Combining analytics and simulation methods to assess the impact of shared, autonomous electric vehicles on sustainable urban mobility

Urban mobility is currently undergoing three fundamental transformations with the sharing economy, electrification, and autonomous vehicles changing how people and goods move across cities. In this paper, we demonstrate the valuable contribution of decision support systems that combine data-driven a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information & management Ročník 59; číslo 5; s. 103285
Hlavní autoři: Dlugosch, Oliver, Brandt, Tobias, Neumann, Dirk
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2022
Témata:
ISSN:0378-7206, 1872-7530
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Urban mobility is currently undergoing three fundamental transformations with the sharing economy, electrification, and autonomous vehicles changing how people and goods move across cities. In this paper, we demonstrate the valuable contribution of decision support systems that combine data-driven analytics and simulation techniques in understanding complex systems such as urban transportation. Using the city of Berlin as a case study, we show that shared, autonomous electric vehicles can substantially reduce resource investments while keeping service levels stable. Our findings inform stakeholders on the trade-off between economic and sustainability-related considerations when fostering the transition to sustainable urban mobility.
ISSN:0378-7206
1872-7530
DOI:10.1016/j.im.2020.103285