Leveraging Explainable Artificial Intelligence (XAI) for Expert Interpretability in Predicting Rapid Kidney Enlargement Risks in Autosomal Dominant Polycystic Kidney Disease (ADPKD)

Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management, particularly wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AI (Basel) Ročník 5; číslo 4; s. 2037 - 2065
Hlavní autoři: Dwiyanti, Latifa, Nambo, Hidetaka, Hamid, Nur
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2024
Témata:
ISSN:2673-2688, 2673-2688
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management, particularly with limited options for slowing cyst progression, as well as the use of tolvaptan being restricted to high-risk patients due to potential liver injury. However, determining high-risk status typically requires magnetic resonance imaging (MRI) to calculate total kidney volume (TKV), a time-consuming process demanding specialized expertise. Motivated by these challenges, this study proposes alternative methods for high-risk categorization that do not rely on TKV data. Utilizing historical patient data, we aim to predict rapid kidney enlargement in ADPKD patients to support clinical decision-making. We applied seven machine learning algorithms—Random Forest, Logistic Regression, Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Tree, XGBoost, and Deep Neural Network (DNN)—to data from the Polycystic Kidney Disease Outcomes Consortium (PKDOC) database. The XGBoost model, combined with the Synthetic Minority Oversampling Technique (SMOTE), yielded the best performance. We also leveraged explainable artificial intelligence (XAI) techniques, specifically Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP), to visualize and clarify the model’s predictions. Furthermore, we generated text summaries to enhance interpretability. To evaluate the effectiveness of our approach, we proposed new metrics to assess explainability and conducted a survey with 27 doctors to compare models with and without XAI techniques. The results indicated that incorporating XAI and textual summaries significantly improved expert explainability and increased confidence in the model’s ability to support treatment decisions for ADPKD patients.
AbstractList Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management, particularly with limited options for slowing cyst progression, as well as the use of tolvaptan being restricted to high-risk patients due to potential liver injury. However, determining high-risk status typically requires magnetic resonance imaging (MRI) to calculate total kidney volume (TKV), a time-consuming process demanding specialized expertise. Motivated by these challenges, this study proposes alternative methods for high-risk categorization that do not rely on TKV data. Utilizing historical patient data, we aim to predict rapid kidney enlargement in ADPKD patients to support clinical decision-making. We applied seven machine learning algorithms—Random Forest, Logistic Regression, Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Tree, XGBoost, and Deep Neural Network (DNN)—to data from the Polycystic Kidney Disease Outcomes Consortium (PKDOC) database. The XGBoost model, combined with the Synthetic Minority Oversampling Technique (SMOTE), yielded the best performance. We also leveraged explainable artificial intelligence (XAI) techniques, specifically Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP), to visualize and clarify the model’s predictions. Furthermore, we generated text summaries to enhance interpretability. To evaluate the effectiveness of our approach, we proposed new metrics to assess explainability and conducted a survey with 27 doctors to compare models with and without XAI techniques. The results indicated that incorporating XAI and textual summaries significantly improved expert explainability and increased confidence in the model’s ability to support treatment decisions for ADPKD patients.
Author Hamid, Nur
Nambo, Hidetaka
Dwiyanti, Latifa
Author_xml – sequence: 1
  givenname: Latifa
  orcidid: 0000-0002-4848-1590
  surname: Dwiyanti
  fullname: Dwiyanti, Latifa
– sequence: 2
  givenname: Hidetaka
  orcidid: 0000-0003-4223-6145
  surname: Nambo
  fullname: Nambo, Hidetaka
– sequence: 3
  givenname: Nur
  orcidid: 0000-0001-8854-1060
  surname: Hamid
  fullname: Hamid, Nur
BookMark eNplkc1uUzEQha9QkSilC97gSmzIItS-v77LqAkQNRJRBRI7a649jiY4drCdijwY74fTUIRg5ZHnnO-MZl4WF847LIrXnL2r64HdALWsYZyxZ8Vl1fX1tOqEuPirflFcx7hljFUtr5qaXRY_V_iAATbkNuXix94CORgtlrOQyJAisOXSJbSWNugUlm-_zpaT0vhwUmNIj92wD5hgJEvpWJIr1wE1qXRi3sOedHlH2uGxXDgLYYM7dKm8p_gtnsSzQ_LR73LQ3O9yeu6tvT2qY0yknpxziggxx8_m67v55FXx3ICNeP37vSq-vF98vv04XX36sLydraaqYVWagoAex7YyvdJaqNqMg-pYq3UuB-RGCGCdMthxbRCEMFB3DYeWCzP2uuH1VbE8c7WHrdwH2kE4Sg8kHz982EjIi1IWJVai0kYNpmdDo1ozCtCDGDrTouAZmFlvzqx98N8PGJPc-kNweXxZ82ZoBtHzOqtuzioVfIwBjVSUIJF3KQBZyZk8nVr-OXV2TP5xPM35v_YXnJauHg
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110944
Cites_doi 10.3390/biomedinformatics2010001
10.3390/app122110856
10.1016/j.jik.2023.100333
10.1016/j.ejrad.2017.07.023
10.1007/978-3-319-98131-4_1
10.1002/jmri.26627
10.1109/JBHI.2021.3074206
10.1016/j.procs.2021.01.199
10.1016/j.ekir.2023.10.029
10.1145/3292500.3330701
10.1038/ki.2015.59
10.3233/IDA-2002-6504
10.1016/j.ejor.2016.10.031
10.1109/ACCESS.2018.2870052
10.3390/life14060652
10.55489/njcm.134202222
10.1038/s41598-023-33525-0
10.1016/j.compbiomed.2021.104497
10.1038/nature14539
10.1186/s13104-022-06096-y
10.1109/DSAA.2018.00018
10.1681/ASN.2013101138
10.1056/NEJMoa1710030
10.1023/A:1010933404324
10.3390/s23063176
10.1109/SAI.2015.7237196
10.1007/978-981-15-1967-3
10.1016/j.ipm.2009.03.002
10.1186/s12880-015-0068-x
10.1056/NEJMoa1205511
10.3343/alm.2019.39.2.205
10.1016/j.compbiomed.2019.04.017
10.1109/TKDE.2008.239
10.1145/2939672.2939785
10.2147/TCRM.S196244
10.1016/j.inffus.2019.12.012
10.1053/j.ajkd.2015.07.037
10.18653/v1/N16-3020
10.1023/A:1009715923555
10.9734/BJAST/2015/14975
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/ai5040100
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2673-2688
EndPage 2065
ExternalDocumentID oai_doaj_org_article_e282dfc9f7094c5fb8ad9896f5e8118f
10_3390_ai5040100
GeographicLocations United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Japan
GroupedDBID AADQD
AAYXX
ABDBF
ACUHS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
IGS
ISR
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c402t-a8a7eb52f7cdd8c3fb9c605ddc3f9e1f88a06cfe61dfea88fa3641a518fb7d413
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384107000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2673-2688
IngestDate Fri Oct 03 12:52:37 EDT 2025
Fri Jul 25 22:51:12 EDT 2025
Sat Nov 29 07:12:56 EST 2025
Tue Nov 18 22:26:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a8a7eb52f7cdd8c3fb9c605ddc3f9e1f88a06cfe61dfea88fa3641a518fb7d413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4848-1590
0000-0001-8854-1060
0000-0003-4223-6145
OpenAccessLink https://www.proquest.com/docview/3149498713?pq-origsite=%requestingapplication%
PQID 3149498713
PQPubID 5046920
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_e282dfc9f7094c5fb8ad9896f5e8118f
proquest_journals_3149498713
crossref_citationtrail_10_3390_ai5040100
crossref_primary_10_3390_ai5040100
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AI (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Chapman (ref_5) 2015; 88
ref_14
ref_56
ref_11
ref_55
ref_54
ref_53
Ali (ref_13) 2023; 8
ref_52
ref_51
ref_19
ref_16
Adadi (ref_21) 2018; 6
ref_15
Kruse (ref_25) 2021; 181
ref_24
Park (ref_30) 2019; 39
ref_23
Taylor (ref_12) 2024; 9
Zhang (ref_10) 2019; 50
ref_28
ref_27
ref_26
Jo (ref_29) 2017; 95
He (ref_37) 2009; 21
Burges (ref_40) 1998; 2
Lecun (ref_44) 2015; 521
Rastogi (ref_33) 2019; 15
ref_34
Torres (ref_6) 2012; 367
ref_31
Bennetot (ref_20) 2020; 58
Kringel (ref_22) 2021; 2
Sokolova (ref_35) 2009; 45
Almansour (ref_18) 2019; 109
Breiman (ref_38) 2001; 45
ref_47
ref_46
ref_45
Joshi (ref_57) 2015; 7
ref_43
ref_41
ref_1
ref_2
Willey (ref_3) 2016; 32
Krauss (ref_42) 2017; 259
Chebib (ref_4) 2016; 67
Irazabal (ref_32) 2015; 26
Japkowicz (ref_36) 2002; 6
ref_49
ref_48
ref_8
Bernardini (ref_17) 2021; 25
Panda (ref_39) 2022; 13
ref_7
Torres (ref_9) 2017; 377
References_xml – volume: 2
  start-page: 1
  year: 2021
  ident: ref_22
  article-title: Explainable artificial intelligence (XAI) in biomedicine: Making AI decisions trustworthy for physicians and patients
  publication-title: BioMedInformatics
  doi: 10.3390/biomedinformatics2010001
– ident: ref_55
– ident: ref_26
– ident: ref_15
  doi: 10.3390/app122110856
– volume: 8
  start-page: 100333
  year: 2023
  ident: ref_13
  article-title: A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities
  publication-title: J. Innov. Knowl.
  doi: 10.1016/j.jik.2023.100333
– volume: 95
  start-page: 56
  year: 2017
  ident: ref_29
  article-title: Correlations between renal function and the total kidney volume measured on imaging for autosomal dominant polycystic kidney disease: A systematic review and meta-analysis
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2017.07.023
– ident: ref_56
  doi: 10.1007/978-3-319-98131-4_1
– volume: 50
  start-page: 41
  year: 2019
  ident: ref_10
  article-title: MRI in autosomal dominant polycystic kidney disease
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26627
– volume: 25
  start-page: 3983
  year: 2021
  ident: ref_17
  article-title: A Semi-Supervised Multi-Task Learning approach for predicting short-term kidney Disease evolution
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3074206
– volume: 181
  start-page: 526
  year: 2021
  ident: ref_25
  article-title: A systematic literature review on applying CRISP-DM process model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.01.199
– ident: ref_1
– volume: 9
  start-page: 249
  year: 2024
  ident: ref_12
  article-title: An artificial intelligence generated automated algorithm to measure total kidney volume in ADPKD
  publication-title: Kidney Int. Rep.
  doi: 10.1016/j.ekir.2023.10.029
– ident: ref_51
  doi: 10.1145/3292500.3330701
– volume: 88
  start-page: 17
  year: 2015
  ident: ref_5
  article-title: Autosomal-dominant polycystic kidney disease (ADPKD): Executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.59
– ident: ref_8
– volume: 6
  start-page: 429
  year: 2002
  ident: ref_36
  article-title: The class imbalance problem: A systematic study
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2002-6504
– ident: ref_31
– ident: ref_27
– ident: ref_52
– volume: 259
  start-page: 689
  year: 2017
  ident: ref_42
  article-title: Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the SP 500
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.10.031
– volume: 6
  start-page: 52138
  year: 2018
  ident: ref_21
  article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: ref_34
  doi: 10.3390/life14060652
– ident: ref_41
– volume: 13
  start-page: 265
  year: 2022
  ident: ref_39
  article-title: A review on logistic regression in medical research
  publication-title: Natl. J. Community Med.
  doi: 10.55489/njcm.134202222
– ident: ref_45
– ident: ref_19
  doi: 10.1038/s41598-023-33525-0
– ident: ref_47
  doi: 10.1016/j.compbiomed.2021.104497
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_44
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_48
  doi: 10.1186/s13104-022-06096-y
– ident: ref_23
  doi: 10.1109/DSAA.2018.00018
– ident: ref_7
– ident: ref_28
– volume: 26
  start-page: 160
  year: 2015
  ident: ref_32
  article-title: Imaging classification of autosomal dominant polycystic kidney disease: A simple model for selecting patients for clinical trials
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2013101138
– ident: ref_24
– volume: 377
  start-page: 1930
  year: 2017
  ident: ref_9
  article-title: Tolvaptan in later-stage autosomal dominant polycystic kidney disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1710030
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_38
  article-title: Random Forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_11
– ident: ref_16
  doi: 10.3390/s23063176
– ident: ref_14
  doi: 10.1109/SAI.2015.7237196
– ident: ref_46
  doi: 10.1007/978-981-15-1967-3
– volume: 45
  start-page: 427
  year: 2009
  ident: ref_35
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– ident: ref_49
  doi: 10.1186/s12880-015-0068-x
– volume: 367
  start-page: 2407
  year: 2012
  ident: ref_6
  article-title: Tolvaptan in patients with autosomal dominant polycystic kidney disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1205511
– volume: 39
  start-page: 205
  year: 2019
  ident: ref_30
  article-title: Estimated glomerular filtration rates show minor but significant differences between the single and subgroup creatinine-based Chronic Kidney Disease Epidemiology Collaboration equations
  publication-title: Ann. Lab. Med.
  doi: 10.3343/alm.2019.39.2.205
– volume: 109
  start-page: 101
  year: 2019
  ident: ref_18
  article-title: Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.017
– ident: ref_50
– ident: ref_54
– volume: 21
  start-page: 1263
  year: 2009
  ident: ref_37
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– ident: ref_2
– ident: ref_43
  doi: 10.1145/2939672.2939785
– volume: 32
  start-page: 1356
  year: 2016
  ident: ref_3
  article-title: Prevalence of autosomal dominant polycystic kidney disease in the European Union
  publication-title: Nephrol. Dial. Transplant.
– volume: 15
  start-page: 1041
  year: 2019
  ident: ref_33
  article-title: Autosomal dominant polycystic kidney disease: Updated perspectives
  publication-title: Ther. Clin. Risk Manag.
  doi: 10.2147/TCRM.S196244
– volume: 58
  start-page: 82
  year: 2020
  ident: ref_20
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 67
  start-page: 792
  year: 2016
  ident: ref_4
  article-title: Autosomal dominant polycystic kidney disease: Core curriculum 2016
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2015.07.037
– ident: ref_53
  doi: 10.18653/v1/N16-3020
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_40
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 7
  start-page: 396
  year: 2015
  ident: ref_57
  article-title: Likert scale: Explored and explained
  publication-title: Br. J. Appl. Sci. Technol.
  doi: 10.9734/BJAST/2015/14975
SSID ssj0002512430
Score 2.2826416
Snippet Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2037
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
autosomal dominant polycystic kidney disease (ADPKD)
Critical path
Cysts
Data mining
Decision trees
Electronic health records
End users
Endoscopy
Enlargement
Explainable artificial intelligence
explainable artificial intelligence (XAI)
Injury prevention
Kidney diseases
Machine learning
machine learning classification algorithms
Magnetic resonance imaging
Patients
Risk
Semantics
Subject specialists
Summaries
Support vector machines
user-centered design
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBL2_SDbpuEofSwOZj4W9Jx201oSAlLaGFvRpZGYLq1w9oJ7A_L_-tI8m4WWuilN2NG2HhGmnnW0xvGPhUYW55iEnFVFlEuTR7VXOtI6DipZS24SmvfbIJfX4vlUi72Wn05TliQBw4f7gwJExirpeUERHRha6GMFLK0BQoqjq1bfanq2QNTbg12WTvP4iAllBGuP1NNQfGauJNsewnI6_T_sQz73HLxkj0fi0KYhZc5ZE-wfcVebBsuwDj_XrOHb0iR5_sKgSPPjSef_MCgBAGXexKbMF3OLk-BylLwisYDPFIMPSd2A00Li7Xbq3HsZ7hRt42Bq8a0uIHzduVY4u7vIdw0_c_eGc_uhq7vftGD5l0g0cCiW230xsk9b0fOw6YPTGfzxdX89A37cXH-_cvXaOy7EGlCk0OkhOJYF6nl2hihM1tLTajHGLqUmFghVFxqi2ViLCohrMrKPFEFeaPmhrLiW3bQdi2-Y2AN1VsxpkhJMM-tUnlsCXHxAlViU5QTNt06o9KjKLnrjbGqCJw4v1U7v03Yx53pbVDi-JvRZ-fRnYETz_Y3KKSqMaSqf4XUhB1t46EaZ3RfZYnT8SF4mb3_H8_4wJ6lVB4FYswROxjWd3jMnur7oenXJz6YfwPSzv6j
  priority: 102
  providerName: Directory of Open Access Journals
Title Leveraging Explainable Artificial Intelligence (XAI) for Expert Interpretability in Predicting Rapid Kidney Enlargement Risks in Autosomal Dominant Polycystic Kidney Disease (ADPKD)
URI https://www.proquest.com/docview/3149498713
https://doaj.org/article/e282dfc9f7094c5fb8ad9896f5e8118f
Volume 5
WOSCitedRecordID wos001384107000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: PIMPY
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZbuoe9rN2NpWuLGHtIH0x9l_RU0iVloVswYYNsL0bWpZhldhq7g_yw_r8dyXJa2NjLXoyxj7BBR-emT99B6H2ifE1CFXiEp4kXMxl7BRHCo8IPClZQwsPCNpsg8zldLlnmCm6Ng1X2NtEaalkLUyM_iwLDowLhfXS-vvFM1yizu-paaDxGe4apLB6gvYvpPFvsqizGe8eR31EKRZDfn_EyAb0NzIm2B47I8vX_YY6tj7nc_9-_O0DPXHSJx506PEePVPUC7fedG7BbyC_R3ScFKmwbFGGDwnNHqOzAjlICzx5wdeLRcjw7xRDfYkuN3OJ7rKIF125xWeFsYzZ9DIwaL_i6lPiqlJXa4mm1MnBzU4bEi7L50Rjh8W1bN_VP-NCk7tA4OKtXW7E1vNH9yEm3e4RH40l2NTl9hb5eTr98-Oi5Bg6egLS09TjlRBVJqImQkopIF0xA-iQl3DIVaEq5nwqt0kBqxSnVPErjgCcB1QWR4F5fo0FVV-oNwlpC4OarUIE3jWPNeexrSN1IonigQ8WGaNTPZi4cu7lpsrHKIcsxE5_vJn6I3u1E1x2lx9-ELoxK7AQMC7d9UG-uc7eocwX5qtSCaQJJskh0QblklKU6URQSNz1ER7225M40NPm9qhz--_Vb9DSECKrDzhyhQbu5VcfoifjVls3mxGn6iS0iwDVLvsOzbPY5-_YbfN4RFg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgkulKdYKGAhkLaHqHnbPiC0kFaNdruKqiItp-D4gSKWZNmkoPwpbvw_xnlsK4G49cAtSsaJ5Hwez9ifv0HoVaBsTVzlWISHgeUz6VsZEcKiwnYyllHC3awtNkEWC7pcsmQH_RzOwhha5eATW0ctS2HWyA89x-ioQHjvvV1_s0zVKLO7OpTQ6GAxU80PSNmqN3EE__e16x4fnb8_sfqqApaAXKm2OOVEZYGriZCSCk9nTEBMLyVcMuVoSrkdCq1CR2rFKdXcC32HBw7VGZHg8-G9N9CuD2CnI7SbxKfJx-2qjokWfM_uJIw8j9mHPA9gnDjmBN2Via-tD_CH-2_ntOO9_6037qI7ffSMpx3c76EdVdxHe0NlCtw7qgfo11zBEG0LMGHDMuyPiLUNO8kMHF_RIsWT5TQ-wBC_41b6ucaXXMyWPNzgvMDJxmxqGZo4PuPrXOJZLgvV4KNiZej0ZpkVn-XVl8oYTy_qsiq_woeismMb4aRcNaIxuthDy6jbHcOTaZTMooOH6MO1dN4jNCrKQj1GWEsITG3lKogWfF9z7tsaUlMSKO5oV7ExmgzoSUWv3m6KiKxSyOIM0NIt0Mbo5dZ03UmW_M3onYHg1sCojLc3ys3ntHdaqYJ8XGrBNLGZLwKdUS4ZZaEOFIXEVI_R_oDOtHd9VXoJzSf_fvwC3To5P52n83gxe4puuxAtdjyhfTSqNxfqGbopvtd5tXnejzKMPl03lH8DRFtu3A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFA7rKuKL621xdNUgCrMPZXpP8iAy2h0cZhnKojD4UtNcpDi247Sr9If54q_zJG1nFxTf9sG30iYtpN85OSf58h2EXkTK1cRXnkN4HDkhk6GTEyEcKlwvZzkl3M9tsQmyXNLViqV76NdwFsbQKgefaB21rIRZI58EntFRgfA-mOieFpEms9ebb46pIGV2WodyGh1EFqr9Aelb_WqewL9-6fuzk_dv3zl9hQFHQN7UOJxyovLI10RISUWgcyYgvpcSLpnyNKXcjYVWsSe14pRqHsShxyOP6pxI8P_w3mvoOoEc01hXGn3cre-YuCEM3E7MKAiYO-FFBBbjmbN0l6ZAWyngj4nAzm6zg_95XO6g231MjaedEdxFe6q8hw6GehW4d1_30c9TBYZryzJhwz3sD47Zjp2QBp5fUijF49V0fowhqsdWELrBFwxNSylucVHidGu2ugx5HJ_xTSHxopClavFJuTYke7P4is-K-kttGk_Pm6quvsKHkqrjIOG0WreiNWrZQ8-k2zPD42mSLpLjB-jDlQzeIdovq1I9RFhLCFdd5SuIIcJQcx66GhJWEinuaV-xERoPSMpEr-luSousM8jtDOiyHehG6Pmu6aYTMvlbozcGjrsGRnvc3qi2n7PelWUKsnSpBdPEZaGIdE65ZJTFOlIU0lU9QkcDUrPeIdbZBUwf_fvxM3QT8JudzpeLx-iWDyFkRx46QvvN9lw9QTfE96aot0-tuWH06apx_BspxXY_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Explainable+Artificial+Intelligence+%28XAI%29+for+Expert+Interpretability+in+Predicting+Rapid+Kidney+Enlargement+Risks+in+Autosomal+Dominant+Polycystic+Kidney+Disease+%28ADPKD%29&rft.jtitle=AI+%28Basel%29&rft.au=Dwiyanti%2C+Latifa&rft.au=Nambo%2C+Hidetaka&rft.au=Hamid%2C+Nur&rft.date=2024-12-01&rft.issn=2673-2688&rft.eissn=2673-2688&rft.volume=5&rft.issue=4&rft.spage=2037&rft.epage=2065&rft_id=info:doi/10.3390%2Fai5040100&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ai5040100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-2688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-2688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-2688&client=summon