Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things
It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension...
Uloženo v:
| Vydáno v: | IEEE internet of things journal Ročník 6; číslo 4; s. 6822 - 6834 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods. |
|---|---|
| AbstractList | It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods. |
| Author | Zolanvari, Maede Khan, Khaled M. Jain, Raj Teixeira, Marcio A. Gupta, Lav |
| Author_xml | – sequence: 1 givenname: Maede orcidid: 0000-0003-1428-7770 surname: Zolanvari fullname: Zolanvari, Maede email: maede.zolanvari@wustl.edu organization: Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA – sequence: 2 givenname: Marcio A. orcidid: 0000-0003-1466-3596 surname: Teixeira fullname: Teixeira, Marcio A. organization: Federal Institute of Education, Science and Technology of São Paulo, São Paulo, Brazil – sequence: 3 givenname: Lav orcidid: 0000-0002-0524-654X surname: Gupta fullname: Gupta, Lav organization: Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA – sequence: 4 givenname: Khaled M. orcidid: 0000-0002-8848-0760 surname: Khan fullname: Khan, Khaled M. organization: Department of Computer Science and Engineering, Qatar University, Doha, Qatar – sequence: 5 givenname: Raj orcidid: 0000-0002-7023-0368 surname: Jain fullname: Jain, Raj organization: Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA |
| BookMark | eNp9kF1PwjAUhhuDiYj8AOPNEq-H7dlW1kskfmBQbpDbptsOWJwdtl0M_94uEGO88Op8Pu85ec9JzzQGCblkdMQYFTdPs8VyBJSJEQgGFOCE9CGBcZxyDr1f-RkZOrellAYsY4L3yepZlW_aYDRHZY02m_hWOayiF_RfjX2PVm1t0KpC19rvo4lR9d5pFzXraGaq1nmrVR1Sj9ag79rLoLZxF-R0rWqHw2MckNf7u-X0MZ4vHmbTyTwuUwo-VpABVRmvKsWUykpRCMC8YiXPKMWMikrkPNRFWokMs0QkZQpY5GvOwljwZECuD7o723y26LzcNq0NXzoJwPM0AZqKsMUOW6VtnLO4ljurP5TdS0Zl56DsHJSdg_LoYGDGf5hSe-V1Y7xVuv6XvDqQGhF_LuVcJIKmyTeyxn-U |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1007_s00170_022_10329_6 crossref_primary_10_1109_COMST_2020_3011208 crossref_primary_10_1109_TVT_2021_3133907 crossref_primary_10_1007_s12652_022_04475_8 crossref_primary_10_1016_j_future_2023_09_035 crossref_primary_10_1016_j_jpdc_2024_104934 crossref_primary_10_1145_3764586 crossref_primary_10_1016_j_comnet_2025_111177 crossref_primary_10_1007_s42979_025_03765_0 crossref_primary_10_7717_peerj_cs_475 crossref_primary_10_1016_j_iot_2024_101187 crossref_primary_10_1109_JIOT_2025_3586721 crossref_primary_10_1016_j_epsr_2023_109741 crossref_primary_10_1155_2022_7182989 crossref_primary_10_1007_s10207_024_00916_x crossref_primary_10_1016_j_cose_2023_103210 crossref_primary_10_1145_3744745 crossref_primary_10_1051_itmconf_20235606003 crossref_primary_10_1109_OJCOMS_2025_3569291 crossref_primary_10_1109_JIOT_2021_3130156 crossref_primary_10_1016_j_compeleceng_2022_108374 crossref_primary_10_1109_COMST_2021_3094360 crossref_primary_10_1016_j_rcim_2022_102418 crossref_primary_10_1109_ACCESS_2021_3057766 crossref_primary_10_32604_cmc_2023_033513 crossref_primary_10_1109_ACCESS_2023_3346187 crossref_primary_10_1038_s41598_025_98110_z crossref_primary_10_1155_2023_3939895 crossref_primary_10_1109_TIFS_2023_3338965 crossref_primary_10_1080_17517575_2022_2142854 crossref_primary_10_1371_journal_pone_0299666 crossref_primary_10_1016_j_comcom_2023_06_020 crossref_primary_10_1007_s10115_024_02273_6 crossref_primary_10_1016_j_jpdc_2022_01_015 crossref_primary_10_1016_j_cosrev_2023_100551 crossref_primary_10_3390_fi15060210 crossref_primary_10_1109_ACCESS_2021_3072916 crossref_primary_10_3390_computers10070088 crossref_primary_10_1002_ett_70224 crossref_primary_10_1016_j_adhoc_2023_103384 crossref_primary_10_1016_j_iot_2024_101092 crossref_primary_10_1145_3610401 crossref_primary_10_1016_j_cose_2019_101677 crossref_primary_10_1109_ACCESS_2020_3004711 crossref_primary_10_1109_JIOT_2019_2959035 crossref_primary_10_1016_j_rcim_2022_102439 crossref_primary_10_1109_ACCESS_2024_3498603 crossref_primary_10_3390_electronics13214153 crossref_primary_10_1109_ACCESS_2023_3320928 crossref_primary_10_1109_JIOT_2020_2996664 crossref_primary_10_1007_s00521_024_09439_x crossref_primary_10_1109_TII_2023_3333438 crossref_primary_10_3390_sym13061011 crossref_primary_10_1007_s40032_025_01164_1 crossref_primary_10_1016_j_comnet_2022_109048 crossref_primary_10_1109_ACCESS_2020_2989770 crossref_primary_10_3390_s23083931 crossref_primary_10_1109_COMST_2023_3288942 crossref_primary_10_1145_3597210 crossref_primary_10_1109_ACCESS_2022_3152577 crossref_primary_10_3390_electronics14132512 crossref_primary_10_1007_s00170_024_13874_4 crossref_primary_10_1155_2022_8568917 crossref_primary_10_1007_s12008_023_01235_6 crossref_primary_10_3390_network1020007 crossref_primary_10_1007_s11277_023_10521_1 crossref_primary_10_1109_ACCESS_2022_3220622 crossref_primary_10_3390_app9245364 crossref_primary_10_1109_TIFS_2021_3065504 crossref_primary_10_1016_j_iot_2023_100699 crossref_primary_10_1109_ACCESS_2023_3289076 crossref_primary_10_32604_cmc_2022_027483 crossref_primary_10_1007_s42835_021_00931_1 crossref_primary_10_1016_j_egyr_2021_09_112 crossref_primary_10_1155_int_2539516 crossref_primary_10_1016_j_adhoc_2023_103320 crossref_primary_10_3390_s20195480 crossref_primary_10_1109_JIOT_2024_3447876 crossref_primary_10_1007_s11235_024_01200_y crossref_primary_10_1016_j_iot_2023_100689 crossref_primary_10_1016_j_procs_2025_04_623 crossref_primary_10_1016_j_iot_2021_100441 crossref_primary_10_1109_ACCESS_2020_3003808 crossref_primary_10_3390_app12094641 crossref_primary_10_1016_j_iot_2020_100227 crossref_primary_10_1038_s41598_024_74350_3 crossref_primary_10_1109_ACCESS_2020_2992249 crossref_primary_10_1016_j_vehcom_2020_100302 crossref_primary_10_1016_j_cose_2023_103283 crossref_primary_10_1016_j_jnca_2025_104286 crossref_primary_10_1109_ACCESS_2025_3558985 crossref_primary_10_1016_j_comcom_2022_11_009 crossref_primary_10_1016_j_cose_2024_104097 crossref_primary_10_3390_en18133519 crossref_primary_10_1016_j_engappai_2023_107515 crossref_primary_10_1109_OJCOMS_2025_3563270 crossref_primary_10_3390_s25072249 crossref_primary_10_1007_s40998_022_00493_6 crossref_primary_10_1109_TII_2022_3173996 crossref_primary_10_1016_j_comcom_2020_12_013 crossref_primary_10_3390_electronics12204289 crossref_primary_10_1007_s12243_022_00926_7 crossref_primary_10_1109_ACCESS_2019_2920699 crossref_primary_10_1109_ACCESS_2021_3071766 crossref_primary_10_1109_JIOT_2022_3185173 crossref_primary_10_1111_exsy_12556 crossref_primary_10_3390_s20123590 crossref_primary_10_1109_TNSE_2022_3191601 crossref_primary_10_1016_j_neunet_2025_108002 crossref_primary_10_1109_TNSE_2025_3544251 crossref_primary_10_1109_ACCESS_2024_3432454 crossref_primary_10_1002_cpe_6894 crossref_primary_10_1007_s12243_023_00953_y crossref_primary_10_1109_ACCESS_2024_3357519 crossref_primary_10_1016_j_tsep_2024_102929 crossref_primary_10_1016_j_compeleceng_2021_107610 crossref_primary_10_2478_jaiscr_2023_0017 crossref_primary_10_3390_s23198153 crossref_primary_10_1007_s11831_023_09943_8 crossref_primary_10_1109_ACCESS_2020_3022862 crossref_primary_10_1049_ise2_8381148 crossref_primary_10_1109_ACCESS_2025_3557959 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_32604_cmc_2023_045794 crossref_primary_10_1016_j_comnet_2024_110641 crossref_primary_10_3390_electronics13224440 crossref_primary_10_1016_j_asoc_2020_106188 crossref_primary_10_3390_app15063121 crossref_primary_10_1109_TVT_2021_3071983 crossref_primary_10_1109_ACCESS_2020_2991403 crossref_primary_10_1109_JIOT_2021_3122019 crossref_primary_10_1016_j_jnca_2023_103637 crossref_primary_10_1109_ACCESS_2022_3179047 crossref_primary_10_3390_s23177470 crossref_primary_10_1016_j_comnet_2023_110015 crossref_primary_10_1109_TNSM_2024_3385385 crossref_primary_10_3390_app13042479 crossref_primary_10_3390_info12040154 crossref_primary_10_3390_s20226578 crossref_primary_10_1109_ACCESS_2024_3449642 crossref_primary_10_1016_j_adhoc_2025_103991 crossref_primary_10_1109_JIOT_2021_3067667 crossref_primary_10_1007_s00521_025_11418_9 crossref_primary_10_1109_TCE_2023_3347170 crossref_primary_10_1109_JIOT_2020_3022572 crossref_primary_10_3390_electronics13163318 crossref_primary_10_1007_s42979_021_00516_9 crossref_primary_10_1145_3548691 crossref_primary_10_3390_app13031252 crossref_primary_10_1016_j_iswa_2023_200298 crossref_primary_10_3390_app15052316 crossref_primary_10_1109_ACCESS_2020_3040740 crossref_primary_10_1007_s10207_024_00935_8 crossref_primary_10_3390_app10020724 crossref_primary_10_1007_s11277_023_10693_w crossref_primary_10_1016_j_compeleceng_2024_109725 crossref_primary_10_1109_ACCESS_2020_3002932 crossref_primary_10_1016_j_iot_2024_101377 crossref_primary_10_1016_j_compeleceng_2023_108732 crossref_primary_10_2478_amns_2024_2332 crossref_primary_10_1002_nem_2296 crossref_primary_10_1109_ACCESS_2024_3367357 crossref_primary_10_1016_j_iot_2024_101252 crossref_primary_10_1109_ACCESS_2023_3292181 crossref_primary_10_1109_ACCESS_2024_3473289 crossref_primary_10_1007_s40031_021_00563_z crossref_primary_10_3390_su15108076 crossref_primary_10_1049_cps2_12016 crossref_primary_10_1109_JIOT_2024_3501017 crossref_primary_10_1016_j_procs_2024_11_089 crossref_primary_10_1109_ACCESS_2021_3075385 crossref_primary_10_1016_j_teler_2022_100009 crossref_primary_10_1109_ACCESS_2022_3165809 crossref_primary_10_1109_ACCESS_2025_3554083 crossref_primary_10_1155_2022_2153770 crossref_primary_10_1007_s10115_024_02126_2 crossref_primary_10_1016_j_jisa_2020_102500 crossref_primary_10_1016_j_vehcom_2022_100521 crossref_primary_10_1145_3389250 crossref_primary_10_1002_cta_2797 crossref_primary_10_1002_cpe_7826 crossref_primary_10_1109_JIOT_2021_3056477 crossref_primary_10_1016_j_jnca_2024_103980 crossref_primary_10_1109_ACCESS_2025_3550392 crossref_primary_10_1007_s11831_022_09767_y crossref_primary_10_1145_3503920 crossref_primary_10_1109_TSG_2022_3230730 crossref_primary_10_32604_cmc_2021_018549 crossref_primary_10_1109_ACCESS_2020_2976745 crossref_primary_10_1109_ACCESS_2025_3547433 crossref_primary_10_1109_ACCESS_2021_3101188 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1109_JIOT_2022_3162135 crossref_primary_10_1109_TDSC_2024_3521592 crossref_primary_10_1007_s11416_022_00456_9 crossref_primary_10_1016_j_cose_2024_104130 crossref_primary_10_1016_j_comcom_2022_07_025 crossref_primary_10_1109_TNET_2024_3423780 crossref_primary_10_1007_s11277_021_08958_3 crossref_primary_10_1109_ACCESS_2020_3022842 crossref_primary_10_1016_j_jpdc_2022_10_002 crossref_primary_10_1145_3731596 crossref_primary_10_1109_ACCESS_2024_3390722 crossref_primary_10_3390_electronics13040782 crossref_primary_10_1016_j_seta_2023_103363 crossref_primary_10_3390_s21072569 crossref_primary_10_1007_s10791_025_09689_w crossref_primary_10_1016_j_cose_2023_103675 crossref_primary_10_7717_peerj_cs_983 crossref_primary_10_32604_cmc_2022_029283 crossref_primary_10_1109_JIOT_2022_3172393 crossref_primary_10_1007_s00521_024_09857_x crossref_primary_10_1016_j_jii_2023_100507 crossref_primary_10_1109_JIOT_2023_3284155 crossref_primary_10_1109_JIOT_2025_3576219 crossref_primary_10_3390_app15126452 crossref_primary_10_1016_j_pmcj_2022_101646 crossref_primary_10_1109_JIOT_2021_3057419 crossref_primary_10_3390_su13169092 |
| Cites_doi | 10.1109/SAI.2014.6918252 10.1109/ICSSA.2016.19 10.3390/fi10080076 10.1109/TSG.2017.2703842 10.6028/NIST.IR.7009 10.1109/iThings/CPSCom.2011.34 10.6028/NIST.SP.800-82r2 10.1109/ICMLA.2013.105 10.1109/THS.2008.4534498 10.1109/BigData.2017.8258164 10.1109/TEST.2016.7805855 10.1109/ICPES.2017.8387337 10.1109/JPROC.2010.2072970 10.1109/CCST.2014.6986996 10.1109/JIOT.2018.2822842 10.1109/EI2.2017.8245509 10.1007/978-3-662-45355-1_5 10.1109/ETFA.2017.8247662 10.1109/GreenCom.2012.127 10.1109/LES.2018.2823906 10.1109/ISI.2016.7745438 10.1109/ISI.2018.8587389 10.1109/CPRE.2016.7914914 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2019.2912022 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 6834 |
| ExternalDocumentID | 10_1109_JIOT_2019_2912022 8693904 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: São Paulo Research Foundation (FAPESP) grantid: 2017/01055-4 – fundername: Qatar National Research Fund grantid: NPRP 10-901-2-370 funderid: 10.13039/100008982 – fundername: Instituto Federal de Educação, Ciência e Tecnologia de São Paulo |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-a2520a56dda1aa5c9b92e8d1c6500e509d9868d1b4d95e5393c42eb8f610e5963 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 270 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478957600088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Tue Sep 23 17:40:51 EDT 2025 Sat Nov 29 06:16:47 EST 2025 Tue Nov 18 22:23:28 EST 2025 Wed Aug 27 02:54:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-a2520a56dda1aa5c9b92e8d1c6500e509d9868d1b4d95e5393c42eb8f610e5963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1466-3596 0000-0003-1428-7770 0000-0002-0524-654X 0000-0002-8848-0760 0000-0002-7023-0368 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8693904 |
| PQID | 2268432049 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2268432049 crossref_primary_10_1109_JIOT_2019_2912022 ieee_primary_8693904 crossref_citationtrail_10_1109_JIOT_2019_2912022 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | skripcak (ref27) 2013 ref12 ref15 ref14 ref30 erickson (ref34) 2011 ref11 (ref7) 2019 ref32 ref10 molnar (ref39) 2018 ref17 clarke (ref2) 2004 ref16 ref19 ref18 (ref41) 2019 teixeira (ref31) 0 (ref36) 2019 ref24 ref23 ref26 (ref35) 2019 ref20 yasakethu (ref25) 2013 ref22 fisher (ref38) 2018 ref21 (ref33) 2019 ref28 ref29 (ref3) 2019 ref9 (ref40) 2019 ref4 dunhaupt (ref13) 2012 ref6 (ref37) 2019 ref5 jayasamraj (ref1) 2013 (ref8) 2019 |
| References_xml | – ident: ref28 doi: 10.1109/SAI.2014.6918252 – ident: ref24 doi: 10.1109/ICSSA.2016.19 – year: 2019 ident: ref37 publication-title: Wireshark – ident: ref32 doi: 10.3390/fi10080076 – ident: ref21 doi: 10.1109/TSG.2017.2703842 – year: 2012 ident: ref13 publication-title: Vulnerabilities of Industrial Automation Systems – ident: ref5 doi: 10.6028/NIST.IR.7009 – year: 2019 ident: ref40 publication-title: Keras – ident: ref10 doi: 10.1109/iThings/CPSCom.2011.34 – year: 2018 ident: ref38 article-title: Model class reliance: Variable importance measures for any machine learning model class, from the 'Rashomon' perspective publication-title: arXiv 1801 01489 – ident: ref9 doi: 10.6028/NIST.SP.800-82r2 – year: 2011 ident: ref34 publication-title: Programmable Logic Controllers An Emphasis on Design and Application – year: 2019 ident: ref36 publication-title: Argus – year: 2004 ident: ref2 publication-title: Practical Modern SCADA Protocols DNP3 60870 5 and Related Systems – ident: ref18 doi: 10.1109/ICMLA.2013.105 – ident: ref15 doi: 10.1109/THS.2008.4534498 – start-page: 101 year: 2013 ident: ref25 article-title: Intrusion detection via machine learning for SCADA system protection publication-title: Proc of the 1st Int Symp for ICS & SCADA Cyber Security Research ICS-CSR – ident: ref19 doi: 10.1109/BigData.2017.8258164 – year: 2019 ident: ref3 publication-title: MQtt – year: 2019 ident: ref7 publication-title: IEEE Standards Association – ident: ref23 doi: 10.1109/TEST.2016.7805855 – year: 2018 ident: ref39 publication-title: Interpretable Machine Learning A Guide for Making Black Box Models Explainable – ident: ref17 doi: 10.1109/ICPES.2017.8387337 – year: 2019 ident: ref41 publication-title: Scikit-Learn – ident: ref26 doi: 10.1109/JPROC.2010.2072970 – ident: ref4 doi: 10.1109/CCST.2014.6986996 – ident: ref12 doi: 10.1109/JIOT.2018.2822842 – year: 2013 ident: ref1 publication-title: SCADA Communication & Protocols – year: 2019 ident: ref33 publication-title: Schneider PLC M241CE40 – year: 0 ident: ref31 article-title: An intrusion detection system based on deep learning algorithm for industrial control systems publication-title: EURASIP J Inf Security – ident: ref6 doi: 10.1109/EI2.2017.8245509 – ident: ref14 doi: 10.1007/978-3-662-45355-1_5 – start-page: 477 year: 2013 ident: ref27 article-title: Utilisation of on-line machine learning for SCADA system alarms forecasting publication-title: Proceedings Conf Info Sci – year: 2019 ident: ref35 publication-title: KALI Linux – ident: ref22 doi: 10.1109/ETFA.2017.8247662 – ident: ref29 doi: 10.1109/GreenCom.2012.127 – ident: ref20 doi: 10.1109/LES.2018.2823906 – ident: ref11 doi: 10.1109/ISI.2016.7745438 – ident: ref30 doi: 10.1109/ISI.2018.8587389 – ident: ref16 doi: 10.1109/CPRE.2016.7914914 – year: 2019 ident: ref8 publication-title: HiveMQ |
| SSID | ssj0001105196 |
| Score | 2.6197674 |
| Snippet | It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6822 |
| SubjectTerms | Analytics Anomalies Artificial intelligence Cyber attack Cybersecurity Electromagnetic interference Industrial applications Industrial Internet of Things Industrial Internet of Things (IIoT) Internet of Things intrusion detection Intrusion detection systems Literature reviews Machine learning machine learning (ML) network security Protocol (computers) Query languages Structured Query Language-SQL supervisory control and data acquisition (SCADA) Vulnerability vulnerability assessment |
| Title | Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things |
| URI | https://ieeexplore.ieee.org/document/8693904 https://www.proquest.com/docview/2268432049 |
| Volume | 6 |
| WOSCitedRecordID | wos000478957600088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED624YMvTp3idEoefBK7temv5FHFoYLThzn2VprkJsLYZOsE_3uTJt0QRfCtLUkp9-V6d8ndfQDnOQ1CVGHkJTnXAYq2ER4TQeRxbYoVzSMp0JJNpIMBG4_5cw0u17UwiFgmn2HXXJZn-WouV2arrMcSrkP0qA71NE1srdZmPyUwzkjiDi4Dn_ce7p-GJneLdykPdIxPv5mekkvlxw-4tCr95v--Zxd2nPdIrizce1DD2T40K2YG4hS1BaPHMkcSiWuf-upda2ulyMAmfZPRamq6TZeJsZ-kakxC5hOyofIgdrMQC_PY0nsewEv_dnhz5zkGBU_quLDwchpTP48TpfIgz2PJBafIVCC1X-aj9hUUZ4m-F5HiMcYhD2VEUbCJdqow1rp5CI3ZfIZHQLQIBUtShUoDmkRMKG4KopUQYRjo5dgGvxJuJl17ccNyMc3KMMPnmcEjM3hkDo82XKynvNveGn8NbhkA1gOd7NvQqRDMnPYtM2pa2IRUBz_Hv886gW3zbpvI14FGsVjhKWzJj-JtuTgrF9YXG9nL_g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4gmuiLqGhEUfvgk3Gwdd1YH9VIQGH6gIS3ZV0PY0LAwDDx39tuHcRoTHzbljZb7uvt7tq7-wAuY-q4KF1m-TFXAYqyEVYgHGZxZYoljVkiMCebaIVhMBrx5xJcr2phEDFLPsOGvszO8uUsWeqtsmbgcxWisw3Y9Bijdl6ttd5RcbQ74pujS8fmzYfu00Bnb_EG5Y6K8uk345Oxqfz4BWd2pV353xftwa7xH8lNDvg-lHB6AJWCm4EYVa3CsJ9lSSIxDVRfrVtlryQJ87RvMlxOdL_pLDX2kxStSchsTNZkHiTfLsRUP84JPg_hpX0_uOtYhkPBSlRkmFox9agde76UsRPHXsIFpxhIJ1GemY3KW5A88NW9YJJ76LncTRhFEYyVW4We0s4jKE9nUzwGokQoAr8lUSpIfRYIyXVJtBTCdR21IGtgF8KNEtNgXPNcTKIs0LB5pPGINB6RwaMGV6sp73l3jb8GVzUAq4FG9jWoFwhGRv8WEdVNbFyqwp-T32ddwHZn0O9FvW74eAo7-j15Wl8dyul8iWewlXykb4v5ebbIvgDfws9F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Network+Vulnerability+Analysis+of+Industrial+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zolanvari%2C+Maede&rft.au=Teixeira%2C+Marcio+A&rft.au=Gupta%2C+Lav&rft.au=Khan%2C+Khaled+M&rft.date=2019-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=6&rft.issue=4&rft.spage=6822&rft_id=info:doi/10.1109%2FJIOT.2019.2912022&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |