Learning Adaptive Differential Evolution Algorithm From Optimization Experiences by Policy Gradient

Differential evolution is one of the most prestigious population-based stochastic optimization algorithm for black-box problems. The performance of a differential evolution algorithm depends highly on its mutation and crossover strategy and associated control parameters. However, the determination p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 25; číslo 4; s. 666 - 680
Hlavní autoři: Sun, Jianyong, Liu, Xin, Back, Thomas, Xu, Zongben
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Differential evolution is one of the most prestigious population-based stochastic optimization algorithm for black-box problems. The performance of a differential evolution algorithm depends highly on its mutation and crossover strategy and associated control parameters. However, the determination process for the most suitable parameter setting is troublesome and time consuming. Adaptive control parameter methods that can adapt to problem landscape and optimization environment are more preferable than fixed parameter settings. This article proposes a novel adaptive parameter control approach based on learning from the optimization experiences over a set of problems. In the approach, the parameter control is modeled as a finite-horizon Markov decision process. A reinforcement learning algorithm, named policy gradient, is applied to learn an agent (i.e., parameter controller) that can provide the control parameters of a proposed differential evolution adaptively during the search procedure. The differential evolution algorithm based on the learned agent is compared against nine well-known evolutionary algorithms on the CEC'13 and CEC'17 test suites. Experimental results show that the proposed algorithm performs competitively against these compared algorithms on the test suites.
AbstractList Differential evolution is one of the most prestigious population-based stochastic optimization algorithm for black-box problems. The performance of a differential evolution algorithm depends highly on its mutation and crossover strategy and associated control parameters. However, the determination process for the most suitable parameter setting is troublesome and time consuming. Adaptive control parameter methods that can adapt to problem landscape and optimization environment are more preferable than fixed parameter settings. This article proposes a novel adaptive parameter control approach based on learning from the optimization experiences over a set of problems. In the approach, the parameter control is modeled as a finite-horizon Markov decision process. A reinforcement learning algorithm, named policy gradient, is applied to learn an agent (i.e., parameter controller) that can provide the control parameters of a proposed differential evolution adaptively during the search procedure. The differential evolution algorithm based on the learned agent is compared against nine well-known evolutionary algorithms on the CEC’13 and CEC’17 test suites. Experimental results show that the proposed algorithm performs competitively against these compared algorithms on the test suites.
Author Back, Thomas
Xu, Zongben
Liu, Xin
Sun, Jianyong
Author_xml – sequence: 1
  givenname: Jianyong
  orcidid: 0000-0002-9188-1856
  surname: Sun
  fullname: Sun, Jianyong
  email: jy.sun@xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Xin
  orcidid: 0000-0003-4710-2103
  surname: Liu
  fullname: Liu, Xin
  email: liuxin17@stu.xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0001-6768-1478
  surname: Back
  fullname: Back, Thomas
  email: t.h.w.baeck@liacs.leidenuniv.nl
  organization: Leiden Institute of Advanced Computer Science, Leiden University, Leiden, RA, The Netherlands
– sequence: 4
  givenname: Zongben
  surname: Xu
  fullname: Xu, Zongben
  email: zbxu@mail.xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kE1PAjEQhhuDiYD-AOOliefFtrS79EgQ0IQED2i8bbrtFEuWLXYLEX-9y0c8ePDUSed5ZzJPB7UqXwFCt5T0KCXyYTF-G_UYYbTXJykZUHqB2lRymhDC0lZTk4FMsmzwfoU6db0ihHJBZRvpGahQuWqJh0ZtotsBfnTWQoAqOlXi8c6X2-h8hYfl0gcXP9Z4Evwazxt47b7VsTf-2kBwUGmocbHHL750eo-nQZnmM16jS6vKGm7Obxe9TsaL0VMym0-fR8NZojlhMVGgDGGZUlIay4UtLEs5GCO1hUIVkksOQkORNghTWWZAWSus1BoEmMz0u-j-NHcT_OcW6piv_DZUzcqcCZHyQUq5bKjsROng6zqAzbWLxzNiUK7MKckPRvOD0fxgND8bbZL0T3IT3FqF_b-Zu1PGAcAvL_tCpoL1fwDitYds
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_engappai_2023_107017
crossref_primary_10_3390_a17110500
crossref_primary_10_1016_j_engappai_2023_107498
crossref_primary_10_1080_09540091_2025_2523960
crossref_primary_10_1109_ACCESS_2024_3440885
crossref_primary_10_1088_1361_6501_ac50e7
crossref_primary_10_1016_j_ins_2021_11_043
crossref_primary_10_1016_j_eswa_2023_119672
crossref_primary_10_1016_j_swevo_2024_101838
crossref_primary_10_1109_TEVC_2022_3219238
crossref_primary_10_1109_TETCI_2022_3146882
crossref_primary_10_1016_j_swevo_2024_101517
crossref_primary_10_3390_electronics12224639
crossref_primary_10_1109_TETCI_2024_3367809
crossref_primary_10_2478_amns_2024_1452
crossref_primary_10_1109_TSMC_2024_3488205
crossref_primary_10_1016_j_ins_2022_07_108
crossref_primary_10_1016_j_eswa_2023_120261
crossref_primary_10_1016_j_compag_2024_108845
crossref_primary_10_1016_j_ins_2022_10_111
crossref_primary_10_1016_j_swevo_2025_102125
crossref_primary_10_1016_j_eswa_2025_128913
crossref_primary_10_1016_j_knosys_2023_110801
crossref_primary_10_1016_j_eswa_2024_125105
crossref_primary_10_1109_TETCI_2025_3540405
crossref_primary_10_1155_2022_4481296
crossref_primary_10_1016_j_asoc_2025_113280
crossref_primary_10_1016_j_swevo_2023_101294
crossref_primary_10_1007_s10489_024_05906_z
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1109_TCYB_2025_3561518
crossref_primary_10_1109_TCAD_2022_3149720
crossref_primary_10_1109_TETCI_2022_3210927
crossref_primary_10_1109_TII_2022_3218645
crossref_primary_10_26599_TST_2024_9010185
crossref_primary_10_1007_s40747_024_01620_y
crossref_primary_10_1007_s11425_023_2252_9
crossref_primary_10_1016_j_swevo_2024_101627
crossref_primary_10_1016_j_swevo_2025_101844
crossref_primary_10_1016_j_asoc_2024_112605
crossref_primary_10_1016_j_ins_2024_120411
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_1016_j_dwt_2024_100714
crossref_primary_10_1016_j_knosys_2022_110073
crossref_primary_10_1109_TSMC_2024_3374889
crossref_primary_10_1007_s10489_023_05180_5
crossref_primary_10_1016_j_eswa_2025_129538
crossref_primary_10_1016_j_eswa_2024_124646
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1016_j_ins_2022_11_029
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1016_j_neucom_2025_130633
crossref_primary_10_1016_j_swevo_2025_101930
crossref_primary_10_1109_TETCI_2023_3251441
crossref_primary_10_1007_s10489_025_06687_9
crossref_primary_10_1109_TAES_2023_3312626
crossref_primary_10_1016_j_swevo_2025_102081
crossref_primary_10_1177_10996362241305836
crossref_primary_10_1109_TFUZZ_2025_3545442
crossref_primary_10_1007_s11425_023_2290_y
crossref_primary_10_1016_j_swevo_2025_101866
crossref_primary_10_1016_j_swevo_2023_101387
crossref_primary_10_1016_j_swevo_2024_101644
crossref_primary_10_1016_j_eswa_2023_122674
crossref_primary_10_1016_j_swevo_2025_102038
crossref_primary_10_1016_j_engappai_2024_108081
crossref_primary_10_1016_j_swevo_2024_101486
crossref_primary_10_1016_j_eswa_2023_122076
crossref_primary_10_1016_j_swevo_2024_101521
Cites_doi 10.1109/CEC.2005.1554904
10.1109/4235.771166
10.1162/EVCO_a_00009
10.1109/TEVC.2008.927706
10.1109/CEC.2005.1554725
10.1109/TEVC.2009.2014613
10.1038/nature16961
10.1145/3319619.3326747
10.1145/1830483.1830490
10.1016/j.neucom.2013.04.036
10.1016/j.knosys.2019.01.006
10.1109/CEC.2018.8477908
10.1145/3319619.3326751
10.1145/1068009.1068177
10.1109/CEC.2019.8789904
10.1109/TEVC.2014.2308294
10.1109/CEC.2014.6900380
10.1016/j.knosys.2017.11.015
10.1109/TEVC.2010.2087271
10.1016/j.asoc.2009.02.010
10.1109/CEC.2013.6557555
10.1162/106365603321828970
10.1007/BF02551274
10.1007/s10462-015-9452-8
10.1016/j.asoc.2014.01.038
10.1145/3321707.3321813
10.1016/j.ejor.2015.10.043
10.1109/CEC.2017.7969307
10.1109/SITIS.2010.22
10.1109/TEVC.2010.2059031
10.1109/ICACTE.2010.5579677
10.1109/CEC.2016.7743922
10.1145/2598394.2605681
10.1007/s10462-009-9137-2
10.1023/A:1008202821328
10.1016/S0305-0548(03)00116-3
10.1109/TEVC.2014.2360890
10.1109/TCYB.2019.2892735
10.1023/A:1022995128597
10.1016/j.swevo.2016.01.004
10.1145/2576768.2598360
10.1007/s10589-007-9014-3
10.1109/CEC.2017.7969336
10.1016/j.asoc.2014.11.003
10.1109/TEVC.2006.872133
10.1162/neco.1997.9.8.1735
10.1109/CEC.2017.7969456
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3060811
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 680
ExternalDocumentID 10_1109_TEVC_2021_3060811
9359652
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11991023; 62076197
  funderid: 10.13039/501100001809
– fundername: Major Project of National Science Foundation of China
  grantid: U1811461
  funderid: 10.13039/501100001809
– fundername: Project of National Science Foundation of China
  grantid: 61721002
  funderid: 10.13039/501100001809
– fundername: Key Project of National Science Foundation of China
  grantid: 11690011
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-aead027aa99df45fbf264edd9cfebab9494e5ceb67aa2a77deaff5f9cce5ed7d3
IEDL.DBID RIE
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679530900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 06:16:05 EDT 2025
Tue Nov 18 22:26:22 EST 2025
Sat Nov 29 03:13:48 EST 2025
Wed Aug 27 02:40:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-aead027aa99df45fbf264edd9cfebab9494e5ceb67aa2a77deaff5f9cce5ed7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6768-1478
0000-0003-4710-2103
0000-0002-9188-1856
OpenAccessLink https://ieeexplore.ieee.org/document/9359652
PQID 2556486149
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_9359652
proquest_journals_2556486149
crossref_primary_10_1109_TEVC_2021_3060811
crossref_citationtrail_10_1109_TEVC_2021_3060811
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref15
ref58
ref52
ref55
liang (ref53) 2013
ref11
ref10
ref16
feoktistov (ref17) 2006
storn (ref1) 1995
ref51
ref50
škvorc (ref8) 2019
ref46
tirronen (ref30) 2009
ref45
gämperle (ref12) 2002; 10
ref47
ref41
ref44
ref43
jia (ref31) 2012; 6
sutton (ref48) 2018
ref7
ref4
ref3
ref6
ref5
yang (ref38) 2008
ref40
ref35
ref34
ref37
goodfellow (ref49) 2016
ref36
brest (ref18) 2009
ref33
zamuda (ref42) 2019
ref2
ref39
eiben (ref61) 2006
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
takahama (ref32) 2012
price (ref19) 2008
ref28
ref27
ref29
awad (ref54) 2016
ref60
ref62
tvrdík (ref14) 2006
suganthan (ref59) 2005
price (ref9) 2019
References_xml – ident: ref20
  doi: 10.1109/CEC.2005.1554904
– start-page: 3126
  year: 2019
  ident: ref8
  article-title: CEC real-parameter optimization competitions: Progress from 2013 to 2018
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– volume: 6
  start-page: 343
  year: 2012
  ident: ref31
  article-title: An improved self-adaptive control parameter of differential evolution for global optimization
  publication-title: Int J Digit Content Technol Appl
– ident: ref10
  doi: 10.1109/4235.771166
– ident: ref60
  doi: 10.1162/EVCO_a_00009
– ident: ref36
  doi: 10.1109/TEVC.2008.927706
– start-page: 1
  year: 2012
  ident: ref32
  article-title: Efficient constrained optimization by the $\epsilon$ constrained rank-based differential evolution
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref13
  doi: 10.1109/CEC.2005.1554725
– volume: 10
  start-page: 293
  year: 2002
  ident: ref12
  article-title: A parameter study for differential evolution
  publication-title: Adv Intell Syst Fuzzy Syst Evol Comput
– ident: ref37
  doi: 10.1109/TEVC.2009.2014613
– ident: ref50
  doi: 10.1038/nature16961
– ident: ref35
  doi: 10.1145/3319619.3326747
– year: 2016
  ident: ref54
  article-title: Problem definitions and evaluation criteria for the CEC2017 special session and competition on single objective real-parameter numerical optimization
– ident: ref47
  doi: 10.1145/1830483.1830490
– ident: ref26
  doi: 10.1016/j.neucom.2013.04.036
– ident: ref43
  doi: 10.1016/j.knosys.2019.01.006
– start-page: 33
  year: 2008
  ident: ref19
  publication-title: Eliminating Drift Bias From the Differential Evolution Algorithm
– ident: ref57
  doi: 10.1109/CEC.2018.8477908
– year: 2018
  ident: ref48
  publication-title: Reinforcement Learning An Introduction
– start-page: 11
  year: 2019
  ident: ref42
  article-title: Function evaluations upto 1e+12 and large population sizes assessed in distance-based success history differential evolution for 100-digit challenge and numerical optimization scenarios (DIS Hchain 1e+12): A competition entry for '100-digit challenge, and four other numerical optimization competitions' at the genetic and evolutionary computation conference (GECCO) 2019
  publication-title: Proc Genet Evolut Comput Conf Companion (GECCO)
  doi: 10.1145/3319619.3326751
– ident: ref25
  doi: 10.1145/1068009.1068177
– year: 2006
  ident: ref17
  publication-title: Differential Evolution In Search of Solutions
– ident: ref7
  doi: 10.1109/CEC.2019.8789904
– ident: ref11
  doi: 10.1109/TEVC.2014.2308294
– ident: ref6
  doi: 10.1109/CEC.2014.6900380
– year: 2019
  ident: ref9
  article-title: The 2019 100-digit challenge on real-parameter, single objective optimization: Analysis of results
– ident: ref44
  doi: 10.1016/j.knosys.2017.11.015
– ident: ref27
  doi: 10.1109/TEVC.2010.2087271
– ident: ref16
  doi: 10.1016/j.asoc.2009.02.010
– ident: ref39
  doi: 10.1109/CEC.2013.6557555
– ident: ref58
  doi: 10.1162/106365603321828970
– start-page: 73
  year: 2009
  ident: ref18
  publication-title: Constrained real-parameter optimization with ?-self-adaptive differential evolution
– ident: ref51
  doi: 10.1007/BF02551274
– ident: ref23
  doi: 10.1007/s10462-015-9452-8
– ident: ref56
  doi: 10.1016/j.asoc.2014.01.038
– ident: ref65
  doi: 10.1145/3321707.3321813
– year: 2013
  ident: ref53
  article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization
– ident: ref46
  doi: 10.1016/j.ejor.2015.10.043
– ident: ref41
  doi: 10.1109/CEC.2017.7969307
– ident: ref62
  doi: 10.1109/SITIS.2010.22
– ident: ref5
  doi: 10.1109/TEVC.2010.2059031
– ident: ref22
  doi: 10.1109/ICACTE.2010.5579677
– ident: ref45
  doi: 10.1109/CEC.2016.7743922
– ident: ref63
  doi: 10.1145/2598394.2605681
– start-page: 151
  year: 2006
  ident: ref61
  article-title: Reinforcement learning for online control of evolutionary algorithms
  publication-title: Proc Int Workshop Eng Self-Org Appl (ESOA)
– ident: ref4
  doi: 10.1007/s10462-009-9137-2
– ident: ref2
  doi: 10.1023/A:1008202821328
– ident: ref29
  doi: 10.1016/S0305-0548(03)00116-3
– ident: ref33
  doi: 10.1109/TEVC.2014.2360890
– start-page: 199
  year: 2009
  ident: ref30
  publication-title: Differential Evolution with Fitness Diversity Self-adaptation
– ident: ref24
  doi: 10.1109/TCYB.2019.2892735
– year: 2005
  ident: ref59
  article-title: Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization
– start-page: 1110
  year: 2008
  ident: ref38
  article-title: Self-adaptive differential evolution with neighborhood search
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– year: 1995
  ident: ref1
  publication-title: Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces
– ident: ref21
  doi: 10.1023/A:1022995128597
– ident: ref3
  doi: 10.1016/j.swevo.2016.01.004
– ident: ref64
  doi: 10.1145/2576768.2598360
– ident: ref15
  doi: 10.1007/s10589-007-9014-3
– ident: ref40
  doi: 10.1109/CEC.2017.7969336
– year: 2016
  ident: ref49
  publication-title: Deep Learning
– start-page: 7
  year: 2006
  ident: ref14
  article-title: Competitive differential evolution
  publication-title: Proc 12th Int Conf Soft Comput (MENDEL)
– ident: ref28
  doi: 10.1016/j.asoc.2014.11.003
– ident: ref34
  doi: 10.1109/TEVC.2006.872133
– ident: ref52
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref55
  doi: 10.1109/CEC.2017.7969456
SSID ssj0014519
Score 2.6178055
Snippet Differential evolution is one of the most prestigious population-based stochastic optimization algorithm for black-box problems. The performance of a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 666
SubjectTerms Adaptive algorithms
Adaptive control
Adaptive differential evolution
Algorithms
Convergence
Deep learning
Evolutionary algorithms
Evolutionary computation
global optimization
Machine learning
Markov processes
Mutation
Optimization
policy gradient (PG)
Process control
Process parameters
Reinforcement learning
reinforcement learning (RL)
Sociology
Statistics
Title Learning Adaptive Differential Evolution Algorithm From Optimization Experiences by Policy Gradient
URI https://ieeexplore.ieee.org/document/9359652
https://www.proquest.com/docview/2556486149
Volume 25
WOSCitedRecordID wos000679530900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBalWsL_bgSYwmbV57LNrqQaqHKr2Ffcyq0BfpA_z3zibbqiiCtxxmQ-CbZ3bmG4AzJB2gwCDIvpPQCwX3PZGG2gsiWY9NwJOGLAaF75NOJ-31-OMKXCxnYRCxaD7DS_tY3OXrkZrZX2VXdoo0jsjhriZJXM5qLW8MLE1K2UzPKWNMe-4GM_D5Vbf1fE2VYD24pPyYQmDwLQYVS1V-eOIivLQr__uwbdhyaSRrlrjvwAoOq1BZrGhgzmKrsPmFb7AKGza1LJmZd0E5atUX1tRibL0eu3HbUsjq-6w1d1rJmv2XUf42fR2wdj4asAcSHrjxTfZJlTxh8p2VNMPsNi86yaZ78NRuda_vPLdywVNUSE49QYpFhaoQnGsTRkYaSphQa64MSiF5yEOMFMqYROoiSTQKYyLDlcIIdaIb-7A2HA3xABi5YClNmnK_ocJUKCkDFDHaAlJQ1hXVwF-AkCnHR27XYvSzoi7xeWZxyyxumcOtBufLI-OSjOMv4V0L1FLQYVSD4wXSmTPXSWZ52MKUMhV--PupI9iw7y47_45hbZrP8ATW1ZxAy08LTfwA8_TeUA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5FBYlyoJCCGprCHjghnNrO-rHHqE0IIgQOAeVm7WO2VMpLTlqp_76z9sZQgZC4-TArW_rm6Z35BuAdkg5QYJBk3xkPuBRhIHNugihRcWojkfVVNSg8yabTfD4X31rwoZmFQcSq-Qx77rG6yzdrfeN-lZ27KdI0IYf7KOE8DutprebOwBGl1O30gnLGfO7vMKNQnM-GPy6oFoyjHmXIFASjB1GoWqvyhy-uAszo6P8-7Tk884kkG9TIv4AWrtpwtF_SwLzNtuHpb4yDbTh0yWXNzXwM2pOrXrGBkRvn99il35dCdr9gw1uvl2ywuFqX17ufSzYq10v2lYSXfoCT_SJL3jJ1x2qiYfaxrHrJdi_h-2g4uxgHfulCoKmU3AWSVItKVSmFMJYnVllKmdAYoS0qqQQXHBONKiWRWGaZQWltYoXWmKDJTP8VHKzWKzwBRk5YKZvnIuxrnkutVIQyRVdCSsq7kg6EexAK7RnJ3WKMRVFVJqEoHG6Fw63wuHXgfXNkU9Nx_Ev42AHVCHqMOtDdI114g90WjomN55SriNd_P_UWnoxnXybF5NP08ykcuvfUfYBdONiVN3gGj_UtAVi-qbTyHqWg4Zc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Adaptive+Differential+Evolution+Algorithm+From+Optimization+Experiences+by+Policy+Gradient&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sun%2C+Jianyong&rft.au=Liu%2C+Xin&rft.au=Back%2C+Thomas&rft.au=Xu%2C+Zongben&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=25&rft.issue=4&rft.spage=666&rft.epage=680&rft_id=info:doi/10.1109%2FTEVC.2021.3060811&rft.externalDocID=9359652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon