Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution
Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 25; H. 3; S. 595 - 607 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of "training" problem instances, which is often referred to as PAP construction. However, compared to the traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This article proposes a novel competitive co-evolution scheme, named co-evolution of parameterized search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this article. Two concrete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW, are presented for the traveling salesman problem (TSP) and the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW), respectively. The experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances. |
|---|---|
| AbstractList | Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of "training" problem instances, which is often referred to as PAP construction. However, compared to the traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This article proposes a novel competitive co-evolution scheme, named co-evolution of parameterized search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this article. Two concrete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW, are presented for the traveling salesman problem (TSP) and the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW), respectively. The experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances. |
| Author | Tang, Ke Yao, Xin Liu, Shengcai Yang, Peng |
| Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0002-6236-2002 surname: Tang fullname: Tang, Ke email: tangk3@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Shengcai orcidid: 0000-0002-4223-2438 surname: Liu fullname: Liu, Shengcai email: liusc3@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Peng orcidid: 0000-0001-5333-6155 surname: Yang fullname: Yang, Peng email: yangp@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Xin orcidid: 0000-0001-8837-4442 surname: Yao fullname: Yao, Xin email: xiny@sustech.edu.cn organization: Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNp9kF9LwzAUxYNMcJt-APGl4HNn_rd5HHNTYeDAKb6FtE1dRtbMJJ347W3Z8MEHn-7lcn73cM4IDBrXaACuEZwgBMXdev42m2CI0YRAJjhHZ2CIBEUphJgPuh3mIs2y_P0CjELYQogoQ2II7hf6K33ZuBiSlfLKWm2Tqf1w3sTNLlk5H2tnjUtmrgnRt2U0rkkORnWHdH5wtu0Pl-C8Vjboq9Mcg9fFfD17TJfPD0-z6TItKcQxLTtXJQjKFS4LWGeFgByTHFJWMoyVUFxghrRWlOIq50hTQosi11VVKV5VkIzB7fHv3rvPVocot671TWcpMSOEii4U71ToqCq9C8HrWu692Sn_LRGUfVmyL0v2ZclTWR2T_WFKE1WfLXpl7L_kzZE0WutfJ0EYzRkmP4cleJw |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1109_TEVC_2023_3339506 crossref_primary_10_1093_jcde_qwad097 crossref_primary_10_1109_TASLP_2021_3130970 crossref_primary_10_1007_s12293_022_00367_8 crossref_primary_10_1049_tje2_12368 crossref_primary_10_1109_TCYB_2024_3402395 crossref_primary_10_2478_jaiscr_2025_0004 crossref_primary_10_1016_j_swevo_2021_100927 crossref_primary_10_1109_TCYB_2025_3561518 crossref_primary_10_1109_TETCI_2024_3449908 crossref_primary_10_1145_3651166 crossref_primary_10_1109_MCI_2023_3277768 crossref_primary_10_1016_j_swevo_2024_101838 crossref_primary_10_1016_j_asoc_2023_111114 crossref_primary_10_1109_TCYB_2022_3169210 crossref_primary_10_1093_nsr_nwae132 crossref_primary_10_1109_MCI_2023_3277772 crossref_primary_10_3390_electronics12224639 crossref_primary_10_1016_j_engappai_2023_106353 crossref_primary_10_1016_j_eswa_2023_120760 crossref_primary_10_1109_TETCI_2022_3182415 crossref_primary_10_3390_su16166871 crossref_primary_10_1109_TAI_2025_3545792 |
| Cites_doi | 10.1109/TEVC.2010.2040183 10.1038/nature14236 10.1287/ijoc.1120.0506 10.1016/S0004-3702(00)00081-3 10.1109/TCYB.2020.2984546 10.1109/TEVC.2019.2921598 10.1145/3299904.3340307 10.1007/0-306-48213-4_9 10.1109/CCDC.2018.8408272 10.1613/jair.2861 10.1162/evco.2006.14.4.433 10.1016/j.cie.2011.08.018 10.1016/j.orp.2016.09.002 10.1007/978-3-319-50349-3_3 10.1613/jair.2490 10.1162/evco_a_00215 10.1109/TSMCB.2008.2006910 10.1016/j.cie.2015.02.005 10.1162/evco.1997.5.1.1 10.1016/j.ifacol.2018.08.278 10.1016/j.swevo.2011.02.001 10.1609/aimag.v35i3.2460 10.1609/aaai.v33i01.33011560 10.1109/TEVC.2014.2322883 10.1609/aaai.v34i03.5618 10.1287/ijoc.3.4.376 10.1007/978-3-642-25566-3_40 10.1287/opre.21.2.498 10.1109/TEVC.2014.2308294 10.1145/1562764.1562783 10.1126/science.275.5296.51 10.1016/j.artint.2016.05.004 10.1007/978-3-642-04244-7_14 10.1007/s12532-009-0004-6 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2021.3059661 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 607 |
| ExternalDocumentID | 10_1109_TEVC_2021_3059661 9354852 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai Municipality grantid: 19511120600 funderid: 10.13039/501100003399 – fundername: National Leading Youth Talent Support Program of China – fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams grantid: 2017ZT07X386 – fundername: MOE University Scientific-Technological Innovation Plan Program – fundername: Guangdong Provincial Key Laboratory grantid: 2020B121201001 – fundername: Shenzhen Peacock Plan grantid: KQTD2016112514355531 funderid: 10.13039/501100012234 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-c001a9318a2cb0f7b906238045c522a9a69251eea442d861e434bb8eddda6dd03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655791500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Jun 29 15:31:43 EDT 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 21:31:34 EST 2025 Wed Aug 27 02:30:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-c001a9318a2cb0f7b906238045c522a9a69251eea442d861e434bb8eddda6dd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6236-2002 0000-0002-4223-2438 0000-0001-8837-4442 0000-0001-5333-6155 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9354852 |
| PQID | 2533491456 |
| PQPubID | 85418 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2021_3059661 proquest_journals_2533491456 crossref_primary_10_1109_TEVC_2021_3059661 ieee_primary_9354852 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref33 ref11 ref32 ref10 chen (ref20) 2019 ref2 ref1 zhao (ref30) 2020 ref17 xie (ref39) 2009; 39 ref38 ref16 ref18 kulkarni (ref45) 2016 ansótegui (ref9) 2015 ref24 ref25 ref42 ref22 ref44 ref43 ref28 kadioglu (ref27) 2010 kool (ref21) 2018 xu (ref26) 2010 ref29 ref8 ref7 ref4 ref3 nazari (ref19) 2018 ref6 birattari (ref23) 2004 ref5 ref40 huang (ref41) 2016; 52 bossek (ref36) 2015 |
| References_xml | – ident: ref14 doi: 10.1109/TEVC.2010.2040183 – ident: ref44 doi: 10.1038/nature14236 – ident: ref38 doi: 10.1287/ijoc.1120.0506 – ident: ref11 doi: 10.1016/S0004-3702(00)00081-3 – ident: ref15 doi: 10.1109/TCYB.2020.2984546 – ident: ref5 doi: 10.1109/TEVC.2019.2921598 – ident: ref37 doi: 10.1145/3299904.3340307 – ident: ref35 doi: 10.1007/0-306-48213-4_9 – ident: ref42 doi: 10.1109/CCDC.2018.8408272 – year: 2020 ident: ref30 publication-title: Leveraging TSP solver complementarity via deep learning – ident: ref7 doi: 10.1613/jair.2861 – year: 2018 ident: ref21 publication-title: Attention learn to solve routing problems! – ident: ref33 doi: 10.1162/evco.2006.14.4.433 – start-page: 6278 year: 2019 ident: ref20 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: Proc 32nd Annu Conf Neural Inf Process Syst (NeurIPS) – ident: ref18 doi: 10.1016/j.cie.2011.08.018 – ident: ref10 doi: 10.1016/j.orp.2016.09.002 – ident: ref22 doi: 10.1007/978-3-319-50349-3_3 – ident: ref28 doi: 10.1613/jair.2490 – start-page: 210 year: 2010 ident: ref26 article-title: Hydra: Automatically configuring algorithms for portfolio-based selection publication-title: Proc 24th AAAI Conf Artif Intell – ident: ref29 doi: 10.1162/evco_a_00215 – start-page: 751 year: 2010 ident: ref27 article-title: ISAC-Instance-specific algorithm configuration publication-title: Proc 19th Eur Conf Artif Intell (ECAI) – volume: 39 start-page: 489 year: 2009 ident: ref39 article-title: Multiagent optimization system for solving the traveling salesman problem (TSP) publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2006910 – ident: ref40 doi: 10.1016/j.cie.2015.02.005 – ident: ref32 doi: 10.1162/evco.1997.5.1.1 – ident: ref43 doi: 10.1016/j.ifacol.2018.08.278 – ident: ref2 doi: 10.1016/j.swevo.2011.02.001 – ident: ref31 doi: 10.1609/aimag.v35i3.2460 – ident: ref13 doi: 10.1609/aaai.v33i01.33011560 – ident: ref6 doi: 10.1109/TEVC.2014.2322883 – ident: ref24 doi: 10.1609/aaai.v34i03.5618 – ident: ref17 doi: 10.1287/ijoc.3.4.376 – ident: ref3 doi: 10.1007/978-3-642-25566-3_40 – ident: ref1 doi: 10.1287/opre.21.2.498 – start-page: 9861 year: 2018 ident: ref19 article-title: Reinforcement learning for solving the vehicle routing problem publication-title: Proc 31st Annu Conf Neural Inf Process Syst (NeurIPS) – ident: ref4 doi: 10.1109/TEVC.2014.2308294 – ident: ref16 doi: 10.1145/1562764.1562783 – ident: ref12 doi: 10.1126/science.275.5296.51 – start-page: 733 year: 2015 ident: ref9 article-title: Model-based genetic algorithms for algorithm configuration publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI) – start-page: 3675 year: 2016 ident: ref45 article-title: Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation publication-title: Proc 29th Annu Conf Neural Inf Process Syst (NIPS) – ident: ref25 doi: 10.1016/j.artint.2016.05.004 – volume: 52 start-page: 21 year: 2016 ident: ref41 article-title: Vehicle routing problem with simultaneous pick-up and delivery and time-windows based on improved global artificial fish swarm algorithm publication-title: Comput Eng Appl – ident: ref8 doi: 10.1007/978-3-642-04244-7_14 – ident: ref34 doi: 10.1007/s12532-009-0004-6 – year: 2004 ident: ref23 article-title: On the estimation of the expected performance of a metaheuristic on a class of instances. How many instances, how many runs? – year: 2015 ident: ref36 publication-title: netgen Network Generator for Combinatorial Graph Problems |
| SSID | ssj0014519 |
| Score | 2.4998126 |
| Snippet | Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 595 |
| SubjectTerms | Algorithm configuration automatic parameter tuning co-evolution Evolutionary algorithms Machine learning Machine learning algorithms parallel algorithm portfolios (PAPs) Parallel algorithms Portfolios Route planning Sociology Statistics Systems design Training Traveling salesman problem Tuning Vehicle routing vehicle routing problems Windows (intervals) |
| Title | Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution |
| URI | https://ieeexplore.ieee.org/document/9354852 https://www.proquest.com/docview/2533491456 |
| Volume | 25 |
| WOSCitedRecordID | wos000655791500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8VAPVlvFapU9eBJX95FukqNoiwcpBR_0tmSTVAu1K22tf9-Z3bQoiuBtWZKw5JtJvtl5AZwmmUQeQl5_xrjPUIT9LI6Nz4Q1nZCLUSKKROE73u-L4VAOKnC-zoWx1hbBZ_aCHgtfvsn1O_0qu5Qx8usOHrgbnPMyV2vtMaAyKWUwvUTGKIbOgxkG8vKh-3SNlmAUXsTUbCYJv91BRVOVHydxcb306v_7sB3YdjTSuypx34WKnTagvmrR4DmNbcDWl3qDDagRtSwrMzfhpmc__PuXfDH3BmpGLVVwvclzPhsvXl49ijAd5ZNx7lFLz1WRWW85VvjC7y6dxO7BY6_7cH3ru54KvkZLceFr3ColUZFVpLNgxDOqUxwLJHYamZiSKpHIeKxVjEVGJKFlMcsyBM4YlRgTxPtQneZTewAeJfeLUHU0XXFWooluBBeZVpzbIItZC4LVLqfaFRynvheTtDA8ApkSMCkBkzpgWnC2nvJWVtv4a3CTkFgPdCC0oL2CMnX6OE8jyjiWKCTJ4e-zjqBGa5dBYG2o4r7aY9jUS0RldlKI2id5Uc8A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4YNVEfRFEjiroHn4zTjZWtfTQIwYiERDS8LV1bhASZAcR_37utEI3GxLdlabflvmv73e4XwHmYCOQh5PVnLHIZqrCbBIF2GTe66ke8H_IsUbgVtdu81xOdFbhc5sIYY7LgM3NFl5kvX6fqnX6VXYsA-XUVN9y1KmMVP8_WWvoMqFBKHk4vkDPynvVh-p647tafa2gLVvyrgNrNhP63Uyhrq_JjL84OmEbhf5-2A9uWSDo3OfK7sGLGRSgsmjQ4ds0WYetLxcEibBK5zGsz78Ftw3y4j4N0NnU6ckJNVfB5o5d0MpwNXh2KMe2no2HqUFPPRZlZZz6UeMOtz63O7sNTo96tNV3bVcFVaCvOXIWikgKXsqyoxOtHCVUqDjhSO4VcTAoZCuQ8xkgUseahb1jAkgSh01qGWnvBAayO07E5BIfS-7kvq4oOOSPQSNc84omSUWS8JGAl8BZSjpUtOU6dL0ZxZnp4IiZgYgImtsCU4GI55S2vt_HX4D1CYjnQglCC8gLK2K7IaVyhnGOBShIe_T7rDDaa3YdW3Lpr3x_DJr0nDwkrwyrK2JzAupojQpPTTO0-AWdh0kc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Shots+Parallel+Algorithm+Portfolio+Construction+via+Co-Evolution&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Tang%2C+Ke&rft.au=Liu%2C+Shengcai&rft.au=Yang%2C+Peng&rft.au=Yao%2C+Xin&rft.date=2021-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=3&rft.spage=595&rft_id=info:doi/10.1109%2FTEVC.2021.3059661&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |