Leveraging Explainable Artificial Intelligence (XAI) for Expert Interpretability in Predicting Rapid Kidney Enlargement Risks in Autosomal Dominant Polycystic Kidney Disease (ADPKD)
Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management, particularly wi...
Uloženo v:
| Vydáno v: | AI (Basel) Ročník 5; číslo 4; s. 2037 - 2065 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.12.2024
|
| Témata: | |
| ISSN: | 2673-2688, 2673-2688 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management, particularly with limited options for slowing cyst progression, as well as the use of tolvaptan being restricted to high-risk patients due to potential liver injury. However, determining high-risk status typically requires magnetic resonance imaging (MRI) to calculate total kidney volume (TKV), a time-consuming process demanding specialized expertise. Motivated by these challenges, this study proposes alternative methods for high-risk categorization that do not rely on TKV data. Utilizing historical patient data, we aim to predict rapid kidney enlargement in ADPKD patients to support clinical decision-making. We applied seven machine learning algorithms—Random Forest, Logistic Regression, Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Tree, XGBoost, and Deep Neural Network (DNN)—to data from the Polycystic Kidney Disease Outcomes Consortium (PKDOC) database. The XGBoost model, combined with the Synthetic Minority Oversampling Technique (SMOTE), yielded the best performance. We also leveraged explainable artificial intelligence (XAI) techniques, specifically Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP), to visualize and clarify the model’s predictions. Furthermore, we generated text summaries to enhance interpretability. To evaluate the effectiveness of our approach, we proposed new metrics to assess explainability and conducted a survey with 27 doctors to compare models with and without XAI techniques. The results indicated that incorporating XAI and textual summaries significantly improved expert explainability and increased confidence in the model’s ability to support treatment decisions for ADPKD patients. |
|---|---|
| AbstractList | Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management, particularly with limited options for slowing cyst progression, as well as the use of tolvaptan being restricted to high-risk patients due to potential liver injury. However, determining high-risk status typically requires magnetic resonance imaging (MRI) to calculate total kidney volume (TKV), a time-consuming process demanding specialized expertise. Motivated by these challenges, this study proposes alternative methods for high-risk categorization that do not rely on TKV data. Utilizing historical patient data, we aim to predict rapid kidney enlargement in ADPKD patients to support clinical decision-making. We applied seven machine learning algorithms—Random Forest, Logistic Regression, Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Tree, XGBoost, and Deep Neural Network (DNN)—to data from the Polycystic Kidney Disease Outcomes Consortium (PKDOC) database. The XGBoost model, combined with the Synthetic Minority Oversampling Technique (SMOTE), yielded the best performance. We also leveraged explainable artificial intelligence (XAI) techniques, specifically Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP), to visualize and clarify the model’s predictions. Furthermore, we generated text summaries to enhance interpretability. To evaluate the effectiveness of our approach, we proposed new metrics to assess explainability and conducted a survey with 27 doctors to compare models with and without XAI techniques. The results indicated that incorporating XAI and textual summaries significantly improved expert explainability and increased confidence in the model’s ability to support treatment decisions for ADPKD patients. |
| Author | Hamid, Nur Nambo, Hidetaka Dwiyanti, Latifa |
| Author_xml | – sequence: 1 givenname: Latifa orcidid: 0000-0002-4848-1590 surname: Dwiyanti fullname: Dwiyanti, Latifa – sequence: 2 givenname: Hidetaka orcidid: 0000-0003-4223-6145 surname: Nambo fullname: Nambo, Hidetaka – sequence: 3 givenname: Nur orcidid: 0000-0001-8854-1060 surname: Hamid fullname: Hamid, Nur |
| BookMark | eNplkc1uUzEQha9QkSilC97gSmzIItS-v77LqAkQNRJRBRI7a649jiY4drCdijwY74fTUIRg5ZHnnO-MZl4WF847LIrXnL2r64HdALWsYZyxZ8Vl1fX1tOqEuPirflFcx7hljFUtr5qaXRY_V_iAATbkNuXix94CORgtlrOQyJAisOXSJbSWNugUlm-_zpaT0vhwUmNIj92wD5hgJEvpWJIr1wE1qXRi3sOedHlH2uGxXDgLYYM7dKm8p_gtnsSzQ_LR73LQ3O9yeu6tvT2qY0yknpxziggxx8_m67v55FXx3ICNeP37vSq-vF98vv04XX36sLydraaqYVWagoAex7YyvdJaqNqMg-pYq3UuB-RGCGCdMthxbRCEMFB3DYeWCzP2uuH1VbE8c7WHrdwH2kE4Sg8kHz982EjIi1IWJVai0kYNpmdDo1ozCtCDGDrTouAZmFlvzqx98N8PGJPc-kNweXxZ82ZoBtHzOqtuzioVfIwBjVSUIJF3KQBZyZk8nVr-OXV2TP5xPM35v_YXnJauHg |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110944 |
| Cites_doi | 10.3390/biomedinformatics2010001 10.3390/app122110856 10.1016/j.jik.2023.100333 10.1016/j.ejrad.2017.07.023 10.1007/978-3-319-98131-4_1 10.1002/jmri.26627 10.1109/JBHI.2021.3074206 10.1016/j.procs.2021.01.199 10.1016/j.ekir.2023.10.029 10.1145/3292500.3330701 10.1038/ki.2015.59 10.3233/IDA-2002-6504 10.1016/j.ejor.2016.10.031 10.1109/ACCESS.2018.2870052 10.3390/life14060652 10.55489/njcm.134202222 10.1038/s41598-023-33525-0 10.1016/j.compbiomed.2021.104497 10.1038/nature14539 10.1186/s13104-022-06096-y 10.1109/DSAA.2018.00018 10.1681/ASN.2013101138 10.1056/NEJMoa1710030 10.1023/A:1010933404324 10.3390/s23063176 10.1109/SAI.2015.7237196 10.1007/978-981-15-1967-3 10.1016/j.ipm.2009.03.002 10.1186/s12880-015-0068-x 10.1056/NEJMoa1205511 10.3343/alm.2019.39.2.205 10.1016/j.compbiomed.2019.04.017 10.1109/TKDE.2008.239 10.1145/2939672.2939785 10.2147/TCRM.S196244 10.1016/j.inffus.2019.12.012 10.1053/j.ajkd.2015.07.037 10.18653/v1/N16-3020 10.1023/A:1009715923555 10.9734/BJAST/2015/14975 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/ai5040100 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2673-2688 |
| EndPage | 2065 |
| ExternalDocumentID | oai_doaj_org_article_e282dfc9f7094c5fb8ad9896f5e8118f 10_3390_ai5040100 |
| GeographicLocations | United States--US Japan |
| GeographicLocations_xml | – name: United States--US – name: Japan |
| GroupedDBID | AADQD AAYXX ABDBF ACUHS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD IGS ISR ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c402t-a8a7eb52f7cdd8c3fb9c605ddc3f9e1f88a06cfe61dfea88fa3641a518fb7d413 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384107000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2673-2688 |
| IngestDate | Fri Oct 03 12:52:37 EDT 2025 Fri Jul 25 22:51:12 EDT 2025 Sat Nov 29 07:12:56 EST 2025 Tue Nov 18 22:26:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-a8a7eb52f7cdd8c3fb9c605ddc3f9e1f88a06cfe61dfea88fa3641a518fb7d413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4848-1590 0000-0001-8854-1060 0000-0003-4223-6145 |
| OpenAccessLink | https://www.proquest.com/docview/3149498713?pq-origsite=%requestingapplication% |
| PQID | 3149498713 |
| PQPubID | 5046920 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e282dfc9f7094c5fb8ad9896f5e8118f proquest_journals_3149498713 crossref_citationtrail_10_3390_ai5040100 crossref_primary_10_3390_ai5040100 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | AI (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Chapman (ref_5) 2015; 88 ref_14 ref_56 ref_11 ref_55 ref_54 ref_53 Ali (ref_13) 2023; 8 ref_52 ref_51 ref_19 ref_16 Adadi (ref_21) 2018; 6 ref_15 Kruse (ref_25) 2021; 181 ref_24 Park (ref_30) 2019; 39 ref_23 Taylor (ref_12) 2024; 9 Zhang (ref_10) 2019; 50 ref_28 ref_27 ref_26 Jo (ref_29) 2017; 95 He (ref_37) 2009; 21 Burges (ref_40) 1998; 2 Lecun (ref_44) 2015; 521 Rastogi (ref_33) 2019; 15 ref_34 Torres (ref_6) 2012; 367 ref_31 Bennetot (ref_20) 2020; 58 Kringel (ref_22) 2021; 2 Sokolova (ref_35) 2009; 45 Almansour (ref_18) 2019; 109 Breiman (ref_38) 2001; 45 ref_47 ref_46 ref_45 Joshi (ref_57) 2015; 7 ref_43 ref_41 ref_1 ref_2 Willey (ref_3) 2016; 32 Krauss (ref_42) 2017; 259 Chebib (ref_4) 2016; 67 Irazabal (ref_32) 2015; 26 Japkowicz (ref_36) 2002; 6 ref_49 ref_48 ref_8 Bernardini (ref_17) 2021; 25 Panda (ref_39) 2022; 13 ref_7 Torres (ref_9) 2017; 377 |
| References_xml | – volume: 2 start-page: 1 year: 2021 ident: ref_22 article-title: Explainable artificial intelligence (XAI) in biomedicine: Making AI decisions trustworthy for physicians and patients publication-title: BioMedInformatics doi: 10.3390/biomedinformatics2010001 – ident: ref_55 – ident: ref_26 – ident: ref_15 doi: 10.3390/app122110856 – volume: 8 start-page: 100333 year: 2023 ident: ref_13 article-title: A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities publication-title: J. Innov. Knowl. doi: 10.1016/j.jik.2023.100333 – volume: 95 start-page: 56 year: 2017 ident: ref_29 article-title: Correlations between renal function and the total kidney volume measured on imaging for autosomal dominant polycystic kidney disease: A systematic review and meta-analysis publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2017.07.023 – ident: ref_56 doi: 10.1007/978-3-319-98131-4_1 – volume: 50 start-page: 41 year: 2019 ident: ref_10 article-title: MRI in autosomal dominant polycystic kidney disease publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26627 – volume: 25 start-page: 3983 year: 2021 ident: ref_17 article-title: A Semi-Supervised Multi-Task Learning approach for predicting short-term kidney Disease evolution publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3074206 – volume: 181 start-page: 526 year: 2021 ident: ref_25 article-title: A systematic literature review on applying CRISP-DM process model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.01.199 – ident: ref_1 – volume: 9 start-page: 249 year: 2024 ident: ref_12 article-title: An artificial intelligence generated automated algorithm to measure total kidney volume in ADPKD publication-title: Kidney Int. Rep. doi: 10.1016/j.ekir.2023.10.029 – ident: ref_51 doi: 10.1145/3292500.3330701 – volume: 88 start-page: 17 year: 2015 ident: ref_5 article-title: Autosomal-dominant polycystic kidney disease (ADPKD): Executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference publication-title: Kidney Int. doi: 10.1038/ki.2015.59 – ident: ref_8 – volume: 6 start-page: 429 year: 2002 ident: ref_36 article-title: The class imbalance problem: A systematic study publication-title: Intell. Data Anal. doi: 10.3233/IDA-2002-6504 – ident: ref_31 – ident: ref_27 – ident: ref_52 – volume: 259 start-page: 689 year: 2017 ident: ref_42 article-title: Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the SP 500 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.10.031 – volume: 6 start-page: 52138 year: 2018 ident: ref_21 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: ref_34 doi: 10.3390/life14060652 – ident: ref_41 – volume: 13 start-page: 265 year: 2022 ident: ref_39 article-title: A review on logistic regression in medical research publication-title: Natl. J. Community Med. doi: 10.55489/njcm.134202222 – ident: ref_45 – ident: ref_19 doi: 10.1038/s41598-023-33525-0 – ident: ref_47 doi: 10.1016/j.compbiomed.2021.104497 – volume: 521 start-page: 436 year: 2015 ident: ref_44 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_48 doi: 10.1186/s13104-022-06096-y – ident: ref_23 doi: 10.1109/DSAA.2018.00018 – ident: ref_7 – ident: ref_28 – volume: 26 start-page: 160 year: 2015 ident: ref_32 article-title: Imaging classification of autosomal dominant polycystic kidney disease: A simple model for selecting patients for clinical trials publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013101138 – ident: ref_24 – volume: 377 start-page: 1930 year: 2017 ident: ref_9 article-title: Tolvaptan in later-stage autosomal dominant polycystic kidney disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1710030 – volume: 45 start-page: 5 year: 2001 ident: ref_38 article-title: Random Forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_11 – ident: ref_16 doi: 10.3390/s23063176 – ident: ref_14 doi: 10.1109/SAI.2015.7237196 – ident: ref_46 doi: 10.1007/978-981-15-1967-3 – volume: 45 start-page: 427 year: 2009 ident: ref_35 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – ident: ref_49 doi: 10.1186/s12880-015-0068-x – volume: 367 start-page: 2407 year: 2012 ident: ref_6 article-title: Tolvaptan in patients with autosomal dominant polycystic kidney disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1205511 – volume: 39 start-page: 205 year: 2019 ident: ref_30 article-title: Estimated glomerular filtration rates show minor but significant differences between the single and subgroup creatinine-based Chronic Kidney Disease Epidemiology Collaboration equations publication-title: Ann. Lab. Med. doi: 10.3343/alm.2019.39.2.205 – volume: 109 start-page: 101 year: 2019 ident: ref_18 article-title: Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.017 – ident: ref_50 – ident: ref_54 – volume: 21 start-page: 1263 year: 2009 ident: ref_37 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – ident: ref_2 – ident: ref_43 doi: 10.1145/2939672.2939785 – volume: 32 start-page: 1356 year: 2016 ident: ref_3 article-title: Prevalence of autosomal dominant polycystic kidney disease in the European Union publication-title: Nephrol. Dial. Transplant. – volume: 15 start-page: 1041 year: 2019 ident: ref_33 article-title: Autosomal dominant polycystic kidney disease: Updated perspectives publication-title: Ther. Clin. Risk Manag. doi: 10.2147/TCRM.S196244 – volume: 58 start-page: 82 year: 2020 ident: ref_20 article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 67 start-page: 792 year: 2016 ident: ref_4 article-title: Autosomal dominant polycystic kidney disease: Core curriculum 2016 publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2015.07.037 – ident: ref_53 doi: 10.18653/v1/N16-3020 – volume: 2 start-page: 121 year: 1998 ident: ref_40 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 7 start-page: 396 year: 2015 ident: ref_57 article-title: Likert scale: Explored and explained publication-title: Br. J. Appl. Sci. Technol. doi: 10.9734/BJAST/2015/14975 |
| SSID | ssj0002512430 |
| Score | 2.2826416 |
| Snippet | Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary factor leading to end-stage renal disease (ESRD) worldwide, affecting... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2037 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks autosomal dominant polycystic kidney disease (ADPKD) Critical path Cysts Data mining Decision trees Electronic health records End users Endoscopy Enlargement Explainable artificial intelligence explainable artificial intelligence (XAI) Injury prevention Kidney diseases Machine learning machine learning classification algorithms Magnetic resonance imaging Patients Risk Semantics Subject specialists Summaries Support vector machines user-centered design |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBL2_SDbpuEofSwOZj4W9Jx201oSAlLaGFvRpZGYLq1w9oJ7A_L_-tI8m4WWuilN2NG2HhGmnnW0xvGPhUYW55iEnFVFlEuTR7VXOtI6DipZS24SmvfbIJfX4vlUi72Wn05TliQBw4f7gwJExirpeUERHRha6GMFLK0BQoqjq1bfanq2QNTbg12WTvP4iAllBGuP1NNQfGauJNsewnI6_T_sQz73HLxkj0fi0KYhZc5ZE-wfcVebBsuwDj_XrOHb0iR5_sKgSPPjSef_MCgBAGXexKbMF3OLk-BylLwisYDPFIMPSd2A00Li7Xbq3HsZ7hRt42Bq8a0uIHzduVY4u7vIdw0_c_eGc_uhq7vftGD5l0g0cCiW230xsk9b0fOw6YPTGfzxdX89A37cXH-_cvXaOy7EGlCk0OkhOJYF6nl2hihM1tLTajHGLqUmFghVFxqi2ViLCohrMrKPFEFeaPmhrLiW3bQdi2-Y2AN1VsxpkhJMM-tUnlsCXHxAlViU5QTNt06o9KjKLnrjbGqCJw4v1U7v03Yx53pbVDi-JvRZ-fRnYETz_Y3KKSqMaSqf4XUhB1t46EaZ3RfZYnT8SF4mb3_H8_4wJ6lVB4FYswROxjWd3jMnur7oenXJz6YfwPSzv6j priority: 102 providerName: Directory of Open Access Journals |
| Title | Leveraging Explainable Artificial Intelligence (XAI) for Expert Interpretability in Predicting Rapid Kidney Enlargement Risks in Autosomal Dominant Polycystic Kidney Disease (ADPKD) |
| URI | https://www.proquest.com/docview/3149498713 https://doaj.org/article/e282dfc9f7094c5fb8ad9896f5e8118f |
| Volume | 5 |
| WOSCitedRecordID | wos001384107000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2673-2688 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512430 issn: 2673-2688 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2673-2688 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512430 issn: 2673-2688 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2673-2688 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512430 issn: 2673-2688 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2673-2688 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512430 issn: 2673-2688 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2673-2688 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512430 issn: 2673-2688 databaseCode: PIMPY dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZbuoe9rN2NpWuLGHtIH0x9l_RU0iVloVswYYNsL0bWpZhldhq7g_yw_r8dyXJa2NjLXoyxj7BBR-emT99B6H2ifE1CFXiEp4kXMxl7BRHCo8IPClZQwsPCNpsg8zldLlnmCm6Ng1X2NtEaalkLUyM_iwLDowLhfXS-vvFM1yizu-paaDxGe4apLB6gvYvpPFvsqizGe8eR31EKRZDfn_EyAb0NzIm2B47I8vX_YY6tj7nc_9-_O0DPXHSJx506PEePVPUC7fedG7BbyC_R3ScFKmwbFGGDwnNHqOzAjlICzx5wdeLRcjw7xRDfYkuN3OJ7rKIF125xWeFsYzZ9DIwaL_i6lPiqlJXa4mm1MnBzU4bEi7L50Rjh8W1bN_VP-NCk7tA4OKtXW7E1vNH9yEm3e4RH40l2NTl9hb5eTr98-Oi5Bg6egLS09TjlRBVJqImQkopIF0xA-iQl3DIVaEq5nwqt0kBqxSnVPErjgCcB1QWR4F5fo0FVV-oNwlpC4OarUIE3jWPNeexrSN1IonigQ8WGaNTPZi4cu7lpsrHKIcsxE5_vJn6I3u1E1x2lx9-ELoxK7AQMC7d9UG-uc7eocwX5qtSCaQJJskh0QblklKU6URQSNz1ER7225M40NPm9qhz--_Vb9DSECKrDzhyhQbu5VcfoifjVls3mxGn6iS0iwDVLvsOzbPY5-_YbfN4RFg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgkulKdYKGAhkLaHqHnbPiC0kFaNdruKqiItp-D4gSKWZNmkoPwpbvw_xnlsK4G49cAtSsaJ5Hwez9ifv0HoVaBsTVzlWISHgeUz6VsZEcKiwnYyllHC3awtNkEWC7pcsmQH_RzOwhha5eATW0ctS2HWyA89x-ioQHjvvV1_s0zVKLO7OpTQ6GAxU80PSNmqN3EE__e16x4fnb8_sfqqApaAXKm2OOVEZYGriZCSCk9nTEBMLyVcMuVoSrkdCq1CR2rFKdXcC32HBw7VGZHg8-G9N9CuD2CnI7SbxKfJx-2qjokWfM_uJIw8j9mHPA9gnDjmBN2Via-tD_CH-2_ntOO9_6037qI7ffSMpx3c76EdVdxHe0NlCtw7qgfo11zBEG0LMGHDMuyPiLUNO8kMHF_RIsWT5TQ-wBC_41b6ucaXXMyWPNzgvMDJxmxqGZo4PuPrXOJZLgvV4KNiZej0ZpkVn-XVl8oYTy_qsiq_woeismMb4aRcNaIxuthDy6jbHcOTaZTMooOH6MO1dN4jNCrKQj1GWEsITG3lKogWfF9z7tsaUlMSKO5oV7ExmgzoSUWv3m6KiKxSyOIM0NIt0Mbo5dZ03UmW_M3onYHg1sCojLc3ys3ntHdaqYJ8XGrBNLGZLwKdUS4ZZaEOFIXEVI_R_oDOtHd9VXoJzSf_fvwC3To5P52n83gxe4puuxAtdjyhfTSqNxfqGbopvtd5tXnejzKMPl03lH8DRFtu3A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFA7rKuKL621xdNUgCrMPZXpP8iAy2h0cZhnKojD4UtNcpDi247Sr9If54q_zJG1nFxTf9sG30iYtpN85OSf58h2EXkTK1cRXnkN4HDkhk6GTEyEcKlwvZzkl3M9tsQmyXNLViqV76NdwFsbQKgefaB21rIRZI58EntFRgfA-mOieFpEms9ebb46pIGV2WodyGh1EFqr9Aelb_WqewL9-6fuzk_dv3zl9hQFHQN7UOJxyovLI10RISUWgcyYgvpcSLpnyNKXcjYVWsSe14pRqHsShxyOP6pxI8P_w3mvoOoEc01hXGn3cre-YuCEM3E7MKAiYO-FFBBbjmbN0l6ZAWyngj4nAzm6zg_95XO6g231MjaedEdxFe6q8hw6GehW4d1_30c9TBYZryzJhwz3sD47Zjp2QBp5fUijF49V0fowhqsdWELrBFwxNSylucVHidGu2ugx5HJ_xTSHxopClavFJuTYke7P4is-K-kttGk_Pm6quvsKHkqrjIOG0WreiNWrZQ8-k2zPD42mSLpLjB-jDlQzeIdovq1I9RFhLCFdd5SuIIcJQcx66GhJWEinuaV-xERoPSMpEr-luSousM8jtDOiyHehG6Pmu6aYTMvlbozcGjrsGRnvc3qi2n7PelWUKsnSpBdPEZaGIdE65ZJTFOlIU0lU9QkcDUrPeIdbZBUwf_fvxM3QT8JudzpeLx-iWDyFkRx46QvvN9lw9QTfE96aot0-tuWH06apx_BspxXY_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Explainable+Artificial+Intelligence+%28XAI%29+for+Expert+Interpretability+in+Predicting+Rapid+Kidney+Enlargement+Risks+in+Autosomal+Dominant+Polycystic+Kidney+Disease+%28ADPKD%29&rft.jtitle=AI+%28Basel%29&rft.au=Dwiyanti%2C+Latifa&rft.au=Nambo%2C+Hidetaka&rft.au=Hamid%2C+Nur&rft.date=2024-12-01&rft.issn=2673-2688&rft.eissn=2673-2688&rft.volume=5&rft.issue=4&rft.spage=2037&rft.epage=2065&rft_id=info:doi/10.3390%2Fai5040100&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ai5040100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-2688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-2688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-2688&client=summon |