie.2015.02.005
10.1162/evco.1997.5.1.1
10.1016/j.ifacol.2018.08.278
10.1016/j.swevo.2011.02.001
10.1609/aimag.v35i3.2460
10.1609/aaai.v33i01.33011560
10.1109/TEVC.2014.2322883
10.1609/aaai.v34i03.5618
10.1287/ijoc.3.4.376
10.1007/978-3-642-25566-3_40
10.1287/opre.21.2.498
10.1109/TEVC.2014.2308294
10.1145/1562764.1562783
10.1126/science.275.5296.51
10.1016/j.artint.2016.05.004
10.1007/978-3-642-04244-7_14
10.1007/s12532-009-0004-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3059661
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 607
ExternalDocumentID 10_1109_TEVC_2021_3059661
9354852
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19511120600
  funderid: 10.13039/501100003399
– fundername: National Leading Youth Talent Support Program of China
– fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams
  grantid: 2017ZT07X386
– fundername: MOE University Scientific-Technological Innovation Plan Program
– fundername: Guangdong Provincial Key Laboratory
  grantid: 2020B121201001
– fundername: Shenzhen Peacock Plan
  grantid: KQTD2016112514355531
  funderid: 10.13039/501100012234
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-c001a9318a2cb0f7b906238045c522a9a69251eea442d861e434bb8eddda6dd03
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655791500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Jun 29 15:31:43 EDT 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 21:31:34 EST 2025
Wed Aug 27 02:30:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-c001a9318a2cb0f7b906238045c522a9a69251eea442d861e434bb8eddda6dd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6236-2002
0000-0002-4223-2438
0000-0001-8837-4442
0000-0001-5333-6155
OpenAccessLink https://ieeexplore.ieee.org/document/9354852
PQID 2533491456
PQPubID 85418
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2021_3059661
proquest_journals_2533491456
crossref_primary_10_1109_TEVC_2021_3059661
ieee_primary_9354852
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref33
ref11
ref32
ref10
chen (ref20) 2019
ref2
ref1
zhao (ref30) 2020
ref17
xie (ref39) 2009; 39
ref38
ref16
ref18
kulkarni (ref45) 2016
ansótegui (ref9) 2015
ref24
ref25
ref42
ref22
ref44
ref43
ref28
kadioglu (ref27) 2010
kool (ref21) 2018
xu (ref26) 2010
ref29
ref8
ref7
ref4
ref3
nazari (ref19) 2018
ref6
birattari (ref23) 2004
ref5
ref40
huang (ref41) 2016; 52
bossek (ref36) 2015
References_xml – ident: ref14
  doi: 10.1109/TEVC.2010.2040183
– ident: ref44
  doi: 10.1038/nature14236
– ident: ref38
  doi: 10.1287/ijoc.1120.0506
– ident: ref11
  doi: 10.1016/S0004-3702(00)00081-3
– ident: ref15
  doi: 10.1109/TCYB.2020.2984546
– ident: ref5
  doi: 10.1109/TEVC.2019.2921598
– ident: ref37
  doi: 10.1145/3299904.3340307
– ident: ref35
  doi: 10.1007/0-306-48213-4_9
– ident: ref42
  doi: 10.1109/CCDC.2018.8408272
– year: 2020
  ident: ref30
  publication-title: Leveraging TSP solver complementarity via deep learning
– ident: ref7
  doi: 10.1613/jair.2861
– year: 2018
  ident: ref21
  publication-title: Attention learn to solve routing problems!
– ident: ref33
  doi: 10.1162/evco.2006.14.4.433
– start-page: 6278
  year: 2019
  ident: ref20
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: Proc 32nd Annu Conf Neural Inf Process Syst (NeurIPS)
– ident: ref18
  doi: 10.1016/j.cie.2011.08.018
– ident: ref10
  doi: 10.1016/j.orp.2016.09.002
– ident: ref22
  doi: 10.1007/978-3-319-50349-3_3
– ident: ref28
  doi: 10.1613/jair.2490
– start-page: 210
  year: 2010
  ident: ref26
  article-title: Hydra: Automatically configuring algorithms for portfolio-based selection
  publication-title: Proc 24th AAAI Conf Artif Intell
– ident: ref29
  doi: 10.1162/evco_a_00215
– start-page: 751
  year: 2010
  ident: ref27
  article-title: ISAC-Instance-specific algorithm configuration
  publication-title: Proc 19th Eur Conf Artif Intell (ECAI)
– volume: 39
  start-page: 489
  year: 2009
  ident: ref39
  article-title: Multiagent optimization system for solving the traveling salesman problem (TSP)
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2006910
– ident: ref40
  doi: 10.1016/j.cie.2015.02.005
– ident: ref32
  doi: 10.1162/evco.1997.5.1.1
– ident: ref43
  doi: 10.1016/j.ifacol.2018.08.278
– ident: ref2
  doi: 10.1016/j.swevo.2011.02.001
– ident: ref31
  doi: 10.1609/aimag.v35i3.2460
– ident: ref13
  doi: 10.1609/aaai.v33i01.33011560
– ident: ref6
  doi: 10.1109/TEVC.2014.2322883
– ident: ref24
  doi: 10.1609/aaai.v34i03.5618
– ident: ref17
  doi: 10.1287/ijoc.3.4.376
– ident: ref3
  doi: 10.1007/978-3-642-25566-3_40
– ident: ref1
  doi: 10.1287/opre.21.2.498
– start-page: 9861
  year: 2018
  ident: ref19
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Proc 31st Annu Conf Neural Inf Process Syst (NeurIPS)
– ident: ref4
  doi: 10.1109/TEVC.2014.2308294
– ident: ref16
  doi: 10.1145/1562764.1562783
– ident: ref12
  doi: 10.1126/science.275.5296.51
– start-page: 733
  year: 2015
  ident: ref9
  article-title: Model-based genetic algorithms for algorithm configuration
  publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI)
– start-page: 3675
  year: 2016
  ident: ref45
  article-title: Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation
  publication-title: Proc 29th Annu Conf Neural Inf Process Syst (NIPS)
– ident: ref25
  doi: 10.1016/j.artint.2016.05.004
– volume: 52
  start-page: 21
  year: 2016
  ident: ref41
  article-title: Vehicle routing problem with simultaneous pick-up and delivery and time-windows based on improved global artificial fish swarm algorithm
  publication-title: Comput Eng Appl
– ident: ref8
  doi: 10.1007/978-3-642-04244-7_14
– ident: ref34
  doi: 10.1007/s12532-009-0004-6
– year: 2004
  ident: ref23
  article-title: On the estimation of the expected performance of a metaheuristic on a class of instances. How many instances, how many runs?
– year: 2015
  ident: ref36
  publication-title: netgen Network Generator for Combinatorial Graph Problems
SSID ssj0014519
Score 2.4998126
Snippet Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 595
SubjectTerms Algorithm configuration
automatic parameter tuning
co-evolution
Evolutionary algorithms
Machine learning
Machine learning algorithms
parallel algorithm portfolios (PAPs)
Parallel algorithms
Portfolios
Route planning
Sociology
Statistics
Systems design
Training
Traveling salesman problem
Tuning
Vehicle routing
vehicle routing problems
Windows (intervals)
Title Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution
URI https://ieeexplore.ieee.org/document/9354852
https://www.proquest.com/docview/2533491456
Volume 25
WOSCitedRecordID wos000655791500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8VAPVlvFapU9eBJX95FukqNoiwcpBR_0tmSTVAu1K22tf9-Z3bQoiuBtWZKw5JtJvtl5AZwmmUQeQl5_xrjPUIT9LI6Nz4Q1nZCLUSKKROE73u-L4VAOKnC-zoWx1hbBZ_aCHgtfvsn1O_0qu5Qx8usOHrgbnPMyV2vtMaAyKWUwvUTGKIbOgxkG8vKh-3SNlmAUXsTUbCYJv91BRVOVHydxcb306v_7sB3YdjTSuypx34WKnTagvmrR4DmNbcDWl3qDDagRtSwrMzfhpmc__PuXfDH3BmpGLVVwvclzPhsvXl49ijAd5ZNx7lFLz1WRWW85VvjC7y6dxO7BY6_7cH3ru54KvkZLceFr3ColUZFVpLNgxDOqUxwLJHYamZiSKpHIeKxVjEVGJKFlMcsyBM4YlRgTxPtQneZTewAeJfeLUHU0XXFWooluBBeZVpzbIItZC4LVLqfaFRynvheTtDA8ApkSMCkBkzpgWnC2nvJWVtv4a3CTkFgPdCC0oL2CMnX6OE8jyjiWKCTJ4e-zjqBGa5dBYG2o4r7aY9jUS0RldlKI2id5Uc8A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4YNVEfRFEjiroHn4zTjZWtfTQIwYiERDS8LV1bhASZAcR_37utEI3GxLdlabflvmv73e4XwHmYCOQh5PVnLHIZqrCbBIF2GTe66ke8H_IsUbgVtdu81xOdFbhc5sIYY7LgM3NFl5kvX6fqnX6VXYsA-XUVN9y1KmMVP8_WWvoMqFBKHk4vkDPynvVh-p647tafa2gLVvyrgNrNhP63Uyhrq_JjL84OmEbhf5-2A9uWSDo3OfK7sGLGRSgsmjQ4ds0WYetLxcEibBK5zGsz78Ftw3y4j4N0NnU6ckJNVfB5o5d0MpwNXh2KMe2no2HqUFPPRZlZZz6UeMOtz63O7sNTo96tNV3bVcFVaCvOXIWikgKXsqyoxOtHCVUqDjhSO4VcTAoZCuQ8xkgUseahb1jAkgSh01qGWnvBAayO07E5BIfS-7kvq4oOOSPQSNc84omSUWS8JGAl8BZSjpUtOU6dL0ZxZnp4IiZgYgImtsCU4GI55S2vt_HX4D1CYjnQglCC8gLK2K7IaVyhnGOBShIe_T7rDDaa3YdW3Lpr3x_DJr0nDwkrwyrK2JzAupojQpPTTO0-AWdh0kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Shots+Parallel+Algorithm+Portfolio+Construction+via+Co-Evolution&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Tang%2C+Ke&rft.au=Liu%2C+Shengcai&rft.au=Yang%2C+Peng&rft.au=Yao%2C+Xin&rft.date=2021-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=3&rft.spage=595&rft_id=info:doi/10.1109%2FTEVC.2021.3059661&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon