Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things

It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 6; číslo 4; s. 6822 - 6834
Hlavní autoři: Zolanvari, Maede, Teixeira, Marcio A., Gupta, Lav, Khan, Khaled M., Jain, Raj
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.
AbstractList It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.
Author Zolanvari, Maede
Khan, Khaled M.
Jain, Raj
Teixeira, Marcio A.
Gupta, Lav
Author_xml – sequence: 1
  givenname: Maede
  orcidid: 0000-0003-1428-7770
  surname: Zolanvari
  fullname: Zolanvari, Maede
  email: maede.zolanvari@wustl.edu
  organization: Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
– sequence: 2
  givenname: Marcio A.
  orcidid: 0000-0003-1466-3596
  surname: Teixeira
  fullname: Teixeira, Marcio A.
  organization: Federal Institute of Education, Science and Technology of São Paulo, São Paulo, Brazil
– sequence: 3
  givenname: Lav
  orcidid: 0000-0002-0524-654X
  surname: Gupta
  fullname: Gupta, Lav
  organization: Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
– sequence: 4
  givenname: Khaled M.
  orcidid: 0000-0002-8848-0760
  surname: Khan
  fullname: Khan, Khaled M.
  organization: Department of Computer Science and Engineering, Qatar University, Doha, Qatar
– sequence: 5
  givenname: Raj
  orcidid: 0000-0002-7023-0368
  surname: Jain
  fullname: Jain, Raj
  organization: Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
BookMark eNp9kF1PwjAUhhuDiYj8AOPNEq-H7dlW1kskfmBQbpDbptsOWJwdtl0M_94uEGO88Op8Pu85ec9JzzQGCblkdMQYFTdPs8VyBJSJEQgGFOCE9CGBcZxyDr1f-RkZOrellAYsY4L3yepZlW_aYDRHZY02m_hWOayiF_RfjX2PVm1t0KpC19rvo4lR9d5pFzXraGaq1nmrVR1Sj9ag79rLoLZxF-R0rWqHw2MckNf7u-X0MZ4vHmbTyTwuUwo-VpABVRmvKsWUykpRCMC8YiXPKMWMikrkPNRFWokMs0QkZQpY5GvOwljwZECuD7o723y26LzcNq0NXzoJwPM0AZqKsMUOW6VtnLO4ljurP5TdS0Zl56DsHJSdg_LoYGDGf5hSe-V1Y7xVuv6XvDqQGhF_LuVcJIKmyTeyxn-U
CODEN IITJAU
CitedBy_id crossref_primary_10_1007_s00170_022_10329_6
crossref_primary_10_1109_COMST_2020_3011208
crossref_primary_10_1109_TVT_2021_3133907
crossref_primary_10_1007_s12652_022_04475_8
crossref_primary_10_1016_j_future_2023_09_035
crossref_primary_10_1016_j_jpdc_2024_104934
crossref_primary_10_1145_3764586
crossref_primary_10_1016_j_comnet_2025_111177
crossref_primary_10_1007_s42979_025_03765_0
crossref_primary_10_7717_peerj_cs_475
crossref_primary_10_1016_j_iot_2024_101187
crossref_primary_10_1109_JIOT_2025_3586721
crossref_primary_10_1016_j_epsr_2023_109741
crossref_primary_10_1155_2022_7182989
crossref_primary_10_1007_s10207_024_00916_x
crossref_primary_10_1016_j_cose_2023_103210
crossref_primary_10_1145_3744745
crossref_primary_10_1051_itmconf_20235606003
crossref_primary_10_1109_OJCOMS_2025_3569291
crossref_primary_10_1109_JIOT_2021_3130156
crossref_primary_10_1016_j_compeleceng_2022_108374
crossref_primary_10_1109_COMST_2021_3094360
crossref_primary_10_1016_j_rcim_2022_102418
crossref_primary_10_1109_ACCESS_2021_3057766
crossref_primary_10_32604_cmc_2023_033513
crossref_primary_10_1109_ACCESS_2023_3346187
crossref_primary_10_1038_s41598_025_98110_z
crossref_primary_10_1155_2023_3939895
crossref_primary_10_1109_TIFS_2023_3338965
crossref_primary_10_1080_17517575_2022_2142854
crossref_primary_10_1371_journal_pone_0299666
crossref_primary_10_1016_j_comcom_2023_06_020
crossref_primary_10_1007_s10115_024_02273_6
crossref_primary_10_1016_j_jpdc_2022_01_015
crossref_primary_10_1016_j_cosrev_2023_100551
crossref_primary_10_3390_fi15060210
crossref_primary_10_1109_ACCESS_2021_3072916
crossref_primary_10_3390_computers10070088
crossref_primary_10_1002_ett_70224
crossref_primary_10_1016_j_adhoc_2023_103384
crossref_primary_10_1016_j_iot_2024_101092
crossref_primary_10_1145_3610401
crossref_primary_10_1016_j_cose_2019_101677
crossref_primary_10_1109_ACCESS_2020_3004711
crossref_primary_10_1109_JIOT_2019_2959035
crossref_primary_10_1016_j_rcim_2022_102439
crossref_primary_10_1109_ACCESS_2024_3498603
crossref_primary_10_3390_electronics13214153
crossref_primary_10_1109_ACCESS_2023_3320928
crossref_primary_10_1109_JIOT_2020_2996664
crossref_primary_10_1007_s00521_024_09439_x
crossref_primary_10_1109_TII_2023_3333438
crossref_primary_10_3390_sym13061011
crossref_primary_10_1007_s40032_025_01164_1
crossref_primary_10_1016_j_comnet_2022_109048
crossref_primary_10_1109_ACCESS_2020_2989770
crossref_primary_10_3390_s23083931
crossref_primary_10_1109_COMST_2023_3288942
crossref_primary_10_1145_3597210
crossref_primary_10_1109_ACCESS_2022_3152577
crossref_primary_10_3390_electronics14132512
crossref_primary_10_1007_s00170_024_13874_4
crossref_primary_10_1155_2022_8568917
crossref_primary_10_1007_s12008_023_01235_6
crossref_primary_10_3390_network1020007
crossref_primary_10_1007_s11277_023_10521_1
crossref_primary_10_1109_ACCESS_2022_3220622
crossref_primary_10_3390_app9245364
crossref_primary_10_1109_TIFS_2021_3065504
crossref_primary_10_1016_j_iot_2023_100699
crossref_primary_10_1109_ACCESS_2023_3289076
crossref_primary_10_32604_cmc_2022_027483
crossref_primary_10_1007_s42835_021_00931_1
crossref_primary_10_1016_j_egyr_2021_09_112
crossref_primary_10_1155_int_2539516
crossref_primary_10_1016_j_adhoc_2023_103320
crossref_primary_10_3390_s20195480
crossref_primary_10_1109_JIOT_2024_3447876
crossref_primary_10_1007_s11235_024_01200_y
crossref_primary_10_1016_j_iot_2023_100689
crossref_primary_10_1016_j_procs_2025_04_623
crossref_primary_10_1016_j_iot_2021_100441
crossref_primary_10_1109_ACCESS_2020_3003808
crossref_primary_10_3390_app12094641
crossref_primary_10_1016_j_iot_2020_100227
crossref_primary_10_1038_s41598_024_74350_3
crossref_primary_10_1109_ACCESS_2020_2992249
crossref_primary_10_1016_j_vehcom_2020_100302
crossref_primary_10_1016_j_cose_2023_103283
crossref_primary_10_1016_j_jnca_2025_104286
crossref_primary_10_1109_ACCESS_2025_3558985
crossref_primary_10_1016_j_comcom_2022_11_009
crossref_primary_10_1016_j_cose_2024_104097
crossref_primary_10_3390_en18133519
crossref_primary_10_1016_j_engappai_2023_107515
crossref_primary_10_1109_OJCOMS_2025_3563270
crossref_primary_10_3390_s25072249
crossref_primary_10_1007_s40998_022_00493_6
crossref_primary_10_1109_TII_2022_3173996
crossref_primary_10_1016_j_comcom_2020_12_013
crossref_primary_10_3390_electronics12204289
crossref_primary_10_1007_s12243_022_00926_7
crossref_primary_10_1109_ACCESS_2019_2920699
crossref_primary_10_1109_ACCESS_2021_3071766
crossref_primary_10_1109_JIOT_2022_3185173
crossref_primary_10_1111_exsy_12556
crossref_primary_10_3390_s20123590
crossref_primary_10_1109_TNSE_2022_3191601
crossref_primary_10_1016_j_neunet_2025_108002
crossref_primary_10_1109_TNSE_2025_3544251
crossref_primary_10_1109_ACCESS_2024_3432454
crossref_primary_10_1002_cpe_6894
crossref_primary_10_1007_s12243_023_00953_y
crossref_primary_10_1109_ACCESS_2024_3357519
crossref_primary_10_1016_j_tsep_2024_102929
crossref_primary_10_1016_j_compeleceng_2021_107610
crossref_primary_10_2478_jaiscr_2023_0017
crossref_primary_10_3390_s23198153
crossref_primary_10_1007_s11831_023_09943_8
crossref_primary_10_1109_ACCESS_2020_3022862
crossref_primary_10_1049_ise2_8381148
crossref_primary_10_1109_ACCESS_2025_3557959
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_32604_cmc_2023_045794
crossref_primary_10_1016_j_comnet_2024_110641
crossref_primary_10_3390_electronics13224440
crossref_primary_10_1016_j_asoc_2020_106188
crossref_primary_10_3390_app15063121
crossref_primary_10_1109_TVT_2021_3071983
crossref_primary_10_1109_ACCESS_2020_2991403
crossref_primary_10_1109_JIOT_2021_3122019
crossref_primary_10_1016_j_jnca_2023_103637
crossref_primary_10_1109_ACCESS_2022_3179047
crossref_primary_10_3390_s23177470
crossref_primary_10_1016_j_comnet_2023_110015
crossref_primary_10_1109_TNSM_2024_3385385
crossref_primary_10_3390_app13042479
crossref_primary_10_3390_info12040154
crossref_primary_10_3390_s20226578
crossref_primary_10_1109_ACCESS_2024_3449642
crossref_primary_10_1016_j_adhoc_2025_103991
crossref_primary_10_1109_JIOT_2021_3067667
crossref_primary_10_1007_s00521_025_11418_9
crossref_primary_10_1109_TCE_2023_3347170
crossref_primary_10_1109_JIOT_2020_3022572
crossref_primary_10_3390_electronics13163318
crossref_primary_10_1007_s42979_021_00516_9
crossref_primary_10_1145_3548691
crossref_primary_10_3390_app13031252
crossref_primary_10_1016_j_iswa_2023_200298
crossref_primary_10_3390_app15052316
crossref_primary_10_1109_ACCESS_2020_3040740
crossref_primary_10_1007_s10207_024_00935_8
crossref_primary_10_3390_app10020724
crossref_primary_10_1007_s11277_023_10693_w
crossref_primary_10_1016_j_compeleceng_2024_109725
crossref_primary_10_1109_ACCESS_2020_3002932
crossref_primary_10_1016_j_iot_2024_101377
crossref_primary_10_1016_j_compeleceng_2023_108732
crossref_primary_10_2478_amns_2024_2332
crossref_primary_10_1002_nem_2296
crossref_primary_10_1109_ACCESS_2024_3367357
crossref_primary_10_1016_j_iot_2024_101252
crossref_primary_10_1109_ACCESS_2023_3292181
crossref_primary_10_1109_ACCESS_2024_3473289
crossref_primary_10_1007_s40031_021_00563_z
crossref_primary_10_3390_su15108076
crossref_primary_10_1049_cps2_12016
crossref_primary_10_1109_JIOT_2024_3501017
crossref_primary_10_1016_j_procs_2024_11_089
crossref_primary_10_1109_ACCESS_2021_3075385
crossref_primary_10_1016_j_teler_2022_100009
crossref_primary_10_1109_ACCESS_2022_3165809
crossref_primary_10_1109_ACCESS_2025_3554083
crossref_primary_10_1155_2022_2153770
crossref_primary_10_1007_s10115_024_02126_2
crossref_primary_10_1016_j_jisa_2020_102500
crossref_primary_10_1016_j_vehcom_2022_100521
crossref_primary_10_1145_3389250
crossref_primary_10_1002_cta_2797
crossref_primary_10_1002_cpe_7826
crossref_primary_10_1109_JIOT_2021_3056477
crossref_primary_10_1016_j_jnca_2024_103980
crossref_primary_10_1109_ACCESS_2025_3550392
crossref_primary_10_1007_s11831_022_09767_y
crossref_primary_10_1145_3503920
crossref_primary_10_1109_TSG_2022_3230730
crossref_primary_10_32604_cmc_2021_018549
crossref_primary_10_1109_ACCESS_2020_2976745
crossref_primary_10_1109_ACCESS_2025_3547433
crossref_primary_10_1109_ACCESS_2021_3101188
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_JIOT_2022_3162135
crossref_primary_10_1109_TDSC_2024_3521592
crossref_primary_10_1007_s11416_022_00456_9
crossref_primary_10_1016_j_cose_2024_104130
crossref_primary_10_1016_j_comcom_2022_07_025
crossref_primary_10_1109_TNET_2024_3423780
crossref_primary_10_1007_s11277_021_08958_3
crossref_primary_10_1109_ACCESS_2020_3022842
crossref_primary_10_1016_j_jpdc_2022_10_002
crossref_primary_10_1145_3731596
crossref_primary_10_1109_ACCESS_2024_3390722
crossref_primary_10_3390_electronics13040782
crossref_primary_10_1016_j_seta_2023_103363
crossref_primary_10_3390_s21072569
crossref_primary_10_1007_s10791_025_09689_w
crossref_primary_10_1016_j_cose_2023_103675
crossref_primary_10_7717_peerj_cs_983
crossref_primary_10_32604_cmc_2022_029283
crossref_primary_10_1109_JIOT_2022_3172393
crossref_primary_10_1007_s00521_024_09857_x
crossref_primary_10_1016_j_jii_2023_100507
crossref_primary_10_1109_JIOT_2023_3284155
crossref_primary_10_1109_JIOT_2025_3576219
crossref_primary_10_3390_app15126452
crossref_primary_10_1016_j_pmcj_2022_101646
crossref_primary_10_1109_JIOT_2021_3057419
crossref_primary_10_3390_su13169092
Cites_doi 10.1109/SAI.2014.6918252
10.1109/ICSSA.2016.19
10.3390/fi10080076
10.1109/TSG.2017.2703842
10.6028/NIST.IR.7009
10.1109/iThings/CPSCom.2011.34
10.6028/NIST.SP.800-82r2
10.1109/ICMLA.2013.105
10.1109/THS.2008.4534498
10.1109/BigData.2017.8258164
10.1109/TEST.2016.7805855
10.1109/ICPES.2017.8387337
10.1109/JPROC.2010.2072970
10.1109/CCST.2014.6986996
10.1109/JIOT.2018.2822842
10.1109/EI2.2017.8245509
10.1007/978-3-662-45355-1_5
10.1109/ETFA.2017.8247662
10.1109/GreenCom.2012.127
10.1109/LES.2018.2823906
10.1109/ISI.2016.7745438
10.1109/ISI.2018.8587389
10.1109/CPRE.2016.7914914
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2019.2912022
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 6834
ExternalDocumentID 10_1109_JIOT_2019_2912022
8693904
Genre orig-research
GrantInformation_xml – fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2017/01055-4
– fundername: Qatar National Research Fund
  grantid: NPRP 10-901-2-370
  funderid: 10.13039/100008982
– fundername: Instituto Federal de Educação, Ciência e Tecnologia de São Paulo
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-a2520a56dda1aa5c9b92e8d1c6500e509d9868d1b4d95e5393c42eb8f610e5963
IEDL.DBID RIE
ISICitedReferencesCount 270
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478957600088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Tue Sep 23 17:40:51 EDT 2025
Sat Nov 29 06:16:47 EST 2025
Tue Nov 18 22:23:28 EST 2025
Wed Aug 27 02:54:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a2520a56dda1aa5c9b92e8d1c6500e509d9868d1b4d95e5393c42eb8f610e5963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1466-3596
0000-0003-1428-7770
0000-0002-0524-654X
0000-0002-8848-0760
0000-0002-7023-0368
OpenAccessLink https://ieeexplore.ieee.org/document/8693904
PQID 2268432049
PQPubID 2040421
PageCount 13
ParticipantIDs proquest_journals_2268432049
crossref_primary_10_1109_JIOT_2019_2912022
ieee_primary_8693904
crossref_citationtrail_10_1109_JIOT_2019_2912022
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References skripcak (ref27) 2013
ref12
ref15
ref14
ref30
erickson (ref34) 2011
ref11
(ref7) 2019
ref32
ref10
molnar (ref39) 2018
ref17
clarke (ref2) 2004
ref16
ref19
ref18
(ref41) 2019
teixeira (ref31) 0
(ref36) 2019
ref24
ref23
ref26
(ref35) 2019
ref20
yasakethu (ref25) 2013
ref22
fisher (ref38) 2018
ref21
(ref33) 2019
ref28
ref29
(ref3) 2019
ref9
(ref40) 2019
ref4
dunhaupt (ref13) 2012
ref6
(ref37) 2019
ref5
jayasamraj (ref1) 2013
(ref8) 2019
References_xml – ident: ref28
  doi: 10.1109/SAI.2014.6918252
– ident: ref24
  doi: 10.1109/ICSSA.2016.19
– year: 2019
  ident: ref37
  publication-title: Wireshark
– ident: ref32
  doi: 10.3390/fi10080076
– ident: ref21
  doi: 10.1109/TSG.2017.2703842
– year: 2012
  ident: ref13
  publication-title: Vulnerabilities of Industrial Automation Systems
– ident: ref5
  doi: 10.6028/NIST.IR.7009
– year: 2019
  ident: ref40
  publication-title: Keras
– ident: ref10
  doi: 10.1109/iThings/CPSCom.2011.34
– year: 2018
  ident: ref38
  article-title: Model class reliance: Variable importance measures for any machine learning model class, from the 'Rashomon' perspective
  publication-title: arXiv 1801 01489
– ident: ref9
  doi: 10.6028/NIST.SP.800-82r2
– year: 2011
  ident: ref34
  publication-title: Programmable Logic Controllers An Emphasis on Design and Application
– year: 2019
  ident: ref36
  publication-title: Argus
– year: 2004
  ident: ref2
  publication-title: Practical Modern SCADA Protocols DNP3 60870 5 and Related Systems
– ident: ref18
  doi: 10.1109/ICMLA.2013.105
– ident: ref15
  doi: 10.1109/THS.2008.4534498
– start-page: 101
  year: 2013
  ident: ref25
  article-title: Intrusion detection via machine learning for SCADA system protection
  publication-title: Proc of the 1st Int Symp for ICS & SCADA Cyber Security Research ICS-CSR
– ident: ref19
  doi: 10.1109/BigData.2017.8258164
– year: 2019
  ident: ref3
  publication-title: MQtt
– year: 2019
  ident: ref7
  publication-title: IEEE Standards Association
– ident: ref23
  doi: 10.1109/TEST.2016.7805855
– year: 2018
  ident: ref39
  publication-title: Interpretable Machine Learning A Guide for Making Black Box Models Explainable
– ident: ref17
  doi: 10.1109/ICPES.2017.8387337
– year: 2019
  ident: ref41
  publication-title: Scikit-Learn
– ident: ref26
  doi: 10.1109/JPROC.2010.2072970
– ident: ref4
  doi: 10.1109/CCST.2014.6986996
– ident: ref12
  doi: 10.1109/JIOT.2018.2822842
– year: 2013
  ident: ref1
  publication-title: SCADA Communication & Protocols
– year: 2019
  ident: ref33
  publication-title: Schneider PLC M241CE40
– year: 0
  ident: ref31
  article-title: An intrusion detection system based on deep learning algorithm for industrial control systems
  publication-title: EURASIP J Inf Security
– ident: ref6
  doi: 10.1109/EI2.2017.8245509
– ident: ref14
  doi: 10.1007/978-3-662-45355-1_5
– start-page: 477
  year: 2013
  ident: ref27
  article-title: Utilisation of on-line machine learning for SCADA system alarms forecasting
  publication-title: Proceedings Conf Info Sci
– year: 2019
  ident: ref35
  publication-title: KALI Linux
– ident: ref22
  doi: 10.1109/ETFA.2017.8247662
– ident: ref29
  doi: 10.1109/GreenCom.2012.127
– ident: ref20
  doi: 10.1109/LES.2018.2823906
– ident: ref11
  doi: 10.1109/ISI.2016.7745438
– ident: ref30
  doi: 10.1109/ISI.2018.8587389
– ident: ref16
  doi: 10.1109/CPRE.2016.7914914
– year: 2019
  ident: ref8
  publication-title: HiveMQ
SSID ssj0001105196
Score 2.6197674
Snippet It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6822
SubjectTerms Analytics
Anomalies
Artificial intelligence
Cyber attack
Cybersecurity
Electromagnetic interference
Industrial applications
Industrial Internet of Things
Industrial Internet of Things (IIoT)
Internet of Things
intrusion detection
Intrusion detection systems
Literature reviews
Machine learning
machine learning (ML)
network security
Protocol (computers)
Query languages
Structured Query Language-SQL
supervisory control and data acquisition (SCADA)
Vulnerability
vulnerability assessment
Title Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things
URI https://ieeexplore.ieee.org/document/8693904
https://www.proquest.com/docview/2268432049
Volume 6
WOSCitedRecordID wos000478957600088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED624YMvTp3idEoefBK7temv5FHFoYLThzn2VprkJsLYZOsE_3uTJt0QRfCtLUkp9-V6d8ndfQDnOQ1CVGHkJTnXAYq2ER4TQeRxbYoVzSMp0JJNpIMBG4_5cw0u17UwiFgmn2HXXJZn-WouV2arrMcSrkP0qA71NE1srdZmPyUwzkjiDi4Dn_ce7p-GJneLdykPdIxPv5mekkvlxw-4tCr95v--Zxd2nPdIrizce1DD2T40K2YG4hS1BaPHMkcSiWuf-upda2ulyMAmfZPRamq6TZeJsZ-kakxC5hOyofIgdrMQC_PY0nsewEv_dnhz5zkGBU_quLDwchpTP48TpfIgz2PJBafIVCC1X-aj9hUUZ4m-F5HiMcYhD2VEUbCJdqow1rp5CI3ZfIZHQLQIBUtShUoDmkRMKG4KopUQYRjo5dgGvxJuJl17ccNyMc3KMMPnmcEjM3hkDo82XKynvNveGn8NbhkA1gOd7NvQqRDMnPYtM2pa2IRUBz_Hv886gW3zbpvI14FGsVjhKWzJj-JtuTgrF9YXG9nL_g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4gmuiLqGhEUfvgk3Gwdd1YH9VIQGH6gIS3ZV0PY0LAwDDx39tuHcRoTHzbljZb7uvt7tq7-wAuY-q4KF1m-TFXAYqyEVYgHGZxZYoljVkiMCebaIVhMBrx5xJcr2phEDFLPsOGvszO8uUsWeqtsmbgcxWisw3Y9Bijdl6ttd5RcbQ74pujS8fmzYfu00Bnb_EG5Y6K8uk345Oxqfz4BWd2pV353xftwa7xH8lNDvg-lHB6AJWCm4EYVa3CsJ9lSSIxDVRfrVtlryQJ87RvMlxOdL_pLDX2kxStSchsTNZkHiTfLsRUP84JPg_hpX0_uOtYhkPBSlRkmFox9agde76UsRPHXsIFpxhIJ1GemY3KW5A88NW9YJJ76LncTRhFEYyVW4We0s4jKE9nUzwGokQoAr8lUSpIfRYIyXVJtBTCdR21IGtgF8KNEtNgXPNcTKIs0LB5pPGINB6RwaMGV6sp73l3jb8GVzUAq4FG9jWoFwhGRv8WEdVNbFyqwp-T32ddwHZn0O9FvW74eAo7-j15Wl8dyul8iWewlXykb4v5ebbIvgDfws9F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Network+Vulnerability+Analysis+of+Industrial+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zolanvari%2C+Maede&rft.au=Teixeira%2C+Marcio+A&rft.au=Gupta%2C+Lav&rft.au=Khan%2C+Khaled+M&rft.date=2019-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=6&rft.issue=4&rft.spage=6822&rft_id=info:doi/10.1109%2FJIOT.2019.2912022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon