Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck

► Describe the mathematical framework for large-scale PHEV/PEV charging control. ► Manage the highly concentrated PHEV chargers considering real-world constraints. ► Develop and implement a suite of computational intelligence-based algorithms. ► Evaluate a variety of charging scenarios and the corre...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 96; pp. 171 - 182
Main Authors: Su, Wencong, Chow, Mo-Yuen
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2012
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► Describe the mathematical framework for large-scale PHEV/PEV charging control. ► Manage the highly concentrated PHEV chargers considering real-world constraints. ► Develop and implement a suite of computational intelligence-based algorithms. ► Evaluate a variety of charging scenarios and the corresponding control strategies. ► Demonstrate the effectiveness of the proposed computational intelligence approaches. There is a growing need to address the potential problems caused by the emergence of Plug-in Hybrid Electric Vehicles (PHEVs) and Plug-in Electric Vehicles (PEVs) within the next 10years. In the near future, a large number of PHEVs/PEVs in our society will add a large-scale energy load to our power grids, as well as add substantial energy resources that can be utilized. The large penetration of these vehicles into the marketplace poses a potential threat to the existing power grid. The existing parking infrastructure is not ready for the large penetration of plug-in vehicles and the high demand of electricity. Nowadays, the advanced computational intelligence methods can be applied to solve large-scale optimization problems in a Smart Grid environment. In this paper, authors propose and implement a suite of computational intelligence-based algorithms (e.g., Estimation of Distribution Algorithm, Particle Swarm Optimization) for optimally managing a large number of PHEVs/PEVs charging at a municipal parking station. Authors characterize the performance of the proposed methods using a Matlab simulation, and compare it with other optimization techniques.
AbstractList There is a growing need to address the potential problems caused by the emergence of Plug-in Hybrid Electric Vehicles (PHEVs) and Plug-in Electric Vehicles (PEVs) within the next 10 years. In the near future, a large number of PHEVs/PEVs in our society will add a large-scale energy load to our power grids, as well as add substantial energy resources that can be utilized. The large penetration of these vehicles into the marketplace poses a potential threat to the existing power grid. The existing parking infrastructure is not ready for the large penetration of plug-in vehicles and the high demand of electricity. Nowadays, the advanced computational intelligence methods can be applied to solve large-scale optimization problems in a Smart Grid environment. In this paper, authors propose and implement a suite of computational intelligence-based algorithms (e.g., Estimation of Distribution Algorithm, Particle Swarm Optimization) for optimally managing a large number of PHEVs/PEVs charging at a municipal parking station. Authors characterize the performance of the proposed methods using a Matlab simulation, and compare it with other optimization techniques.
There is a growing need to address the potential problems caused by the emergence of Plug-in Hybrid Electric Vehicles (PHEVs) and Plug-in Electric Vehicles (PEVs) within the next 10years. In the near future, a large number of PHEVs/PEVs in our society will add a large-scale energy load to our power grids, as well as add substantial energy resources that can be utilized. The large penetration of these vehicles into the marketplace poses a potential threat to the existing power grid. The existing parking infrastructure is not ready for the large penetration of plug-in vehicles and the high demand of electricity. Nowadays, the advanced computational intelligence methods can be applied to solve large-scale optimization problems in a Smart Grid environment. In this paper, authors propose and implement a suite of computational intelligence-based algorithms (e.g., Estimation of Distribution Algorithm, Particle Swarm Optimization) for optimally managing a large number of PHEVs/PEVs charging at a municipal parking station. Authors characterize the performance of the proposed methods using a Matlab simulation, and compare it with other optimization techniques.
► Describe the mathematical framework for large-scale PHEV/PEV charging control. ► Manage the highly concentrated PHEV chargers considering real-world constraints. ► Develop and implement a suite of computational intelligence-based algorithms. ► Evaluate a variety of charging scenarios and the corresponding control strategies. ► Demonstrate the effectiveness of the proposed computational intelligence approaches. There is a growing need to address the potential problems caused by the emergence of Plug-in Hybrid Electric Vehicles (PHEVs) and Plug-in Electric Vehicles (PEVs) within the next 10years. In the near future, a large number of PHEVs/PEVs in our society will add a large-scale energy load to our power grids, as well as add substantial energy resources that can be utilized. The large penetration of these vehicles into the marketplace poses a potential threat to the existing power grid. The existing parking infrastructure is not ready for the large penetration of plug-in vehicles and the high demand of electricity. Nowadays, the advanced computational intelligence methods can be applied to solve large-scale optimization problems in a Smart Grid environment. In this paper, authors propose and implement a suite of computational intelligence-based algorithms (e.g., Estimation of Distribution Algorithm, Particle Swarm Optimization) for optimally managing a large number of PHEVs/PEVs charging at a municipal parking station. Authors characterize the performance of the proposed methods using a Matlab simulation, and compare it with other optimization techniques.
Author Su, Wencong
Chow, Mo-Yuen
Author_xml – sequence: 1
  givenname: Wencong
  surname: Su
  fullname: Su, Wencong
  email: wsu2@ncsu.edu
– sequence: 2
  givenname: Mo-Yuen
  surname: Chow
  fullname: Chow, Mo-Yuen
  email: chow@ncsu.edu
BookMark eNqFkU9r3DAQxUVJoJs0X6H1sRdvNNJaa0MPLcu2CQQayJ-rGMljo40tu5I3kG9fGbeXXBYG5vJ7T5r3LtiZHzwx9hn4Gjio68MaR_IU2re14ADrNLwsP7AVlFuRVwDlGVtxyVUuFFQf2UWMB865AMFXrNsN_XiccHKDxy5zfqKucy15S7nBSHW2WGc9emypJz9lzRAyzDoMLeXRYkfZ_c3--fp-_5xgNF0S9UfvrBuT44jhxfk2q8m-fGLnDXaRrv7tS_b0c_-4u8nvfv-63f24y-2Giyk3lQGzKYytJSjTFDUoy7eyLFQNZcWphsJaaDZcbi0URlo0lS1MWSq0okIhL9nXxXcMw58jxUn3Ltp0GHoajlGLdH5KrhD8JApcbkqQUsmEfltQG4YYAzXauiW4KaDrEqrnPvRB_-9Dz33oNKmPJFfv5GNwPYa308Ivi7DBQWMbXNRPDwlQc4kVh_ln3xeCUqivjoKO1s0V1i6QnXQ9uFOP_AXEgbVm
CitedBy_id crossref_primary_10_1109_TII_2013_2284713
crossref_primary_10_1016_j_segan_2025_101718
crossref_primary_10_1016_j_rser_2015_06_007
crossref_primary_10_1016_j_asoc_2023_110560
crossref_primary_10_1016_j_ijepes_2019_105661
crossref_primary_10_1016_j_compeleceng_2024_109478
crossref_primary_10_1016_j_renene_2014_11_065
crossref_primary_10_1109_TSG_2016_2582749
crossref_primary_10_1016_j_apenergy_2016_04_024
crossref_primary_10_1186_s42162_022_00251_2
crossref_primary_10_1016_j_epsr_2017_03_009
crossref_primary_10_1109_TII_2019_2909276
crossref_primary_10_1016_j_procs_2019_08_136
crossref_primary_10_1155_2015_620425
crossref_primary_10_1007_s11276_019_01993_w
crossref_primary_10_1109_ACCESS_2022_3220671
crossref_primary_10_1016_j_renene_2016_06_032
crossref_primary_10_1016_j_energy_2014_02_025
crossref_primary_10_1016_j_scs_2018_05_035
crossref_primary_10_1080_15325008_2019_1627609
crossref_primary_10_1371_journal_pone_0316677
crossref_primary_10_1016_j_apenergy_2015_10_008
crossref_primary_10_3390_su15043301
crossref_primary_10_1016_j_epsr_2017_01_008
crossref_primary_10_1016_j_apenergy_2017_12_036
crossref_primary_10_1016_j_ijepes_2023_109113
crossref_primary_10_1016_j_asoc_2018_07_008
crossref_primary_10_1016_j_rser_2015_12_353
crossref_primary_10_1016_j_energy_2016_12_039
crossref_primary_10_1080_23311916_2016_1203083
crossref_primary_10_1016_j_enconman_2013_09_006
crossref_primary_10_1002_2050_7038_12313
crossref_primary_10_1051_matecconf_20163802002
crossref_primary_10_1002_er_3130
crossref_primary_10_1016_j_apenergy_2014_01_040
crossref_primary_10_3390_en6094394
crossref_primary_10_1016_j_ijhydene_2023_01_285
crossref_primary_10_3390_en10040550
crossref_primary_10_3390_pr10101944
crossref_primary_10_1016_j_aej_2015_11_002
crossref_primary_10_1016_j_apenergy_2016_10_117
crossref_primary_10_1016_j_apenergy_2014_04_047
crossref_primary_10_3390_en16073210
crossref_primary_10_1016_j_energy_2017_07_006
crossref_primary_10_3390_en13215700
crossref_primary_10_3390_en10030377
crossref_primary_10_1016_j_enconman_2014_03_032
crossref_primary_10_3390_en7042449
crossref_primary_10_1109_TSG_2013_2280645
crossref_primary_10_1109_TSG_2013_2246198
crossref_primary_10_1155_2014_462312
crossref_primary_10_3390_su151410758
crossref_primary_10_1016_j_apenergy_2013_06_021
crossref_primary_10_3390_en10010092
crossref_primary_10_1016_j_asoc_2018_01_010
crossref_primary_10_3389_fenrg_2023_1163891
crossref_primary_10_1016_j_energy_2020_117192
crossref_primary_10_1002_ente_201900436
crossref_primary_10_3390_en16010221
crossref_primary_10_1016_j_apenergy_2019_01_024
crossref_primary_10_1109_TIA_2021_3135801
crossref_primary_10_1016_j_energy_2020_119180
crossref_primary_10_1016_j_enconman_2019_06_058
crossref_primary_10_1016_j_apenergy_2015_01_018
crossref_primary_10_1109_TPWRS_2014_2311120
crossref_primary_10_3390_wevj12010011
crossref_primary_10_1016_j_ijepes_2022_108005
crossref_primary_10_1016_j_ins_2020_03_035
crossref_primary_10_1016_j_apenergy_2014_01_003
crossref_primary_10_1109_TVT_2015_2481712
crossref_primary_10_1155_2022_7781369
crossref_primary_10_1016_j_ijepes_2019_02_020
crossref_primary_10_1016_j_trd_2024_104317
crossref_primary_10_1016_j_apenergy_2024_123547
crossref_primary_10_1080_01430750_2018_1501739
crossref_primary_10_3390_en18071639
crossref_primary_10_1038_s41598_024_81206_3
crossref_primary_10_1109_JIOT_2020_3015204
crossref_primary_10_1109_TIA_2016_2622221
crossref_primary_10_1016_j_apenergy_2012_08_021
crossref_primary_10_3390_s20174842
crossref_primary_10_1109_ACCESS_2020_2976710
crossref_primary_10_1016_j_epsr_2013_08_001
crossref_primary_10_3390_en10091333
crossref_primary_10_1016_j_eswa_2015_03_025
crossref_primary_10_1016_j_apenergy_2020_115187
crossref_primary_10_1016_j_energy_2017_10_121
crossref_primary_10_1016_j_rineng_2024_102437
crossref_primary_10_1016_j_apm_2018_07_060
crossref_primary_10_3390_en12142727
crossref_primary_10_1109_TITS_2021_3086006
crossref_primary_10_1007_s00202_017_0569_4
crossref_primary_10_1177_14680874241271819
crossref_primary_10_3390_en13236384
crossref_primary_10_1016_j_apenergy_2013_03_033
crossref_primary_10_1016_j_energy_2013_09_028
crossref_primary_10_3390_su14095098
crossref_primary_10_1016_j_energy_2020_118882
crossref_primary_10_1109_TSG_2012_2217761
crossref_primary_10_1109_TIA_2019_2954067
crossref_primary_10_1016_j_apenergy_2014_08_116
Cites_doi 10.1109/TSG.2011.2151888
10.2172/972306
10.1007/s10107-004-0559-y
10.1109/TEVC.2007.896686
10.1109/NAPS.2011.6024842
10.1109/61.637002
10.1109/IREP.2010.5563263
10.1109/PESS.2001.970272
10.1007/PL00011391
10.1109/ENERGY.2008.4781014
10.1109/PES.2011.6038937
10.1137/S1052623497325107
10.1109/TSG.2010.2090913
10.2172/903293
10.1109/DRPT.2011.5994167
10.1109/IECON.2011.6119831
10.1109/PES.2009.5275688
10.1109/ISGT.2012.6175581
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID FBQ
AAYXX
CITATION
7ST
C1K
SOI
7S9
L.6
DOI 10.1016/j.apenergy.2011.11.088
DatabaseName AGRIS
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 182
ExternalDocumentID 10_1016_j_apenergy_2011_11_088
US201600029013
S030626191100794X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c402t-b9b1b45bcd316bf5d16c073856d1890ed15cc1f4037c15b3cab9c5b886ac29a23
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305595500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 08:21:13 EDT 2025
Tue Oct 07 07:59:06 EDT 2025
Tue Nov 18 22:44:00 EST 2025
Sat Nov 29 07:22:01 EST 2025
Wed Dec 27 19:17:40 EST 2023
Fri Feb 23 02:36:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Estimation of Distribution Algorithm (EDA)
Plug-in Hybrid Electric Vehicle (PHEV)
Electric Vehicle (EV)
Particle Swarm Optimization (PSO)
Plug-in Electric Vehicle (PEV)
Smart Grid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-b9b1b45bcd316bf5d16c073856d1890ed15cc1f4037c15b3cab9c5b886ac29a23
Notes http://dx.doi.org/10.1016/j.apenergy.2011.11.088
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1034813363
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_2000016520
proquest_miscellaneous_1034813363
crossref_citationtrail_10_1016_j_apenergy_2011_11_088
crossref_primary_10_1016_j_apenergy_2011_11_088
fao_agris_US201600029013
elsevier_sciencedirect_doi_10_1016_j_apenergy_2011_11_088
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Crane, Goldthau, Toman, Light, Johnson, Nader (b0005) 2009
Su W, Chow M-Y. An intelligent energy management system for PHEVs considering demand response. In: Proc 2010 FREEDM annual conference, Tallahassee, Florida, USA; May, 2010.
Parks K, Denholm P, Markel T. Cost and emissions associated with plug-in hybrid vehicle charging in the Xcel Energy Colorado Service Territory. Technical Report, National Renewable Energy Laboratory (NREL); May, 2007.
Wächter, Biegler (b0160) 2006; 106
Han, Han, Sezaki (b0095) 2010; 1
Staats, Grady, Arapostathis, Thallam (b0120) 1997; 12
Su W, Zeng W, Chow M-Y. A digital testbed for a PHEV/PEV enabled parking lot in a smart grid environment. In: Proc innovative smart grid technologies (ISGT 2012), Washington DC; January 17–19, 2012.
Su W, Chow M-Y. Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm. In: IEEE Trans Smart Grid, special issue on transportation electrification and vehicle-to-grid application; June, 2011.
Su W, Chow M-Y. Optimal energy management for a plug-in electric vehicle enabled charging infrastructure with vehicle-to-grid capability. In: Proc. the 21-th IEEE international symposium on industrial electronics, 2012, submitted for publication.
Del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b0170) 2008; 12
Del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b0135) 2008; 12
Lozano, Larranaga, Inza, Bengoetxea (b0130) 2006
National Renewable Energy Laboratory (NREL). Using GPS travel data to access the real world driving energy use of plug-in hybrid electric vehicles (PEEVs).
Byrd, Gilbert, Nocedal (b0150) 2000; 89
Byrd, Hribar, Nocedal (b0155) 1999; 9
Galus MD, Andersson G. Demand management of grid connected plug-in hybrid electric vehicles (PHEV). In: Energy 2030 conference, 2008. ENERGY 2008. IEEE; 2008. p. 1–8.
Sortomme, Hindi, MacPherson, Venkata (b0090) 2011; 2
Kulshrestha P, Wang L, Chow M-Y, Lukic S. Intelligent energy management system simulator for PHEVs at municipal parking deck in a smart grid environment. In: Proc 2009 IEEE Power and Energy Society general meeting, Calgary, Canada; 2009.
US Department of Transportation. Highlight of the 2001 national household travel survey (NHTS).
Kulshrestha P. An intelligent energy management system for charging of plug-in hybrid electric vehicles at a municipal parking deck. Master thesis, Dept Electrical Engineering, North Carolina State University, Raleigh (NC); 2009.
Su, Rahimi Eichi, Zeng, Chow (b0025) 2011
Su W, Chow M-Y. Intelligent energy scheduling at a municipal PHEV/PEV parking deck via multi-objective optimization. In: IEEE trans smart grid, special issue on computational intelligence applications in Smart Grids; 2011 [Extended Abstract Accepted].
Guille C, Gross G. The integration of PHEV aggregation into a power system with wind resources. In: Bulk power system dynamics and control, IREP symposium, Buzios, RJ, Brazil; August 1–6, 2010.
City of Livermore. Downtown Parking Study. Livermore, CA; February 2006.
.
Su W, Chow M-Y. Sensitivity analysis on battery modeling to large-scale charging algorithms. In: Proc 37th annual conference of the IEEE industrial electronics society, Melbourne, Australia; November 7–10, 2011.
Larranaga, Lozano (b0125) 2002
Su W, Chow M-Y. Evaluation on intelligent energy management system for PHEVs/PEVs using Monte Carlo method. In: Proceedings of 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT2011), Shandong, China; July 6–9, 2011.
Clement-Nyns, Haesen, Driesen (b0085) 2010; 25
Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international conference on neural networks, Perth, WA; November, 1995.
Su W, Chow M-Y. Investigating a large-scale PHEV/PEV parking deck in a smart grid environment. In: Proc 43rd North American power symposium, Boston, MA; August, 2011.
Wächter Andreas. Short tutorials: getting started with Ipopt in 90 minutes. IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, IBM Research Report.
Abido MA. Particle swarm optimization for multi-machine power system stabilizer design. In: Proc IEEE PES summer meeting, vol. 3; 2001. p. 1346–1351.
Sikes K, Gross T, Lin Z, Sullivan J, Cleary T, Ward J. Plug-in hybrid electric vehicle market introduction study: final report. ORNL/TM-2009/019. US Department of Energy; 2010.
Duvall M, Knipping E. Environmental assessment of plug-in hybrid electric vehicles. EPRI; July, 2007.
Su W, Chow M-Y. Performance evaluation of A PHEV parking station using particle swarm optimization. In: Proc 2011 IEEE power and energy society general meeting, Detroit, Michigan, USA; July 24–29, 2011.
10.1016/j.apenergy.2011.11.088_b0040
10.1016/j.apenergy.2011.11.088_b0140
10.1016/j.apenergy.2011.11.088_b0060
10.1016/j.apenergy.2011.11.088_b0165
10.1016/j.apenergy.2011.11.088_b0045
10.1016/j.apenergy.2011.11.088_b0100
10.1016/j.apenergy.2011.11.088_b0020
Han (10.1016/j.apenergy.2011.11.088_b0095) 2010; 1
10.1016/j.apenergy.2011.11.088_b0065
10.1016/j.apenergy.2011.11.088_b0080
Byrd (10.1016/j.apenergy.2011.11.088_b0150) 2000; 89
Del Valle (10.1016/j.apenergy.2011.11.088_b0135) 2008; 12
10.1016/j.apenergy.2011.11.088_b0015
Crane (10.1016/j.apenergy.2011.11.088_b0005) 2009
10.1016/j.apenergy.2011.11.088_b0115
10.1016/j.apenergy.2011.11.088_b0035
Del Valle (10.1016/j.apenergy.2011.11.088_b0170) 2008; 12
Lozano (10.1016/j.apenergy.2011.11.088_b0130) 2006
10.1016/j.apenergy.2011.11.088_b0030
10.1016/j.apenergy.2011.11.088_b0050
10.1016/j.apenergy.2011.11.088_b0055
10.1016/j.apenergy.2011.11.088_b0110
Larranaga (10.1016/j.apenergy.2011.11.088_b0125) 2002
10.1016/j.apenergy.2011.11.088_b0075
10.1016/j.apenergy.2011.11.088_b0010
10.1016/j.apenergy.2011.11.088_b0175
Sortomme (10.1016/j.apenergy.2011.11.088_b0090) 2011; 2
10.1016/j.apenergy.2011.11.088_b0070
Clement-Nyns (10.1016/j.apenergy.2011.11.088_b0085) 2010; 25
Wächter (10.1016/j.apenergy.2011.11.088_b0160) 2006; 106
Su (10.1016/j.apenergy.2011.11.088_b0025) 2011
Staats (10.1016/j.apenergy.2011.11.088_b0120) 1997; 12
10.1016/j.apenergy.2011.11.088_b0145
Byrd (10.1016/j.apenergy.2011.11.088_b0155) 1999; 9
10.1016/j.apenergy.2011.11.088_b0105
References_xml – volume: 1
  year: 2010
  ident: b0095
  article-title: Development of an optimal vehicle-to-grid aggregator for frequency regulation
  publication-title: IEEE Trans Smart Grid
– reference: Parks K, Denholm P, Markel T. Cost and emissions associated with plug-in hybrid vehicle charging in the Xcel Energy Colorado Service Territory. Technical Report, National Renewable Energy Laboratory (NREL); May, 2007.
– reference: Su W, Chow M-Y. Investigating a large-scale PHEV/PEV parking deck in a smart grid environment. In: Proc 43rd North American power symposium, Boston, MA; August, 2011.
– reference: Su W, Chow M-Y. An intelligent energy management system for PHEVs considering demand response. In: Proc 2010 FREEDM annual conference, Tallahassee, Florida, USA; May, 2010.
– year: 2002
  ident: b0125
  article-title: Estimation of Distribution Algorithm: a new tool for evolutionary computation
– reference: Guille C, Gross G. The integration of PHEV aggregation into a power system with wind resources. In: Bulk power system dynamics and control, IREP symposium, Buzios, RJ, Brazil; August 1–6, 2010.
– reference: Su W, Chow M-Y. Evaluation on intelligent energy management system for PHEVs/PEVs using Monte Carlo method. In: Proceedings of 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT2011), Shandong, China; July 6–9, 2011.
– volume: 2
  start-page: 198
  year: 2011
  end-page: 205
  ident: b0090
  article-title: Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses
  publication-title: Smart Grid IEEE Trans
– year: 2009
  ident: b0005
  article-title: Imported oil and US national security
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  ident: b0160
  article-title: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming
  publication-title: Math Program
– reference: Galus MD, Andersson G. Demand management of grid connected plug-in hybrid electric vehicles (PHEV). In: Energy 2030 conference, 2008. ENERGY 2008. IEEE; 2008. p. 1–8.
– reference: Kulshrestha P. An intelligent energy management system for charging of plug-in hybrid electric vehicles at a municipal parking deck. Master thesis, Dept Electrical Engineering, North Carolina State University, Raleigh (NC); 2009.
– reference: National Renewable Energy Laboratory (NREL). Using GPS travel data to access the real world driving energy use of plug-in hybrid electric vehicles (PEEVs). <
– reference: Su W, Chow M-Y. Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm. In: IEEE Trans Smart Grid, special issue on transportation electrification and vehicle-to-grid application; June, 2011.
– year: 2011
  ident: b0025
  article-title: A survey on the electrification of transportation in a smart grid environment
  publication-title: IEEE Trans Indust Inform
– reference: Su W, Zeng W, Chow M-Y. A digital testbed for a PHEV/PEV enabled parking lot in a smart grid environment. In: Proc innovative smart grid technologies (ISGT 2012), Washington DC; January 17–19, 2012.
– reference: Abido MA. Particle swarm optimization for multi-machine power system stabilizer design. In: Proc IEEE PES summer meeting, vol. 3; 2001. p. 1346–1351.
– volume: 12
  year: 2008
  ident: b0135
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans Evolut Comput
– reference: Duvall M, Knipping E. Environmental assessment of plug-in hybrid electric vehicles. EPRI; July, 2007. <
– reference: Su W, Chow M-Y. Performance evaluation of A PHEV parking station using particle swarm optimization. In: Proc 2011 IEEE power and energy society general meeting, Detroit, Michigan, USA; July 24–29, 2011.
– reference: Su W, Chow M-Y. Intelligent energy scheduling at a municipal PHEV/PEV parking deck via multi-objective optimization. In: IEEE trans smart grid, special issue on computational intelligence applications in Smart Grids; 2011 [Extended Abstract Accepted].
– volume: 12
  start-page: 1258
  year: 1997
  end-page: 1266
  ident: b0120
  article-title: A statistical method for predicting net harmonic current generated by a concentration of electric vehicle battery chargers
  publication-title: IEEE Trans Power Deliv
– volume: 12
  year: 2008
  ident: b0170
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans Evolut Comput
– reference: >.
– reference: Wächter Andreas. Short tutorials: getting started with Ipopt in 90 minutes. IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, IBM Research Report.
– reference: Sikes K, Gross T, Lin Z, Sullivan J, Cleary T, Ward J. Plug-in hybrid electric vehicle market introduction study: final report. ORNL/TM-2009/019. US Department of Energy; 2010.
– volume: 25
  start-page: 371
  year: 2010
  end-page: 380
  ident: b0085
  article-title: The impact of charging plug-in hybrid electric vehicles on a residential distribution, grid power systems
  publication-title: IEEE Trans
– volume: 9
  start-page: 877
  year: 1999
  end-page: 900
  ident: b0155
  article-title: An interior point algorithm for large-scale nonlinear programming
  publication-title: SIAM J Optim
– reference: Kulshrestha P, Wang L, Chow M-Y, Lukic S. Intelligent energy management system simulator for PHEVs at municipal parking deck in a smart grid environment. In: Proc 2009 IEEE Power and Energy Society general meeting, Calgary, Canada; 2009.
– reference: Su W, Chow M-Y. Optimal energy management for a plug-in electric vehicle enabled charging infrastructure with vehicle-to-grid capability. In: Proc. the 21-th IEEE international symposium on industrial electronics, 2012, submitted for publication.
– year: 2006
  ident: b0130
  article-title: Towards a new evolutionary computation: advances on estimation of distribution algorithms
– reference: Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international conference on neural networks, Perth, WA; November, 1995.
– reference: Su W, Chow M-Y. Sensitivity analysis on battery modeling to large-scale charging algorithms. In: Proc 37th annual conference of the IEEE industrial electronics society, Melbourne, Australia; November 7–10, 2011.
– reference: US Department of Transportation. Highlight of the 2001 national household travel survey (NHTS). <
– reference: City of Livermore. Downtown Parking Study. Livermore, CA; February 2006. <
– volume: 89
  start-page: 149
  year: 2000
  end-page: 185
  ident: b0150
  article-title: A trust region method based on interior point techniques for nonlinear programming
  publication-title: Math Program
– ident: 10.1016/j.apenergy.2011.11.088_b0045
– ident: 10.1016/j.apenergy.2011.11.088_b0070
– ident: 10.1016/j.apenergy.2011.11.088_b0060
  doi: 10.1109/TSG.2011.2151888
– ident: 10.1016/j.apenergy.2011.11.088_b0015
  doi: 10.2172/972306
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.apenergy.2011.11.088_b0160
  article-title: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming
  publication-title: Math Program
  doi: 10.1007/s10107-004-0559-y
– volume: 12
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2011.11.088_b0135
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2007.896686
– ident: 10.1016/j.apenergy.2011.11.088_b0030
  doi: 10.1109/NAPS.2011.6024842
– volume: 12
  start-page: 1258
  issue: 3
  year: 1997
  ident: 10.1016/j.apenergy.2011.11.088_b0120
  article-title: A statistical method for predicting net harmonic current generated by a concentration of electric vehicle battery chargers
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/61.637002
– ident: 10.1016/j.apenergy.2011.11.088_b0100
  doi: 10.1109/IREP.2010.5563263
– volume: 12
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2011.11.088_b0170
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2007.896686
– year: 2006
  ident: 10.1016/j.apenergy.2011.11.088_b0130
– ident: 10.1016/j.apenergy.2011.11.088_b0145
  doi: 10.1109/PESS.2001.970272
– volume: 89
  start-page: 149
  issue: 1
  year: 2000
  ident: 10.1016/j.apenergy.2011.11.088_b0150
  article-title: A trust region method based on interior point techniques for nonlinear programming
  publication-title: Math Program
  doi: 10.1007/PL00011391
– ident: 10.1016/j.apenergy.2011.11.088_b0080
  doi: 10.1109/ENERGY.2008.4781014
– ident: 10.1016/j.apenergy.2011.11.088_b0110
– ident: 10.1016/j.apenergy.2011.11.088_b0175
– ident: 10.1016/j.apenergy.2011.11.088_b0020
– ident: 10.1016/j.apenergy.2011.11.088_b0055
  doi: 10.1109/PES.2011.6038937
– volume: 9
  start-page: 877
  issue: 4
  year: 1999
  ident: 10.1016/j.apenergy.2011.11.088_b0155
  article-title: An interior point algorithm for large-scale nonlinear programming
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623497325107
– volume: 2
  start-page: 198
  year: 2011
  ident: 10.1016/j.apenergy.2011.11.088_b0090
  article-title: Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses
  publication-title: Smart Grid IEEE Trans
  doi: 10.1109/TSG.2010.2090913
– ident: 10.1016/j.apenergy.2011.11.088_b0105
– ident: 10.1016/j.apenergy.2011.11.088_b0075
– volume: 25
  start-page: 371
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.088_b0085
  article-title: The impact of charging plug-in hybrid electric vehicles on a residential distribution, grid power systems
  publication-title: IEEE Trans
– ident: 10.1016/j.apenergy.2011.11.088_b0140
– year: 2002
  ident: 10.1016/j.apenergy.2011.11.088_b0125
– ident: 10.1016/j.apenergy.2011.11.088_b0010
  doi: 10.2172/903293
– ident: 10.1016/j.apenergy.2011.11.088_b0165
– year: 2011
  ident: 10.1016/j.apenergy.2011.11.088_b0025
  article-title: A survey on the electrification of transportation in a smart grid environment
  publication-title: IEEE Trans Indust Inform
– volume: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.apenergy.2011.11.088_b0095
  article-title: Development of an optimal vehicle-to-grid aggregator for frequency regulation
  publication-title: IEEE Trans Smart Grid
– ident: 10.1016/j.apenergy.2011.11.088_b0040
  doi: 10.1109/DRPT.2011.5994167
– ident: 10.1016/j.apenergy.2011.11.088_b0115
– ident: 10.1016/j.apenergy.2011.11.088_b0050
  doi: 10.1109/IECON.2011.6119831
– year: 2009
  ident: 10.1016/j.apenergy.2011.11.088_b0005
– ident: 10.1016/j.apenergy.2011.11.088_b0035
  doi: 10.1109/PES.2009.5275688
– ident: 10.1016/j.apenergy.2011.11.088_b0065
  doi: 10.1109/ISGT.2012.6175581
SSID ssj0002120
Score 2.4347801
Snippet ► Describe the mathematical framework for large-scale PHEV/PEV charging control. ► Manage the highly concentrated PHEV chargers considering real-world...
There is a growing need to address the potential problems caused by the emergence of Plug-in Hybrid Electric Vehicles (PHEVs) and Plug-in Electric Vehicles...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms algorithms
artificial intelligence
Electric Vehicle (EV)
electricity
energy
energy resources
Estimation of Distribution Algorithm (EDA)
infrastructure
markets
Particle Swarm Optimization (PSO)
Plug-in Electric Vehicle (PEV)
Plug-in Hybrid Electric Vehicle (PHEV)
Smart Grid
society
vehicles (equipment)
Title Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck
URI https://dx.doi.org/10.1016/j.apenergy.2011.11.088
https://www.proquest.com/docview/1034813363
https://www.proquest.com/docview/2000016520
Volume 96
WOSCitedRecordID wos000305595500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jQMcJhhMKwNkJMSlMkuc5sPHCWUaUEol2qmcLNtxpk4lLWs77c_nObbboAIbBy5RFdmJld-v7z37fSH0RqUUjFARAAKZJF2dasIiLUgpmTBdVKNI1YnCvbTfz8ZjNmi1PvlcmJtpWlXZ7S2b_1eo4R6AbVJn_wHu9UPhBvwG0OEKsMP1XsDbPg3-jG_SKLlJjMoqOtqm-31fB77YSMrO1ASFkwWApjuD8_wCljDIL2C4ya4qOnUeyWRuMrdEfcDeKbSrqO-r2DqL1r5g426q4_hMwUynJetoAutT-jwj31YuG82dPZggjsyfPbicqyAhZg_WlKesKRBD22DF6dbQNhraEtv2BOHqnZjbFdrSqnV11WyjqLxzvv-Fn416PT7Mx8O38x_EtBAzrnbXT2UH7dE0ZiCl904_5OOPa8VMXZVOv-hGwvjvX_0nW2WnFLMt3V0bJMPHaN_tJPCpZcAT1NLVAXrUqC95gA7zTRojDHVyfPEUTX8hCd4mCbbLxBuSYCAJFrhBEmxIcgIUwY4ieE0R7CiCDUWeodFZPnx_TlzfDaK6AV0SyWQou7FURRQmsoyLMFGBqXqUFGHGAl2EsVJh2Q2iVIWxjJSQTMUyyxKhKBM0OkS71azSRwhnZVKKMqYiiksTEiCoUEFSpqabpQTp0Eax_8JcuaL0pjfKlPvowyvukeEGGdixckCmjU7W8-a2LMudM5gHkDvj0hqNHEh459wjQJyLS9C7fPSVmqqMxp0N26c2eu1pwEEwG2-bqPRstYDnmRz3KEr-MobWzrUkpsHzezznGD3c_AlfoN3l9Uq_RA_UzXKyuH7l2P4TMpa9NQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+intelligence-based+energy+management+for+a+large-scale+PHEV%2FPEV+enabled+municipal+parking+deck&rft.jtitle=Applied+energy&rft.au=Su%2C+Wencong&rft.au=Chow%2C+Mo-Yuen&rft.date=2012-08-01&rft.issn=0306-2619&rft.volume=96&rft.spage=171&rft.epage=182&rft_id=info:doi/10.1016%2Fj.apenergy.2011.11.088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon