Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling

Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic environments. Genetic programming (GP), as a hyperheuristic approach, has been successfully applied to evolve scheduling heuristics for JSS. Howev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 25; no. 4; pp. 651 - 665
Main Authors: Zhang, Fangfang, Mei, Yi, Nguyen, Su, Zhang, Mengjie, Tan, Kay Chen
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic environments. Genetic programming (GP), as a hyperheuristic approach, has been successfully applied to evolve scheduling heuristics for JSS. However, its training process is time consuming, and it faces the retraining problem once the characteristics of job shop scenarios vary. It is known that multitask learning is a promising paradigm for solving multiple tasks simultaneously by sharing knowledge among the tasks. To improve the training efficiency and effectiveness, this article proposes a novel surrogate-assisted evolutionary multitask algorithm via GP to share useful knowledge between different scheduling tasks. Specifically, we employ the phenotypic characterization for measuring the behaviors of scheduling rules and building a surrogate for each task accordingly. The built surrogates are used not only to improve the efficiency of solving each single task but also for knowledge transfer in multitask learning with a large number of promising individuals. The results show that the proposed algorithm can significantly improve the quality of scheduling heuristics for all scenarios. In addition, the proposed algorithm manages to solve multiple tasks collaboratively in terms of the evolved scheduling heuristics for different tasks in a multitask scenario.
AbstractList Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic environments. Genetic programming (GP), as a hyperheuristic approach, has been successfully applied to evolve scheduling heuristics for JSS. However, its training process is time consuming, and it faces the retraining problem once the characteristics of job shop scenarios vary. It is known that multitask learning is a promising paradigm for solving multiple tasks simultaneously by sharing knowledge among the tasks. To improve the training efficiency and effectiveness, this article proposes a novel surrogate-assisted evolutionary multitask algorithm via GP to share useful knowledge between different scheduling tasks. Specifically, we employ the phenotypic characterization for measuring the behaviors of scheduling rules and building a surrogate for each task accordingly. The built surrogates are used not only to improve the efficiency of solving each single task but also for knowledge transfer in multitask learning with a large number of promising individuals. The results show that the proposed algorithm can significantly improve the quality of scheduling heuristics for all scenarios. In addition, the proposed algorithm manages to solve multiple tasks collaboratively in terms of the evolved scheduling heuristics for different tasks in a multitask scenario.
Author Zhang, Fangfang
Mei, Yi
Zhang, Mengjie
Tan, Kay Chen
Nguyen, Su
Author_xml – sequence: 1
  givenname: Fangfang
  orcidid: 0000-0001-5516-3972
  surname: Zhang
  fullname: Zhang, Fangfang
  email: fangfang.zhang@ecs.vuw.ac.nz
  organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: Yi
  orcidid: 0000-0003-0682-1363
  surname: Mei
  fullname: Mei, Yi
  email: yi.mei@ecs.vuw.ac.nz
  organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Su
  orcidid: 0000-0003-2365-1087
  surname: Nguyen
  fullname: Nguyen, Su
  email: p.nguyen4@latrobe.edu.au
  organization: Centre for Data Analytics and Cognition, La Trobe University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 5
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kctan@polyu.edu.hk
  organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong
BookMark eNp9kE1LAzEQhoMo-PkDxEvA89ZJ9iObo9TWDxSFqnhbsulEo9tNTbKi_96UigcPnmYYnneGeXbJZu96JOSQwYgxkCf3k8fxiANnoxyqUoDYIDtMFiwD4NVm6qGWmRD10zbZDeEVgBUlkzvEzAbv3bOKmJ2GYEPEOZ18uG6I1vXKf9GboYs2qvBGz7HHaDW9S7xXi4Xtn6lxnp599WqR5tMOP23bIb1yLZ29uCWd6RecD10C98mWUV3Ag5-6Rx6mk_vxRXZ9e345Pr3OdAE8ZqpWXBWiEihBg5RM8hxr2RpTFjqvTQ3IWwYGNGoFslRQ5nM1b02bQ81bzPfI8Xrv0rv3AUNsXt3g-3Sy4WVZFXVVMpYosaa0dyF4NI1OL64-jl7ZrmHQrKQ2K6nNSmrzIzUl2Z_k0ttF8vRv5midsYj4y8tciEJA_g3QBIYn
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s12559_022_10012_8
crossref_primary_10_1002_cpe_7469
crossref_primary_10_1016_j_eswa_2024_123336
crossref_primary_10_1016_j_ins_2022_08_103
crossref_primary_10_1016_j_cor_2024_106817
crossref_primary_10_1109_TEVC_2023_3255266
crossref_primary_10_1016_j_cie_2023_109848
crossref_primary_10_1007_s10462_024_11059_9
crossref_primary_10_1016_j_oceaneng_2025_122835
crossref_primary_10_1007_s12065_025_01034_w
crossref_primary_10_1007_s00170_023_12595_4
crossref_primary_10_1016_j_ins_2023_01_072
crossref_primary_10_1016_j_aei_2024_102872
crossref_primary_10_1016_j_swevo_2024_101758
crossref_primary_10_1007_s11227_024_06324_1
crossref_primary_10_1016_j_jmsy_2023_03_003
crossref_primary_10_1016_j_cie_2025_111489
crossref_primary_10_1016_j_swevo_2024_101754
crossref_primary_10_1016_j_engappai_2023_106096
crossref_primary_10_1016_j_swevo_2025_101994
crossref_primary_10_1016_j_ins_2024_120921
crossref_primary_10_1016_j_asoc_2022_109696
crossref_primary_10_1109_TEVC_2021_3134804
crossref_primary_10_1007_s12293_025_00441_x
crossref_primary_10_1007_s11227_024_06016_w
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_1016_j_jmsy_2023_07_003
crossref_primary_10_1109_TEVC_2021_3100056
crossref_primary_10_1109_TASE_2024_3464857
crossref_primary_10_1109_TCYB_2022_3196887
crossref_primary_10_1007_s40747_024_01677_9
crossref_primary_10_1016_j_asoc_2024_111876
crossref_primary_10_1109_TEVC_2025_3532022
crossref_primary_10_1007_s10489_023_04918_5
crossref_primary_10_1016_j_asoc_2023_110605
crossref_primary_10_1016_j_eswa_2024_124375
crossref_primary_10_1016_j_neucom_2025_130603
crossref_primary_10_1016_j_swevo_2025_101883
crossref_primary_10_1016_j_future_2024_04_032
crossref_primary_10_1109_TETCI_2024_3353615
crossref_primary_10_54097_jceim_v10i3_8705
crossref_primary_10_1109_TEVC_2023_3254155
crossref_primary_10_1109_MCI_2022_3155332
crossref_primary_10_1109_TEVC_2023_3255246
crossref_primary_10_1016_j_future_2023_03_034
crossref_primary_10_1109_TEVC_2021_3139437
crossref_primary_10_1016_j_engappai_2025_110001
crossref_primary_10_1109_TEVC_2023_3263871
crossref_primary_10_1109_ACCESS_2022_3151346
crossref_primary_10_1016_j_engappai_2023_106353
crossref_primary_10_1109_TSC_2024_3463423
crossref_primary_10_3390_math13111851
crossref_primary_10_1109_TEVC_2021_3065707
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1016_j_cie_2023_109111
crossref_primary_10_1016_j_swevo_2023_101258
crossref_primary_10_1016_j_swevo_2025_101970
crossref_primary_10_1109_TCYB_2022_3164399
crossref_primary_10_1109_ACCESS_2024_3418809
crossref_primary_10_1109_TEVC_2022_3227120
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1109_TEVC_2022_3210783
crossref_primary_10_1109_TII_2023_3272661
crossref_primary_10_3390_biomimetics9100604
crossref_primary_10_1016_j_knosys_2023_110906
crossref_primary_10_1109_TEVC_2022_3180693
crossref_primary_10_1109_TETC_2024_3364703
crossref_primary_10_1109_TEVC_2023_3238741
crossref_primary_10_1109_TEVC_2023_3348475
crossref_primary_10_1016_j_rcim_2022_102435
crossref_primary_10_1109_MCI_2024_3363970
crossref_primary_10_3390_app13085190
crossref_primary_10_1007_s40747_023_01105_4
crossref_primary_10_1080_00207543_2023_2294109
crossref_primary_10_3390_axioms13010037
crossref_primary_10_1109_TEVC_2023_3323877
crossref_primary_10_1016_j_ins_2023_119961
crossref_primary_10_1016_j_jocs_2022_101649
crossref_primary_10_1109_ACCESS_2022_3197637
crossref_primary_10_1016_j_autcon_2024_105588
crossref_primary_10_1109_TAI_2024_3456086
crossref_primary_10_1109_TCYB_2023_3273625
crossref_primary_10_1109_TEVC_2023_3244607
crossref_primary_10_3390_a17020067
crossref_primary_10_1016_j_swevo_2023_101318
crossref_primary_10_3233_ICA_230704
crossref_primary_10_1007_s11276_024_03677_6
crossref_primary_10_1016_j_cor_2025_107027
crossref_primary_10_1109_TAES_2024_3397958
crossref_primary_10_1109_TEVC_2021_3133874
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1016_j_asoc_2022_109775
crossref_primary_10_1109_TAI_2024_3414289
crossref_primary_10_1016_j_swevo_2023_101279
crossref_primary_10_1016_j_knosys_2023_111018
crossref_primary_10_1109_TEVC_2023_3338740
crossref_primary_10_1016_j_aei_2022_101756
crossref_primary_10_1109_TETCI_2024_3381512
crossref_primary_10_1007_s40747_024_01605_x
crossref_primary_10_1007_s40747_024_01465_5
crossref_primary_10_1109_TEVC_2022_3195165
crossref_primary_10_1016_j_asoc_2025_112787
crossref_primary_10_1016_j_swevo_2025_101969
crossref_primary_10_1007_s40747_025_01908_7
crossref_primary_10_1109_TEVC_2024_3357819
crossref_primary_10_1109_TEVC_2024_3370937
crossref_primary_10_1016_j_ins_2024_120975
crossref_primary_10_1016_j_swevo_2025_102136
crossref_primary_10_1016_j_asoc_2022_109827
crossref_primary_10_1109_TEVC_2021_3101697
crossref_primary_10_1109_TEVC_2023_3281810
crossref_primary_10_1016_j_asoc_2022_108736
crossref_primary_10_3390_f15122114
crossref_primary_10_1109_TEVC_2022_3175065
crossref_primary_10_1109_TEVC_2023_3349250
crossref_primary_10_3390_electronics14183613
crossref_primary_10_3390_pr11010065
crossref_primary_10_1016_j_asoc_2023_111104
crossref_primary_10_1016_j_neucom_2025_130917
crossref_primary_10_1016_j_eswa_2023_122025
crossref_primary_10_1016_j_swevo_2024_101535
crossref_primary_10_1109_TEVC_2022_3154416
crossref_primary_10_1109_TEVC_2024_3358854
crossref_primary_10_1016_j_swevo_2024_101809
crossref_primary_10_1016_j_swevo_2024_101768
crossref_primary_10_1016_j_asoc_2023_110545
crossref_primary_10_1109_TCYB_2021_3120188
crossref_primary_10_1109_TASE_2024_3514863
crossref_primary_10_1016_j_swevo_2022_101203
crossref_primary_10_1109_TASE_2023_3326315
crossref_primary_10_1016_j_swevo_2025_102114
Cites_doi 10.1287/opre.8.2.219
10.3390/technologies6040107
10.1109/TETC.2019.2945775
10.1007/978-1-4613-0303-9_33
10.1007/BF02238804
10.1007/s10710-017-9310-3
10.1016/0166-218X(93)E0169-Y
10.1109/TEVC.2021.3065707
10.1109/MCI.2018.2866731
10.1109/TCYB.2016.2562674
10.1162/EVCO_a_00105
10.1109/TSMC.2018.2853719
10.1109/TCYB.2020.2974100
10.1007/BF01721162
10.1109/TETCI.2019.2916051
10.1007/978-3-319-13563-2_55
10.1109/CEC.2018.8477830
10.1109/TCYB.2020.2981733
10.1162/EVCO_a_00133
10.1109/CEC.2015.7257018
10.1145/3377929.3389934
10.1109/CEC.2019.8790112
10.1109/70.720354
10.1287/opre.44.1.87
10.1109/CEC.2019.8790030
10.1007/s10951-006-5591-8
10.1017/S0269888900006068
10.1016/j.ins.2019.10.066
10.1007/978-3-030-03991-2_69
10.1109/TCYB.2020.3024849
10.1109/TEVC.2017.2783441
10.1145/3321707.3321790
10.1007/978-3-030-03991-2_66
10.1007/978-3-030-03991-2_43
10.1007/978-3-642-01799-5_6
10.1007/978-3-030-44094-7_17
10.1007/978-3-030-43680-3_14
10.1109/TEVC.2019.2906927
10.1109/SSCI44817.2019.9002804
10.1109/TCYB.2019.2936001
10.1007/0-387-28356-0_5
10.1109/TEVC.2015.2458037
10.1016/j.swevo.2011.05.001
10.1080/002075400189301
10.1007/s12559-016-9395-7
10.1007/978-3-030-16711-0_3
10.1136/bmjstel-2018-000370
10.1109/TEVC.2017.2785351
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3065707
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 665
ExternalDocumentID 10_1109_TEVC_2021_3065707
9377470
Genre orig-research
GrantInformation_xml – fundername: Science for Technological Innovation Challenge Fund
  grantid: E3603/2903
– fundername: China Scholarship Council/Victoria University of Wellington Joint Ph.D. Scholarships
  funderid: 10.13039/501100004543
– fundername: Marsden Fund of New Zealand Government
  grantid: VUW1509; VUW1614
  funderid: 10.13039/100015896
– fundername: MBIE SSIF Fund
  grantid: VUW RTVU1914
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-a8a2a4767e90c0991923e89bff54c38f80e2b10f0ceca095a053dadbfb3082be3
IEDL.DBID RIE
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679530900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 06:43:46 EST 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 21:13:14 EST 2025
Wed Aug 27 02:40:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a8a2a4767e90c0991923e89bff54c38f80e2b10f0ceca095a053dadbfb3082be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0682-1363
0000-0001-5516-3972
0000-0003-2365-1087
0000-0002-6802-2463
0000-0003-4463-9538
OpenAccessLink https://figshare.com/articles/journal_contribution/Surrogate-Assisted_Evolutionary_Multitask_Genetic_Programming_for_Dynamic_Flexible_Job_Shop_Scheduling/19704499
PQID 2556486511
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_9377470
proquest_journals_2556486511
crossref_citationtrail_10_1109_TEVC_2021_3065707
crossref_primary_10_1109_TEVC_2021_3065707
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref14
ref53
ref55
ref11
ref54
ref10
ref17
ref16
ref19
zhang (ref39) 0
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
foo (ref9) 1988
ref33
ref32
ref2
ref1
ref38
chen (ref30) 2020
ong (ref23) 2006
da (ref52) 2017
pearl (ref12) 1984
ref26
ref25
ref20
ref22
ref21
ref28
ref27
zhang (ref24) 2021
ref29
bennett (ref3) 2014
References_xml – ident: ref1
  doi: 10.1287/opre.8.2.219
– start-page: 2928
  year: 2006
  ident: ref23
  article-title: Curse and blessing of uncertainty in evolutionary algorithm using approximation
  publication-title: Proc IEEE Int Conf Evol Comput
– ident: ref21
  doi: 10.3390/technologies6040107
– ident: ref35
  doi: 10.1109/TETC.2019.2945775
– ident: ref10
  doi: 10.1007/978-1-4613-0303-9_33
– ident: ref5
  doi: 10.1007/BF02238804
– ident: ref41
  doi: 10.1007/s10710-017-9310-3
– ident: ref4
  doi: 10.1016/0166-218X(93)E0169-Y
– year: 2021
  ident: ref24
  article-title: Collaborative multi-fidelity based surrogate models for genetic programming in dynamic flexible job shop scheduling
  publication-title: IEEE Trans Cybern
– ident: ref43
  doi: 10.1109/TEVC.2021.3065707
– start-page: 483
  year: 2014
  ident: ref3
  article-title: A hybrid discrete particle swarm optimisation method for grid computation scheduling
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref49
  doi: 10.1109/MCI.2018.2866731
– ident: ref20
  doi: 10.1109/TCYB.2016.2562674
– ident: ref17
  doi: 10.1162/EVCO_a_00105
– ident: ref31
  doi: 10.1109/TSMC.2018.2853719
– ident: ref29
  doi: 10.1109/TCYB.2020.2974100
– ident: ref15
  doi: 10.1007/BF01721162
– ident: ref53
  doi: 10.1109/TETCI.2019.2916051
– ident: ref26
  doi: 10.1007/978-3-319-13563-2_55
– year: 0
  ident: ref39
  article-title: Multitask genetic programming based generative hyper-heuristics: A case study in dynamic scheduling
  publication-title: IEEE Trans Cybern
– ident: ref34
  doi: 10.1109/CEC.2018.8477830
– ident: ref55
  doi: 10.1109/TCYB.2020.2981733
– ident: ref25
  doi: 10.1162/EVCO_a_00133
– ident: ref48
  doi: 10.1109/CEC.2015.7257018
– ident: ref32
  doi: 10.1145/3377929.3389934
– ident: ref56
  doi: 10.1109/CEC.2019.8790112
– ident: ref8
  doi: 10.1109/70.720354
– ident: ref33
  doi: 10.1287/opre.44.1.87
– ident: ref42
  doi: 10.1109/CEC.2019.8790030
– ident: ref2
  doi: 10.1007/s10951-006-5591-8
– ident: ref11
  doi: 10.1017/S0269888900006068
– ident: ref45
  doi: 10.1016/j.ins.2019.10.066
– ident: ref27
  doi: 10.1007/978-3-030-03991-2_69
– ident: ref18
  doi: 10.1109/TCYB.2020.3024849
– ident: ref37
  doi: 10.1109/TEVC.2017.2783441
– ident: ref7
  doi: 10.1145/3321707.3321790
– ident: ref47
  doi: 10.1007/978-3-030-03991-2_66
– year: 1984
  ident: ref12
  publication-title: Intelligent Search Strategies for Computer Problem Solving
– ident: ref6
  doi: 10.1007/978-3-030-03991-2_43
– year: 2020
  ident: ref30
  article-title: An evolutionary multitasking-based feature selection method for high-dimensional classification
  publication-title: IEEE Trans Cybern
– ident: ref38
  doi: 10.1007/978-3-642-01799-5_6
– start-page: 341
  year: 1988
  ident: ref9
  article-title: Integer linear programming neural networks for job-shop scheduling
  publication-title: Proc IEEE Int Conf Neural Netw
– ident: ref14
  doi: 10.1007/978-3-030-44094-7_17
– ident: ref44
  doi: 10.1007/978-3-030-43680-3_14
– ident: ref54
  doi: 10.1109/TEVC.2019.2906927
– ident: ref46
  doi: 10.1109/SSCI44817.2019.9002804
– ident: ref50
  doi: 10.1109/TCYB.2019.2936001
– ident: ref16
  doi: 10.1007/0-387-28356-0_5
– ident: ref28
  doi: 10.1109/TEVC.2015.2458037
– year: 2017
  ident: ref52
  publication-title: Evolutionary Multitasking for Single-objective Continuous Optimization Benchmark Problems Performance Metric and Baseline Results
– ident: ref22
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref13
  doi: 10.1080/002075400189301
– ident: ref51
  doi: 10.1007/s12559-016-9395-7
– ident: ref40
  doi: 10.1007/978-3-030-16711-0_3
– ident: ref19
  doi: 10.1136/bmjstel-2018-000370
– ident: ref36
  doi: 10.1109/TEVC.2017.2785351
SSID ssj0014519
Score 2.6621923
Snippet Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 651
SubjectTerms Algorithms
Combinatorial analysis
Dynamic flexible job shop scheduling (DFJSS)
Dynamic scheduling
Evolutionary algorithms
Genetic algorithms
genetic programming (GP)
Heuristic
Heuristic algorithms
hyperheuristics
Job shop scheduling
Job shops
Knowledge management
Learning
multitask learning
Optimization
Processor scheduling
Scheduling
Sequential analysis
Statistics
surrogate
Task analysis
Task scheduling
Training
Title Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling
URI https://ieeexplore.ieee.org/document/9377470
https://www.proquest.com/docview/2556486511
Volume 25
WOSCitedRecordID wos000679530900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5M8TAP_tgU5y9y8CRW2642yVF0QzzIwB_sVpI0QVDXUZ3gf-97TTYERfDWQxJCv6T5XvPe9wEccSdtyo2Nstz1o0w7HmntyN8E2ax0CS6RsjGb4Le3YjyWoxacLGphrLVN8pk9pcfmLr-szIx-lZ3hUYrsFwP0Jc5zX6u1uDEgmRSfTC-RMYpxuMFMYnl2P3i8xEgwTU7JJp2Tc-y3M6gxVfnxJW6Ol-H6_ya2AWuBRrILj_smtOykA-tziwYWdmwHVr_pDXagTdTSKzN3wd3N6rqiv2gRYkRol2zwEVaiqj-Zr81Vb8-MtKmxExv5ZK5XHIwh2WVX3s6eDUlVU79YdlNpdvdUTXECT3iGUan7FjwMB_eX11FwXYgMxpLvkRIqVRnPuZWxQf5IFNAKqZ07z0xfOBHbVCexi401Cgmawm1cqlI7Tco32va3YXlSTewOsORclMblRpZGYtiJcbtWWuf4-jIutUh7EM9xKEyQJCdnjJeiCU1iWRB0BUFXBOh6cLzoMvV6HH817hJWi4YBph7sz8Euwo59K0iKLRM58s_d33vtQZvG9sl_-7D8Xs_sAayYD8StPmwW4xfyXt6D
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1EBfXgx6q4fubgSay23W6bHEV38XMRXGVvJUkTBHUr1RX898402UVQBG89JG3oS5o3zcx7APuZFSbOtAmS1LaCRNksUMqSvwmyWWEjnCJFbTaR9Xp8MBC3U3A4qYUxxtTJZ-aILuuz_KLUI_pVdoxbKbJfDNBn2kkSh65aa3JmQEIpLp1eIGfkA3-GGYXiuN95OMVYMI6OyCg9I-_Yb7tQbavy41tcbzDdpf8NbRkWPZFkJw75FZgywwYsjU0amF-zDVj4pjjYgHkil06beRXs3aiqSvqPFiBKhHfBOh9-Lsrqk7nqXPn2xEidGjuxW5fO9YI3Y0h32ZkztGdd0tVUz4ZdlordPZavOIBH3MWo2H0N7rud_ul54H0XAo3R5HsguYxlkqWZEaFGBkkk0HChrG0nusUtD02sotCG2miJFE3iQi5koawi7RtlWuswPSyHZgNY1OaFtqkWhRYYeGLkrqRSKb6-JBOKx00Ixzjk2ouSkzfGc14HJ6HICbqcoMs9dE04mHR5dYocfzVeJawmDT1MTdgeg537NfuWkxhbwlNkoJu_99qDufP-zXV-fdG72oJ5eo5LBdyG6fdqZHZgVn8ghtVuPTG_AKjJ4co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate-Assisted+Evolutionary+Multitask+Genetic+Programming+for+Dynamic+Flexible+Job+Shop+Scheduling&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhang%2C+Fangfang&rft.au=Mei%2C+Yi&rft.au=Nguyen%2C+Su&rft.au=Zhang%2C+Mengjie&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=25&rft.issue=4&rft.spage=651&rft.epage=665&rft_id=info:doi/10.1109%2FTEVC.2021.3065707&rft.externalDocID=9377470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon