Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic coll...
Uloženo v:
| Vydáno v: | Defence technology Ročník 47; s. 197 - 215 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2025
KeAi Communications Co., Ltd |
| Témata: | |
| ISSN: | 2214-9147, 2214-9147 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic collaborative path planning algorithm is introduced, designed to ensure complete coverage of designated areas. This algorithm meticulously optimizes the operation, entry, and transition paths for each UAV, while also establishing evaluation metrics to refine coverage sequences for each area. Additionally, a three-dimensional path is computed utilizing an altitude descent method, effectively integrating two-dimensional coverage paths with altitude constraints. The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios, including both single-area and multi-area coverage by multi-UAV. Results show that the coverage paths generated by this method significantly reduce both computation time and path length, providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
To address the optimization problem of complete coverage 3D path planning for multiple fixed-wing UAVs across multiple areas, this paper makes the following contributions:•Development of Models: Established models for UAV capabilities, terrain threats, complex areas, and mission optimization. The mission paths are categorized into three types based on the UAV field of view (FOV) status, forming a path optimization model.•Algorithmic Solutions: Utilized a greedy algorithm to solve the allocation problem between multi-UAV and multi-area. Introduced an improved dynamic programming algorithm to address the path optimization challenge when the UAV turn radius exceeds the FOV width. Employed an altitude descent algorithm to generate satisfactory 3D paths.•Validation and Adaptability: Validated the proposed methods through both digital and semiphysical simulations. The studies demonstrate that the methods effectively balance the trade-off between computation time and optimization, making them suitable for practical multi-UAV applications in dynamic scenarios.
These contributions ensure comprehensive path optimization, enhance the efficiency and effectiveness of multi-UAV operations, and support practical applications in complex and dynamic environments. |
|---|---|
| AbstractList | Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic collaborative path planning algorithm is introduced, designed to ensure complete coverage of designated areas. This algorithm meticulously optimizes the operation, entry, and transition paths for each UAV, while also establishing evaluation metrics to refine coverage sequences for each area. Additionally, a three-dimensional path is computed utilizing an altitude descent method, effectively integrating two-dimensional coverage paths with altitude constraints. The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios, including both single-area and multi-area coverage by multi-UAV. Results show that the coverage paths generated by this method significantly reduce both computation time and path length, providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic collaborative path planning algorithm is introduced, designed to ensure complete coverage of designated areas. This algorithm meticulously optimizes the operation, entry, and transition paths for each UAV, while also establishing evaluation metrics to refine coverage sequences for each area. Additionally, a three-dimensional path is computed utilizing an altitude descent method, effectively integrating two-dimensional coverage paths with altitude constraints. The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios, including both single-area and multi-area coverage by multi-UAV. Results show that the coverage paths generated by this method significantly reduce both computation time and path length, providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. To address the optimization problem of complete coverage 3D path planning for multiple fixed-wing UAVs across multiple areas, this paper makes the following contributions:•Development of Models: Established models for UAV capabilities, terrain threats, complex areas, and mission optimization. The mission paths are categorized into three types based on the UAV field of view (FOV) status, forming a path optimization model.•Algorithmic Solutions: Utilized a greedy algorithm to solve the allocation problem between multi-UAV and multi-area. Introduced an improved dynamic programming algorithm to address the path optimization challenge when the UAV turn radius exceeds the FOV width. Employed an altitude descent algorithm to generate satisfactory 3D paths.•Validation and Adaptability: Validated the proposed methods through both digital and semiphysical simulations. The studies demonstrate that the methods effectively balance the trade-off between computation time and optimization, making them suitable for practical multi-UAV applications in dynamic scenarios. These contributions ensure comprehensive path optimization, enhance the efficiency and effectiveness of multi-UAV operations, and support practical applications in complex and dynamic environments. |
| Author | Zhang, Zhaohua Zhang, Dong Li, Chaoyue Wang, Mengyang |
| Author_xml | – sequence: 1 givenname: Mengyang orcidid: 0009-0008-2114-1837 surname: Wang fullname: Wang, Mengyang – sequence: 2 givenname: Dong orcidid: 0000-0001-9523-3592 surname: Zhang fullname: Zhang, Dong email: zhangdong@nwpu.edu.cn – sequence: 3 givenname: Chaoyue surname: Li fullname: Li, Chaoyue – sequence: 4 givenname: Zhaohua surname: Zhang fullname: Zhang, Zhaohua |
| BookMark | eNp9kE1v1DAQhi1UJErpnWP-QMI4tmOHW1WgVCriQpE4WRN7vPUqG68cs5R_j5cFCSHBaT40z6vR85ydLWkhxl5y6Djw4dW286XroVcd8A7APGHnfc9lO3Kpz_7on7HLdd0CADd1p_Q5-_Lh61zifqYmxEfy7be4bJr7q89r49I845QylnigOh0o44Ya8abZY3lo9jMuy_F4R-Uh-SakXI92NemxwUy4vmBPA84rXf6qF-z-3dtP1-_bu483t9dXd62T0JcWYRR-UMEpbYJ2QU7KqymMHERAaSR3YnDGjdIPWjstBMmRI1cjOSX0COKC3Z5yfcKt3ee4w_zdJoz25yLljcVcopvJToMaJ2OkMWaQnsgAcoGe0A3gUFPNGk5ZLqd1zRSsi6UKSEvJGGfLwR592631xR59W-C2-q4g_AX-fuQ_yOsTQlXOIVK2q4u0OPIxkyv1-_hv-Af27Jk2 |
| CitedBy_id | crossref_primary_10_1016_j_dt_2025_08_008 crossref_primary_10_3390_drones9090658 crossref_primary_10_3390_sym17030367 crossref_primary_10_1016_j_dt_2025_09_004 |
| Cites_doi | 10.1016/j.oceaneng.2024.118623 10.1016/j.oceaneng.2022.111182 10.1109/ACCESS.2019.2912306 10.1016/j.ocecoaman.2023.106961 10.1016/j.eswa.2021.114937 10.1016/j.asoc.2024.112025 10.1109/7.303772 10.1109/TCYB.2014.2309898 10.1007/s11004-013-9508-8 10.2514/1.47711 10.1016/j.knosys.2020.105530 10.1016/j.ast.2020.105965 10.1631/FITEE.2000228 10.1109/LRA.2023.3293319 10.1016/j.oceaneng.2022.111101 10.1016/j.ast.2024.109146 10.3390/app9050827 10.1016/j.ejrs.2015.12.004 10.1016/j.phycom.2023.102073 10.1016/j.ejor.2005.08.015 10.1016/j.robot.2013.09.004 10.1016/j.isatra.2022.01.015 10.1016/j.eswa.2022.119243 10.1007/s10846-016-0348-x 10.3390/s18072132 10.1109/ACCESS.2023.3235207 10.1109/JSEN.2022.3168840 10.1016/j.biosystemseng.2021.12.018 10.1016/j.cja.2023.07.030 10.1007/s10462-024-10913-0 10.1016/j.cja.2020.05.011 10.1016/j.cie.2021.107612 10.1007/s12555-021-0666-z 10.3390/drones3010004 10.1109/TAES.2024.3351110 10.3390/drones7030196 |
| ContentType | Journal Article |
| Copyright | 2025 China Ordnance Society |
| Copyright_xml | – notice: 2025 China Ordnance Society |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.dt.2025.01.008 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 2214-9147 |
| EndPage | 215 |
| ExternalDocumentID | oai_doaj_org_article_b659b88488864dee80a13adeac60ca7e 10_1016_j_dt_2025_01_008 S2214914725000170 |
| GroupedDBID | -03 -0C -SC -S~ 0R~ 4.4 457 5VR 5VS 6I. 92H 92I 92M 9D9 9DC AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABJCF ABMAC ABUWG ACGFS ADBBV ADEZE ADVLN AEXQZ AFKRA AFTJW AFUIB AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ARCSS BCNDV BENPR BGLVJ CAJEC CCEZO CCPQU CEKLB CHBEP DWQXO EBS EJD FA0 FDB GROUPED_DOAJ HCIFZ IPNFZ IXB JUIAU KQ8 M1Q M41 M7S OK1 PHGZM PHGZT PIMPY PMFND PTHSS Q-- Q-2 R-C RIG ROL RT3 SSZ T8S TCJ TGT U1F U1G U5C U5M ~M4 AAYXX ACVFH ADCNI AEUPX AFFHD AFPUW AIGII AKBMS AKYEP CITATION PQGLB |
| ID | FETCH-LOGICAL-c402t-a093d65fc578f7cf4b5d5bf9103fa4841c36c8c94d677c733e491a159ec537903 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514935200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2214-9147 |
| IngestDate | Tue Oct 14 19:04:02 EDT 2025 Tue Nov 18 21:22:28 EST 2025 Sat Nov 29 07:57:13 EST 2025 Sat Jun 07 17:02:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dubins curves Multi-fixed-wing UAVs (multi-UAV) Improved dynamic programming algorithm (IDP) Dynamic complete coverage path planning (DCCPP) Minimum time cooperative coverage |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-a093d65fc578f7cf4b5d5bf9103fa4841c36c8c94d677c733e491a159ec537903 |
| ORCID | 0009-0008-2114-1837 0000-0001-9523-3592 |
| OpenAccessLink | https://doaj.org/article/b659b88488864dee80a13adeac60ca7e |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b659b88488864dee80a13adeac60ca7e crossref_citationtrail_10_1016_j_dt_2025_01_008 crossref_primary_10_1016_j_dt_2025_01_008 elsevier_sciencedirect_doi_10_1016_j_dt_2025_01_008 |
| PublicationCentury | 2000 |
| PublicationDate | May 2025 2025-05-00 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Defence technology |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Babaei, Mortazavi (bib44) 2010; 47 Wen, Shi, Wang (bib3) 2024; 310 Cho, Park, Lee (bib29) 2021; 161 Zhang, Xin, Dou (bib8) 2020; 21 Alotaibi, Alqefari, Koubaa (bib6) 2019; 7 Zhang, Zhou, Qin (bib1) 2023; 215 Qu, Gai, Zhang, Zhong (bib24) 2020; 194 Zhang, Wang, Wang (bib49) 2022; 5 Li, Lu, Yang (bib2) 2024; 248 Mayilvaganam, Shrivastava, Rajagopal (bib37) 2022; 252 Bähnemann, Lawrance, Chung (bib33) 2021 Mukhamediev, Yakunin, Aubakirov (bib36) 2023; 11 Li, Song, Bai (bib21) 2023; 7 Lu, Zeng, Tang (bib46) 2023; 8 Zhu (bib39) 1994; 30 Chávez (bib5) 2023; 53 Yu, Xu, Duan (bib14) 2023; 44 Galceran, Carreras (bib15) 2013; 61 Radmanesh, Kumar, French (bib10) 2020; 105 Cao, Cheng, Mu (bib32) 2022; 22 Di Franco, Buttazzo (bib43) 2016; 83 Tong, Jiang, Biyue (bib23) 2021; 34 Xue, Chen, Zhang (bib42) 2022; 43 Ouelmokhtar, Benmoussa, Benazzouz (bib30) 2022; 253 Seo, Kang (bib22) 2023; 21 Lin, Goodrich (bib17) 2014; 44 Liu, Li, Ji (bib18) 2022; 129 Shi, Wang, Tian (bib40) 2014; 46 Martinez-Alpiste, Golcarenarenji, Wang (bib4) 2021; 178 Modares, Ghanei, Mastronarde (bib27) 2017 Crevier, Cordeau, Laporte (bib12) 2007; 176 Cabreira, Brisolara, Paulo (bib9) 2019; 3 Liu, Lu, Zheng (bib16) 2021; 42 Sheng, Zhang, Yan (bib19) 2023; 36 Mohsan, Othman, Li (bib7) 2023; 16 Tang, Chen, Zhu (bib38) 2022; 59 Luo, Shao, Xu (bib26) 2019; 9 Wu, Xiao, Bi (bib48) 2020; 21 Kan, Jiang, Liu (bib25) 2020; 41 Coombes, Fletcher, Chen (bib11) 2018; 18 Wang, Wang, Wang (bib47) 2024; 149 Motamedi, Mortazavi, Sabzehparvar (bib28) 2024; 165 Patel, Katiyar, Prasad (bib41) 2016; 19 Bouman, Agatz, Schmidt (bib45) 2018; 72 Jiang, Xu, Zheng (bib35) 2024; 57 Chen, He, Qian (bib31) 2016; 37 Tang, Pan, Chen (bib20) 2024; 60 Kumar, Kumar (bib13) 2023; 59 Li, Xu, Xue (bib34) 2022; 214 Seo (10.1016/j.dt.2025.01.008_bib22) 2023; 21 Tang (10.1016/j.dt.2025.01.008_bib20) 2024; 60 Radmanesh (10.1016/j.dt.2025.01.008_bib10) 2020; 105 Coombes (10.1016/j.dt.2025.01.008_bib11) 2018; 18 Bähnemann (10.1016/j.dt.2025.01.008_bib33) 2021 Di Franco (10.1016/j.dt.2025.01.008_bib43) 2016; 83 Babaei (10.1016/j.dt.2025.01.008_bib44) 2010; 47 Jiang (10.1016/j.dt.2025.01.008_bib35) 2024; 57 Zhang (10.1016/j.dt.2025.01.008_bib49) 2022; 5 Cao (10.1016/j.dt.2025.01.008_bib32) 2022; 22 Tong (10.1016/j.dt.2025.01.008_bib23) 2021; 34 Kumar (10.1016/j.dt.2025.01.008_bib13) 2023; 59 Lin (10.1016/j.dt.2025.01.008_bib17) 2014; 44 Liu (10.1016/j.dt.2025.01.008_bib18) 2022; 129 Alotaibi (10.1016/j.dt.2025.01.008_bib6) 2019; 7 Cho (10.1016/j.dt.2025.01.008_bib29) 2021; 161 Mayilvaganam (10.1016/j.dt.2025.01.008_bib37) 2022; 252 Cabreira (10.1016/j.dt.2025.01.008_bib9) 2019; 3 Crevier (10.1016/j.dt.2025.01.008_bib12) 2007; 176 Ouelmokhtar (10.1016/j.dt.2025.01.008_bib30) 2022; 253 Sheng (10.1016/j.dt.2025.01.008_bib19) 2023; 36 Wu (10.1016/j.dt.2025.01.008_bib48) 2020; 21 Qu (10.1016/j.dt.2025.01.008_bib24) 2020; 194 Li (10.1016/j.dt.2025.01.008_bib34) 2022; 214 Yu (10.1016/j.dt.2025.01.008_bib14) 2023; 44 Martinez-Alpiste (10.1016/j.dt.2025.01.008_bib4) 2021; 178 Shi (10.1016/j.dt.2025.01.008_bib40) 2014; 46 Zhang (10.1016/j.dt.2025.01.008_bib1) 2023; 215 Chávez (10.1016/j.dt.2025.01.008_bib5) 2023; 53 Galceran (10.1016/j.dt.2025.01.008_bib15) 2013; 61 Kan (10.1016/j.dt.2025.01.008_bib25) 2020; 41 Liu (10.1016/j.dt.2025.01.008_bib16) 2021; 42 Zhang (10.1016/j.dt.2025.01.008_bib8) 2020; 21 Modares (10.1016/j.dt.2025.01.008_bib27) 2017 Li (10.1016/j.dt.2025.01.008_bib2) 2024; 248 Bouman (10.1016/j.dt.2025.01.008_bib45) 2018; 72 Chen (10.1016/j.dt.2025.01.008_bib31) 2016; 37 Wang (10.1016/j.dt.2025.01.008_bib47) 2024; 149 Li (10.1016/j.dt.2025.01.008_bib21) 2023; 7 Zhu (10.1016/j.dt.2025.01.008_bib39) 1994; 30 Wen (10.1016/j.dt.2025.01.008_bib3) 2024; 310 Motamedi (10.1016/j.dt.2025.01.008_bib28) 2024; 165 Mukhamediev (10.1016/j.dt.2025.01.008_bib36) 2023; 11 Lu (10.1016/j.dt.2025.01.008_bib46) 2023; 8 Luo (10.1016/j.dt.2025.01.008_bib26) 2019; 9 Tang (10.1016/j.dt.2025.01.008_bib38) 2022; 59 Mohsan (10.1016/j.dt.2025.01.008_bib7) 2023; 16 Patel (10.1016/j.dt.2025.01.008_bib41) 2016; 19 Xue (10.1016/j.dt.2025.01.008_bib42) 2022; 43 |
| References_xml | – volume: 21 start-page: 346 year: 2020 end-page: 354 ident: bib48 article-title: Software design of monitoring and flight simulation for UAV swarms based on OSGEarth publication-title: Int J Comput Sci Eng – volume: 19 start-page: 7 year: 2016 end-page: 16 ident: bib41 article-title: Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS) publication-title: Egyptian J Remote Sensing Space ence – volume: 59 year: 2023 ident: bib13 article-title: Region coverage-aware path planning for unmanned aerial vehicles: a systematic review publication-title: Physical Commun. – volume: 72 start-page: 528 year: 2018 end-page: 542 ident: bib45 article-title: Dynamic programming approaches for the traveling salesman problem with drone publication-title: ERIM Report Series Res Manag – volume: 16 start-page: 109 year: 2023 end-page: 137 ident: bib7 article-title: Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends publication-title: Intell Service RobotAerospac Elect Sys IEEE Trans on – volume: 5 start-page: 90 year: 2022 end-page: 101 ident: bib49 article-title: Design and implementation of hardware-in-the-loop simulation system based on virtual-real combination for fixed-wing uavs swarms publication-title: Unmanned Sys Tech – volume: 310 year: 2024 ident: bib3 article-title: Route planning for UAVs maritime search and rescue considering the targets moving situation publication-title: Ocean Eng – volume: 41 year: 2020 ident: bib25 article-title: Cooperative path planning for multi-sprayer uavs publication-title: Acta Aeronautica Astronautica Sinica – volume: 248 year: 2024 ident: bib2 article-title: Aerial visual data-driven approach for berthing capacity estimation in restricted waters publication-title: Ocean Coast Manag – volume: 21 start-page: 231 year: 2023 end-page: 243 ident: bib22 article-title: Collision-avoided tracking control of UAV using velocity-adaptive 3D local path planning publication-title: Int J Control Autom Syst – volume: 18 start-page: 2132 year: 2018 ident: bib11 article-title: Optimal polygon decomposition for UAV survey coverage path planning in wind publication-title: Sensors – volume: 252 year: 2022 ident: bib37 article-title: An optimal coverage path plan for an autonomous vehicle based on polygon decomposition and ant colony optimisation publication-title: Ocean Eng – start-page: 277 year: 2021 end-page: 290 ident: bib33 article-title: Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem publication-title: Proceedings of the field and service robotics: results of the 12th international conference – volume: 3 start-page: 4 year: 2019 ident: bib9 article-title: Survey on coverage path planning with unmanned aerial vehicles publication-title: Drones – volume: 178 year: 2021 ident: bib4 article-title: Search and rescue operation using UAVs: a case study publication-title: Expert Syst Appl – volume: 44 start-page: 2532 year: 2014 end-page: 2544 ident: bib17 article-title: Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning publication-title: IEEE Trans Cybern – volume: 215 year: 2023 ident: bib1 article-title: A novel UAV path planning approach: heuristic crossing search and rescue optimization algorithm publication-title: Expert Syst Appl – volume: 8 start-page: 5275 year: 2023 end-page: 5282 ident: bib46 article-title: Tmstc∗: a path planning algorithm for minimizing turns in multi-robot coverage publication-title: IEEE Rob Autom Lett – volume: 149 year: 2024 ident: bib47 article-title: Collaborative target assignment problem for large-scale UAV swarm based on two-stage greedy auction algorithm publication-title: Aero Sci Technol – volume: 7 start-page: 196 year: 2023 ident: bib21 article-title: Multi-UAV trajectory planning during cooperative tracking based on a Fusion Algorithm integrating MPC and standoff publication-title: Drones – volume: 7 start-page: 55817 year: 2019 end-page: 55832 ident: bib6 article-title: Lsar: multi-uav collaboration for search and rescue missions publication-title: IEEE Access – volume: 59 start-page: 1139 year: 2022 end-page: 1155 ident: bib38 article-title: Dynamic reallocation model of multiple unmanned aerial vehicle tasks in emergent adjustment scenarios publication-title: IEEE Trans Aero Electron Syst – volume: 61 start-page: 1258 year: 2013 end-page: 1276 ident: bib15 article-title: A survey on coverage path planning for robotics publication-title: Robot Autonom Syst – volume: 22 start-page: 11098 year: 2022 end-page: 11111 ident: bib32 article-title: Concentrated coverage path planning algorithm of UAV formation for aerial photography publication-title: IEEE Sensor J – volume: 129 start-page: 217 year: 2022 end-page: 229 ident: bib18 article-title: A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration publication-title: ISA Trans – volume: 214 start-page: 177 year: 2022 end-page: 192 ident: bib34 article-title: Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution publication-title: Biosyst Eng – volume: 37 start-page: 928 year: 2016 end-page: 935 ident: bib31 article-title: Cooperative coverage path planning for multiple uavs publication-title: Acta Aeronautica Astronautica Sinica – volume: 105 year: 2020 ident: bib10 article-title: Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace publication-title: Aero Sci Technol – volume: 253 year: 2022 ident: bib30 article-title: Energy-based USV maritime monitoring using multi-objective evolutionary algorithms publication-title: Ocean Eng – volume: 36 start-page: 249 year: 2023 end-page: 270 ident: bib19 article-title: New multi-UAV formation keeping method based on improved artificial potential field publication-title: Chin J Aeronaut – volume: 44 start-page: 303 year: 2023 end-page: 315 ident: bib14 article-title: Coverage operation path planning of uav with endurance constraints based on improved aco publication-title: Acta Aeronautica Astronautica Sinica – volume: 47 start-page: 1391 year: 2010 end-page: 1398 ident: bib44 article-title: Three-dimensional curvature-constrained trajectory planning based on in-flight waypoints publication-title: J Aircraft – volume: 53 start-page: 6 year: 2023 end-page: 11 ident: bib5 article-title: Learning on the fly: drones in the Russian-Ukrainian war publication-title: Arms Control Today – volume: 57 start-page: 267 year: 2024 ident: bib35 article-title: Evolutionary computation for unmanned aerial vehicle path planning: a survey publication-title: Artif Intell Rev – volume: 165 year: 2024 ident: bib28 article-title: Minimum time search using ant colony optimization for multiple fixed-wing UAVs in dynamic environments publication-title: Appl Soft Comput – volume: 11 start-page: 5789 year: 2023 end-page: 5803 ident: bib36 article-title: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture publication-title: IEEE Access – volume: 43 year: 2022 ident: bib42 article-title: Multi-uav coverage path planning based on optimization of convex division of complex plots publication-title: Acta Aeronautica Astronautica Sinica – volume: 21 start-page: 1671 year: 2020 end-page: 1694 ident: bib8 article-title: A review of cooperative path planning of an unmanned aerial vehicle group publication-title: Front Info Tech Elect Eng – volume: 9 start-page: 827 year: 2019 ident: bib26 article-title: Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search publication-title: Appl Sci – volume: 83 start-page: 445 year: 2016 end-page: 462 ident: bib43 article-title: Coverage path planning for UAVs photogrammetry with energy and resolution constraints publication-title: J Intell Rob Syst – start-page: 6182 year: 2017 end-page: 6189 ident: bib27 article-title: Ub-anc planner: energy efficient coverage path planning with multiple drones publication-title: Proceedings of the 2017 IEEE international conference on robotics and automation (ICRA) – volume: 176 start-page: 756 year: 2007 end-page: 773 ident: bib12 article-title: The multi-depot vehicle routing problem with inter-depot routes publication-title: Eur J Oper Res – volume: 60 start-page: 2292 year: 2024 end-page: 2304 ident: bib20 article-title: An improved artificial electric field algorithm for robot path planning publication-title: IEEE Trans Aero Electron Syst – volume: 42 start-page: 317 year: 2021 end-page: 331 ident: bib16 article-title: A rapid time-coordination trajectory planning method for multi-glide vehicles publication-title: Acta Aeronautica Astronautica Sinica – volume: 34 start-page: 479 year: 2021 end-page: 489 ident: bib23 article-title: UAV navigation in high dynamic environments: a deep reinforcement learning approach publication-title: Chin J Aeronaut – volume: 194 year: 2020 ident: bib24 article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning publication-title: Knowl Base Syst – volume: 161 year: 2021 ident: bib29 article-title: Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations publication-title: Comput Ind Eng – volume: 30 start-page: 957 year: 1994 end-page: 961 ident: bib39 article-title: Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates publication-title: Aerospace & Electronic Systems IEEE Transactions on – volume: 46 start-page: 445 year: 2014 end-page: 481 ident: bib40 article-title: Accuracy analysis of digital elevation model relating to spatial resolution and terrain slope by bilinear interpolation publication-title: Math Geosci – volume: 310 year: 2024 ident: 10.1016/j.dt.2025.01.008_bib3 article-title: Route planning for UAVs maritime search and rescue considering the targets moving situation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.118623 – volume: 253 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib30 article-title: Energy-based USV maritime monitoring using multi-objective evolutionary algorithms publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111182 – volume: 7 start-page: 55817 year: 2019 ident: 10.1016/j.dt.2025.01.008_bib6 article-title: Lsar: multi-uav collaboration for search and rescue missions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912306 – volume: 248 year: 2024 ident: 10.1016/j.dt.2025.01.008_bib2 article-title: Aerial visual data-driven approach for berthing capacity estimation in restricted waters publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2023.106961 – volume: 41 issue: 4 year: 2020 ident: 10.1016/j.dt.2025.01.008_bib25 article-title: Cooperative path planning for multi-sprayer uavs publication-title: Acta Aeronautica Astronautica Sinica – start-page: 6182 year: 2017 ident: 10.1016/j.dt.2025.01.008_bib27 article-title: Ub-anc planner: energy efficient coverage path planning with multiple drones – volume: 178 year: 2021 ident: 10.1016/j.dt.2025.01.008_bib4 article-title: Search and rescue operation using UAVs: a case study publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114937 – volume: 165 year: 2024 ident: 10.1016/j.dt.2025.01.008_bib28 article-title: Minimum time search using ant colony optimization for multiple fixed-wing UAVs in dynamic environments publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2024.112025 – volume: 30 start-page: 957 issue: 3 year: 1994 ident: 10.1016/j.dt.2025.01.008_bib39 article-title: Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates publication-title: Aerospace & Electronic Systems IEEE Transactions on doi: 10.1109/7.303772 – volume: 72 start-page: 528 issue: 4 year: 2018 ident: 10.1016/j.dt.2025.01.008_bib45 article-title: Dynamic programming approaches for the traveling salesman problem with drone publication-title: ERIM Report Series Res Manag – volume: 21 start-page: 346 issue: 3 year: 2020 ident: 10.1016/j.dt.2025.01.008_bib48 article-title: Software design of monitoring and flight simulation for UAV swarms based on OSGEarth publication-title: Int J Comput Sci Eng – volume: 44 start-page: 2532 issue: 12 year: 2014 ident: 10.1016/j.dt.2025.01.008_bib17 article-title: Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2309898 – volume: 16 start-page: 109 issue: 1 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib7 article-title: Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends publication-title: Intell Service RobotAerospac Elect Sys IEEE Trans on – volume: 43 issue: 12 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib42 article-title: Multi-uav coverage path planning based on optimization of convex division of complex plots publication-title: Acta Aeronautica Astronautica Sinica – start-page: 277 year: 2021 ident: 10.1016/j.dt.2025.01.008_bib33 article-title: Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem – volume: 46 start-page: 445 issue: 4 year: 2014 ident: 10.1016/j.dt.2025.01.008_bib40 article-title: Accuracy analysis of digital elevation model relating to spatial resolution and terrain slope by bilinear interpolation publication-title: Math Geosci doi: 10.1007/s11004-013-9508-8 – volume: 47 start-page: 1391 issue: 4 year: 2010 ident: 10.1016/j.dt.2025.01.008_bib44 article-title: Three-dimensional curvature-constrained trajectory planning based on in-flight waypoints publication-title: J Aircraft doi: 10.2514/1.47711 – volume: 194 year: 2020 ident: 10.1016/j.dt.2025.01.008_bib24 article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2020.105530 – volume: 105 year: 2020 ident: 10.1016/j.dt.2025.01.008_bib10 article-title: Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace publication-title: Aero Sci Technol doi: 10.1016/j.ast.2020.105965 – volume: 21 start-page: 1671 issue: 12 year: 2020 ident: 10.1016/j.dt.2025.01.008_bib8 article-title: A review of cooperative path planning of an unmanned aerial vehicle group publication-title: Front Info Tech Elect Eng doi: 10.1631/FITEE.2000228 – volume: 8 start-page: 5275 issue: 8 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib46 article-title: Tmstc∗: a path planning algorithm for minimizing turns in multi-robot coverage publication-title: IEEE Rob Autom Lett doi: 10.1109/LRA.2023.3293319 – volume: 252 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib37 article-title: An optimal coverage path plan for an autonomous vehicle based on polygon decomposition and ant colony optimisation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111101 – volume: 44 start-page: 303 issue: 12 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib14 article-title: Coverage operation path planning of uav with endurance constraints based on improved aco publication-title: Acta Aeronautica Astronautica Sinica – volume: 149 year: 2024 ident: 10.1016/j.dt.2025.01.008_bib47 article-title: Collaborative target assignment problem for large-scale UAV swarm based on two-stage greedy auction algorithm publication-title: Aero Sci Technol doi: 10.1016/j.ast.2024.109146 – volume: 9 start-page: 827 issue: 5 year: 2019 ident: 10.1016/j.dt.2025.01.008_bib26 article-title: Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search publication-title: Appl Sci doi: 10.3390/app9050827 – volume: 19 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.dt.2025.01.008_bib41 article-title: Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS) publication-title: Egyptian J Remote Sensing Space ence doi: 10.1016/j.ejrs.2015.12.004 – volume: 59 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib13 article-title: Region coverage-aware path planning for unmanned aerial vehicles: a systematic review publication-title: Physical Commun. doi: 10.1016/j.phycom.2023.102073 – volume: 5 start-page: 90 issue: 5 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib49 article-title: Design and implementation of hardware-in-the-loop simulation system based on virtual-real combination for fixed-wing uavs swarms publication-title: Unmanned Sys Tech – volume: 176 start-page: 756 issue: 2 year: 2007 ident: 10.1016/j.dt.2025.01.008_bib12 article-title: The multi-depot vehicle routing problem with inter-depot routes publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.08.015 – volume: 61 start-page: 1258 issue: 12 year: 2013 ident: 10.1016/j.dt.2025.01.008_bib15 article-title: A survey on coverage path planning for robotics publication-title: Robot Autonom Syst doi: 10.1016/j.robot.2013.09.004 – volume: 129 start-page: 217 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib18 article-title: A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration publication-title: ISA Trans doi: 10.1016/j.isatra.2022.01.015 – volume: 59 start-page: 1139 issue: 2 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib38 article-title: Dynamic reallocation model of multiple unmanned aerial vehicle tasks in emergent adjustment scenarios publication-title: IEEE Trans Aero Electron Syst – volume: 215 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib1 article-title: A novel UAV path planning approach: heuristic crossing search and rescue optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119243 – volume: 42 start-page: 317 issue: 11 year: 2021 ident: 10.1016/j.dt.2025.01.008_bib16 article-title: A rapid time-coordination trajectory planning method for multi-glide vehicles publication-title: Acta Aeronautica Astronautica Sinica – volume: 83 start-page: 445 issue: 3–4 year: 2016 ident: 10.1016/j.dt.2025.01.008_bib43 article-title: Coverage path planning for UAVs photogrammetry with energy and resolution constraints publication-title: J Intell Rob Syst doi: 10.1007/s10846-016-0348-x – volume: 18 start-page: 2132 issue: 7 year: 2018 ident: 10.1016/j.dt.2025.01.008_bib11 article-title: Optimal polygon decomposition for UAV survey coverage path planning in wind publication-title: Sensors doi: 10.3390/s18072132 – volume: 11 start-page: 5789 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib36 article-title: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3235207 – volume: 22 start-page: 11098 issue: 11 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib32 article-title: Concentrated coverage path planning algorithm of UAV formation for aerial photography publication-title: IEEE Sensor J doi: 10.1109/JSEN.2022.3168840 – volume: 214 start-page: 177 year: 2022 ident: 10.1016/j.dt.2025.01.008_bib34 article-title: Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2021.12.018 – volume: 36 start-page: 249 issue: 11 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib19 article-title: New multi-UAV formation keeping method based on improved artificial potential field publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2023.07.030 – volume: 57 start-page: 267 issue: 10 year: 2024 ident: 10.1016/j.dt.2025.01.008_bib35 article-title: Evolutionary computation for unmanned aerial vehicle path planning: a survey publication-title: Artif Intell Rev doi: 10.1007/s10462-024-10913-0 – volume: 34 start-page: 479 issue: 2 year: 2021 ident: 10.1016/j.dt.2025.01.008_bib23 article-title: UAV navigation in high dynamic environments: a deep reinforcement learning approach publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.05.011 – volume: 161 year: 2021 ident: 10.1016/j.dt.2025.01.008_bib29 article-title: Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107612 – volume: 37 start-page: 928 issue: 3 year: 2016 ident: 10.1016/j.dt.2025.01.008_bib31 article-title: Cooperative coverage path planning for multiple uavs publication-title: Acta Aeronautica Astronautica Sinica – volume: 21 start-page: 231 issue: 1 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib22 article-title: Collision-avoided tracking control of UAV using velocity-adaptive 3D local path planning publication-title: Int J Control Autom Syst doi: 10.1007/s12555-021-0666-z – volume: 3 start-page: 4 issue: 1 year: 2019 ident: 10.1016/j.dt.2025.01.008_bib9 article-title: Survey on coverage path planning with unmanned aerial vehicles publication-title: Drones doi: 10.3390/drones3010004 – volume: 53 start-page: 6 issue: 1 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib5 article-title: Learning on the fly: drones in the Russian-Ukrainian war publication-title: Arms Control Today – volume: 60 start-page: 2292 issue: 2 year: 2024 ident: 10.1016/j.dt.2025.01.008_bib20 article-title: An improved artificial electric field algorithm for robot path planning publication-title: IEEE Trans Aero Electron Syst doi: 10.1109/TAES.2024.3351110 – volume: 7 start-page: 196 issue: 3 year: 2023 ident: 10.1016/j.dt.2025.01.008_bib21 article-title: Multi-UAV trajectory planning during cooperative tracking based on a Fusion Algorithm integrating MPC and standoff publication-title: Drones doi: 10.3390/drones7030196 |
| SSID | ssj0001822157 |
| Score | 2.310234 |
| Snippet | Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 197 |
| SubjectTerms | Dubins curves Dynamic complete coverage path planning (DCCPP) Improved dynamic programming algorithm (IDP) Minimum time cooperative coverage Multi-fixed-wing UAVs (multi-UAV) |
| Title | Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas |
| URI | https://dx.doi.org/10.1016/j.dt.2025.01.008 https://doaj.org/article/b659b88488864dee80a13adeac60ca7e |
| Volume | 47 |
| WOSCitedRecordID | wos001514935200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-9147 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001822157 issn: 2214-9147 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2214-9147 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001822157 issn: 2214-9147 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 2214-9147 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001822157 issn: 2214-9147 databaseCode: M1Q dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2214-9147 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001822157 issn: 2214-9147 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2214-9147 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001822157 issn: 2214-9147 databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQYIF8RTlUXlgYYia1O-xhSIWqgpRVCbLr0hFqFRtKP352HFaZQEWxkSOHZ0vd2fn8_cBcO2U04RzmlArbILDIS5BFUksC-RfXHOlo9gEGwz4eCyGNamvgAmL9MDRcG1NidCcez_jFFvneKoypKyPFzQ1irkQfVMmaoupcnfF572MsOq_ZAR02QCd7ESWzqAmWctDJV1_LR3VUsz9AdivakPYje90CLbc9Ajsro8OL47B62MF_4P5ZOVs8uXzDhx1XxawNp1L56-8g_pAAdEdDJLDcFZJE8EoGA19pQpLMLlbQRVg6SdgdN9_vn1IKm2ExPgVX5GoVCBLSW78F5czk2NNLNG5T_4oV5jjzCBquBHYUsYMQ8hhkSlfuzhDEBMpOgWN6cfUnQFIeCnYm3e4cpi7VBPUcb6MEjZwzfOsCdprS0lTEYcH_Yp3uUaIvUlbyGBbmWbS27YJbjZPzCJpxi9te8H4m3aB7rq84Z1AVk4g_3KCJkDrqZNV5RArAt_V5Mehz_9j6AuwF7qMGMhL0Cjmn-4K7JhlMVnMW2C71x8Mn1qld34DX7Tnvw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+fixed-wing+UAVs+collaborative+coverage+3D+path+planning+method+for+complex+areas&rft.jtitle=Defence+technology&rft.au=Wang%2C+Mengyang&rft.au=Zhang%2C+Dong&rft.au=Li%2C+Chaoyue&rft.au=Zhang%2C+Zhaohua&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=2214-9147&rft.eissn=2214-9147&rft.volume=47&rft.spage=197&rft.epage=215&rft_id=info:doi/10.1016%2Fj.dt.2025.01.008&rft.externalDocID=S2214914725000170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-9147&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-9147&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-9147&client=summon |