An Automated Machine Learning Approach for Smart Waste Management Systems

This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. N...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 16; číslo 1; s. 384 - 392
Hlavní autoři: Rutqvist, David, Kleyko, Denis, Blomstedt, Fredrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from 86.8% and 47.9% to 99.1% and 98.2%, respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers.
AbstractList This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from 86.8% and 47.9% to 99.1% and 98.2%, respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers. 
This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from 86.8% and 47.9% to 99.1% and 98.2%, respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers.
This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from [Formula Omitted] and [Formula Omitted] to [Formula Omitted] and [Formula Omitted], respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers.
Author Blomstedt, Fredrik
Kleyko, Denis
Rutqvist, David
Author_xml – sequence: 1
  givenname: David
  surname: Rutqvist
  fullname: Rutqvist, David
  email: david.rutqvist@bnearit.se
  organization: BnearIT AB, Luleå, Sweden
– sequence: 2
  givenname: Denis
  orcidid: 0000-0002-6032-6155
  surname: Kleyko
  fullname: Kleyko, Denis
  email: denis.kleyko@ltu.se
  organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
– sequence: 3
  givenname: Fredrik
  surname: Blomstedt
  fullname: Blomstedt, Fredrik
  email: fredrik.blomstedt@bnearit.se
  organization: BnearIT AB, Luleå, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77024$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-116262$$DView record from Swedish Publication Index (Örebro universitet)
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-68358$$DView record from Swedish Publication Index
BookMark eNqFkc1PGzEQxa0KpELoHamXlXosG8Zf6_VxFfoRKYgDUI6Ws5mkjhI7tb2q8t_jKJRDD3Ca0ej3Rm_mnZMTHzwScklhTCno64fpdMyA6jHTVErFPpAzqgWtASSclF5KWnMG_CM5T2kNwBVwfUamna-6IYetzbiobm3_23msZmijd35VdbtdDGVYLUOs7rc25urJpoyF9HaFW_S5ut-XwTZdkNOl3ST89FJH5PH7t4fJz3p292M66WZ1L4Dl2vbzVmrGkQvL-ZJRqywqyQTrBdUKqW51j8rOda-oXsACW9sITlkLQmIr-Ih8Pe5Nf3E3zM0uuuJrb4J15sb96kyIKxOdaVou20LX79MhDobShjWs8Ffv85s8GKWAHcx8OeLlTX8GTNmswxB9ud8wzjVXgmsoVHOk-hhSirg0vcs2u-BztG5jKJhDhqZkaA4ZmpcMixD-E_7z84bk81HiEPEVbxXoRkv-DL40p_g
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_envres_2023_117786
crossref_primary_10_1080_00194506_2023_2280648
crossref_primary_10_1016_j_cie_2024_110457
crossref_primary_10_1016_j_scs_2021_103347
crossref_primary_10_1088_1755_1315_1381_1_012037
crossref_primary_10_1016_j_jum_2025_05_015
crossref_primary_10_1111_exsy_12865
crossref_primary_10_1016_j_jclepro_2025_145259
crossref_primary_10_24857_rgsa_v17n4_022
crossref_primary_10_1016_j_seta_2022_102987
crossref_primary_10_3390_su14127222
crossref_primary_10_3390_s23052860
crossref_primary_10_3390_smartcities4020024
crossref_primary_10_1007_s11356_022_20428_2
crossref_primary_10_1016_j_jnca_2022_103393
crossref_primary_10_1002_ett_4857
crossref_primary_10_7717_peerj_cs_3156
crossref_primary_10_1080_21622515_2023_2205027
crossref_primary_10_1007_s10462_025_11196_9
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_ACCESS_2024_3352436
crossref_primary_10_1109_TII_2021_3085669
crossref_primary_10_3390_su142013578
crossref_primary_10_1016_j_enconman_2023_117375
crossref_primary_10_1680_jenes_23_00110
crossref_primary_10_1016_j_wasman_2023_08_041
crossref_primary_10_1016_j_tre_2023_103329
crossref_primary_10_3390_app11188572
crossref_primary_10_3390_su15107908
crossref_primary_10_1007_s10163_025_02248_x
crossref_primary_10_1007_s12083_024_01623_z
crossref_primary_10_1177_0734242X211033716
crossref_primary_10_1016_j_biortech_2020_124114
crossref_primary_10_1016_j_fuel_2023_128548
crossref_primary_10_3390_s24072114
crossref_primary_10_1016_j_jenvman_2023_117855
crossref_primary_10_3390_s21082600
crossref_primary_10_1007_s13762_024_06328_7
Cites_doi 10.1023/A:1012487302797
10.1109/FRUCT.2014.6872422
10.1109/ATNAC.2007.4665232
10.1109/TSUSC.2017.2691049
10.3390/app8020316
10.1145/2487575.2487629
10.1016/j.procir.2017.03.072
10.1016/j.patrec.2005.10.010
10.1145/3001913.3006629
10.1109/ICITCS.2014.7021812
10.1109/TII.2017.2679740
10.1109/ICICCT.2017.7975200
10.1109/JSYST.2015.2469544
10.1109/TII.2017.2783439
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D91
DOI 10.1109/TII.2019.2915572
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Örebro universitet
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 392
ExternalDocumentID oai_DiVA_org_ri_68358
oai_DiVA_org_oru_116262
oai_DiVA_org_ltu_77024
10_1109_TII_2019_2915572
8709695
Genre orig-research
GrantInformation_xml – fundername: GrowCPS
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D91
ID FETCH-LOGICAL-c402t-acb85923e34a33f21a7ae75242c4197e1989ce7ab9c719d0de8a643128045e843
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508428900036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
1941-0050
IngestDate Wed Sep 24 03:39:39 EDT 2025
Tue Nov 04 16:45:53 EST 2025
Sat Oct 25 06:19:03 EDT 2025
Mon Jun 30 10:12:25 EDT 2025
Sat Nov 29 04:16:47 EST 2025
Tue Nov 18 22:33:18 EST 2025
Wed Aug 27 02:36:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-acb85923e34a33f21a7ae75242c4197e1989ce7ab9c719d0de8a643128045e843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6032-6155
PQID 2339374390
PQPubID 85507
PageCount 9
ParticipantIDs proquest_journals_2339374390
crossref_citationtrail_10_1109_TII_2019_2915572
ieee_primary_8709695
swepub_primary_oai_DiVA_org_ltu_77024
crossref_primary_10_1109_TII_2019_2915572
swepub_primary_oai_DiVA_org_oru_116262
swepub_primary_oai_DiVA_org_ri_68358
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
(ref5) 2018
(ref7) 2018
ref21
ref2
(ref10) 2018
ref17
russell (ref22) 2010
ref16
ref19
(ref6) 2018
ref18
(ref11) 2018
ref4
(ref3) 0
(ref9) 2018
feurer (ref1) 2015; 28
(ref8) 2018
References_xml – volume: 28
  start-page: 2962
  year: 2015
  ident: ref1
  article-title: Efficient and robust automated machine learning
  publication-title: Advances Neural Inf Process Syst
– ident: ref24
  doi: 10.1023/A:1012487302797
– ident: ref14
  doi: 10.1109/FRUCT.2014.6872422
– year: 2018
  ident: ref8
– ident: ref19
  doi: 10.1109/ATNAC.2007.4665232
– ident: ref4
  doi: 10.1109/TSUSC.2017.2691049
– ident: ref21
  doi: 10.3390/app8020316
– year: 2018
  ident: ref11
– year: 2018
  ident: ref6
– ident: ref2
  doi: 10.1145/2487575.2487629
– ident: ref20
  doi: 10.1016/j.procir.2017.03.072
– ident: ref23
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref15
  doi: 10.1145/3001913.3006629
– ident: ref18
  doi: 10.1109/ICITCS.2014.7021812
– ident: ref13
  doi: 10.1109/TII.2017.2679740
– ident: ref17
  doi: 10.1109/ICICCT.2017.7975200
– year: 2018
  ident: ref7
– year: 2018
  ident: ref5
– ident: ref16
  doi: 10.1109/JSYST.2015.2469544
– year: 2018
  ident: ref10
– year: 0
  ident: ref3
– year: 2018
  ident: ref9
– year: 2010
  ident: ref22
  publication-title: Artificial Intelligence A Modern Approach
– ident: ref12
  doi: 10.1109/TII.2017.2783439
SSID ssj0037039
Score 2.4622078
Snippet This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 384
SubjectTerms Accelerometers
Acoustics
Algorithms
Automated machine learning (AutoML)
Automated machines
Automation
Binary classification
Classification
Classification (of information)
Classification accuracy
Classification algorithm
classification algorithms
Containers
Conventional machines
data mining
Decision trees
Dependable Communication and Computation Systems
Emptying
emptying detection
grid search
Informatics
Kommunikations- och beräkningssystem
Learning algorithms
Machine learning
Management systems
Measurement methods
Random forest classifier
Recycling
Smart Waste Management
Ultrasonic variables measurement
Waste management
Waste management systems
Title An Automated Machine Learning Approach for Smart Waste Management Systems
URI https://ieeexplore.ieee.org/document/8709695
https://www.proquest.com/docview/2339374390
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77024
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-116262
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-68358
Volume 16
WOSCitedRecordID wos000508428900036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7a4oM-aLWK2x-ShyoIbm832WySx0UtHmgRrLVvIb-uHNQ7ue727-8klztbkAPf9mECQ77JzjfJ5AvAMZ04G7hlpbeOl42xoTRW-tIyrmpPG8-SkPbFV3F2Ji8v1fct-LC-CxNCSM1n4SR-prN8P3dD3CobYWypVvFt2BaiXd7VWv11GUauStqovC4ZrdjqSLJSo_PxOPZwqRMaxdAFfZCC0psqD-nlfcnQlGZOn_2fg7vwNNNJ0i3xfw5bYfYCntwTGdyDcTcj3dDPkZoGT76l5slAsq7qFemyqDhB9kp-_MZIIr8MQk_-NsaQLGv-En6efj7_-KXMDyiUDsvCvjTOSo4MLrDGMDahtREmCI5Z2TW1EiH2S7kgjFVO1MpXPkiDDAVTFhK9IBv2CnZm81l4DaSVWKcp6-lE2sZyaVlrPEejljfWGFHAaDWn2mV18fjIxbVOVUalNKKgIwo6o1DA-_WIP0tljQ22e3Gy13Z5ngs4XMGm89K70ZRFjT_kWVUBb5dQrsdFLe1P04tOI2r6uh-0EMhRCni3yW6-GNArLPzQjeNNhoupbpHQyv1_e3sAj2ks1tP-zSHs9IshHMEjd9tPbxZvUjTfARY580Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VgkQ58GoRCwV8KEhIbLPrx3p9XAFVI9IIiVB6s_wKitQmKN3l9zN2NqGVUCRuexhLI3_jnW_s8WeAIzp1NgjLcm-dyLmxITe29rllQpWecs-SkPb5SI7H9cWF-roDHzZ3YUIIqfksHMfPdJbvF66LW2UDjC1VKXEH7grOabG6rbX-7zKMXZXUUUWZM1qw9aFkoQaT4TB2caljGuXQJb2VhNKrKrcJ5k3R0JRoTh79n4uP4WFPKEmzioAnsBPmT-HBDZnBfRg2c9J07QLJafDkLLVPBtIrq_4kTS8rTpC_km9XGEvkh0Hwyd_WGNILmx_A95PPk4-nef-EQu6wMGxz42wtkMMFxg1jU1oaaYIUmJcdL5UMsWPKBWmscrJUvvChNshRMGkh1Qs1Z89gd76Yh-dAqhorNWU9ndaWW1FbVhkv0KgS3BojMxis51S7Xl88PnNxqVOdUSiNKOiIgu5RyOD9ZsSvlbbGFtv9ONkbu36eMzhcw6b7xXetKYsqf8i0igzerqDcjItq2p9m541G1PRl22kpkaVk8G6b3WLZoVdY-qEbR9sMlzNdIaWtX_zb2zdw_3RyNtKj4fjLS9ijsXRPuzmHsNsuu_AK7rnf7ex6-TpF9h_fgfaN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automated+machine+learning+approach+for+smart+waste+management+systems&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Rutqvist%2C+D.&rft.au=Kleyko%2C+Denis&rft.au=Blomstedt%2C+F.&rft.date=2020&rft.issn=1551-3203&rft.volume=16&rft.issue=1&rft.spage=384&rft_id=info:doi/10.1109%2FTII.2019.2915572&rft.externalDocID=oai_DiVA_org_ri_68358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon