Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas

Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic coll...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Defence technology Ročník 47; s. 197 - 215
Hlavní autoři: Wang, Mengyang, Zhang, Dong, Li, Chaoyue, Zhang, Zhaohua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2025
KeAi Communications Co., Ltd
Témata:
ISSN:2214-9147, 2214-9147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic collaborative path planning algorithm is introduced, designed to ensure complete coverage of designated areas. This algorithm meticulously optimizes the operation, entry, and transition paths for each UAV, while also establishing evaluation metrics to refine coverage sequences for each area. Additionally, a three-dimensional path is computed utilizing an altitude descent method, effectively integrating two-dimensional coverage paths with altitude constraints. The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios, including both single-area and multi-area coverage by multi-UAV. Results show that the coverage paths generated by this method significantly reduce both computation time and path length, providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. To address the optimization problem of complete coverage 3D path planning for multiple fixed-wing UAVs across multiple areas, this paper makes the following contributions:•Development of Models: Established models for UAV capabilities, terrain threats, complex areas, and mission optimization. The mission paths are categorized into three types based on the UAV field of view (FOV) status, forming a path optimization model.•Algorithmic Solutions: Utilized a greedy algorithm to solve the allocation problem between multi-UAV and multi-area. Introduced an improved dynamic programming algorithm to address the path optimization challenge when the UAV turn radius exceeds the FOV width. Employed an altitude descent algorithm to generate satisfactory 3D paths.•Validation and Adaptability: Validated the proposed methods through both digital and semiphysical simulations. The studies demonstrate that the methods effectively balance the trade-off between computation time and optimization, making them suitable for practical multi-UAV applications in dynamic scenarios. These contributions ensure comprehensive path optimization, enhance the efficiency and effectiveness of multi-UAV operations, and support practical applications in complex and dynamic environments.
AbstractList Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic collaborative path planning algorithm is introduced, designed to ensure complete coverage of designated areas. This algorithm meticulously optimizes the operation, entry, and transition paths for each UAV, while also establishing evaluation metrics to refine coverage sequences for each area. Additionally, a three-dimensional path is computed utilizing an altitude descent method, effectively integrating two-dimensional coverage paths with altitude constraints. The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios, including both single-area and multi-area coverage by multi-UAV. Results show that the coverage paths generated by this method significantly reduce both computation time and path length, providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study establishes a comprehensive framework that incorporates UAV capabilities, terrain, complex areas, and mission dynamics. A novel dynamic collaborative path planning algorithm is introduced, designed to ensure complete coverage of designated areas. This algorithm meticulously optimizes the operation, entry, and transition paths for each UAV, while also establishing evaluation metrics to refine coverage sequences for each area. Additionally, a three-dimensional path is computed utilizing an altitude descent method, effectively integrating two-dimensional coverage paths with altitude constraints. The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios, including both single-area and multi-area coverage by multi-UAV. Results show that the coverage paths generated by this method significantly reduce both computation time and path length, providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. To address the optimization problem of complete coverage 3D path planning for multiple fixed-wing UAVs across multiple areas, this paper makes the following contributions:•Development of Models: Established models for UAV capabilities, terrain threats, complex areas, and mission optimization. The mission paths are categorized into three types based on the UAV field of view (FOV) status, forming a path optimization model.•Algorithmic Solutions: Utilized a greedy algorithm to solve the allocation problem between multi-UAV and multi-area. Introduced an improved dynamic programming algorithm to address the path optimization challenge when the UAV turn radius exceeds the FOV width. Employed an altitude descent algorithm to generate satisfactory 3D paths.•Validation and Adaptability: Validated the proposed methods through both digital and semiphysical simulations. The studies demonstrate that the methods effectively balance the trade-off between computation time and optimization, making them suitable for practical multi-UAV applications in dynamic scenarios. These contributions ensure comprehensive path optimization, enhance the efficiency and effectiveness of multi-UAV operations, and support practical applications in complex and dynamic environments.
Author Zhang, Zhaohua
Zhang, Dong
Li, Chaoyue
Wang, Mengyang
Author_xml – sequence: 1
  givenname: Mengyang
  orcidid: 0009-0008-2114-1837
  surname: Wang
  fullname: Wang, Mengyang
– sequence: 2
  givenname: Dong
  orcidid: 0000-0001-9523-3592
  surname: Zhang
  fullname: Zhang, Dong
  email: zhangdong@nwpu.edu.cn
– sequence: 3
  givenname: Chaoyue
  surname: Li
  fullname: Li, Chaoyue
– sequence: 4
  givenname: Zhaohua
  surname: Zhang
  fullname: Zhang, Zhaohua
BookMark eNp9kE1v1DAQhi1UJErpnWP-QMI4tmOHW1WgVCriQpE4WRN7vPUqG68cs5R_j5cFCSHBaT40z6vR85ydLWkhxl5y6Djw4dW286XroVcd8A7APGHnfc9lO3Kpz_7on7HLdd0CADd1p_Q5-_Lh61zifqYmxEfy7be4bJr7q89r49I845QylnigOh0o44Ya8abZY3lo9jMuy_F4R-Uh-SakXI92NemxwUy4vmBPA84rXf6qF-z-3dtP1-_bu483t9dXd62T0JcWYRR-UMEpbYJ2QU7KqymMHERAaSR3YnDGjdIPWjstBMmRI1cjOSX0COKC3Z5yfcKt3ee4w_zdJoz25yLljcVcopvJToMaJ2OkMWaQnsgAcoGe0A3gUFPNGk5ZLqd1zRSsi6UKSEvJGGfLwR592631xR59W-C2-q4g_AX-fuQ_yOsTQlXOIVK2q4u0OPIxkyv1-_hv-Af27Jk2
CitedBy_id crossref_primary_10_1016_j_dt_2025_08_008
crossref_primary_10_3390_drones9090658
crossref_primary_10_3390_sym17030367
crossref_primary_10_1016_j_dt_2025_09_004
Cites_doi 10.1016/j.oceaneng.2024.118623
10.1016/j.oceaneng.2022.111182
10.1109/ACCESS.2019.2912306
10.1016/j.ocecoaman.2023.106961
10.1016/j.eswa.2021.114937
10.1016/j.asoc.2024.112025
10.1109/7.303772
10.1109/TCYB.2014.2309898
10.1007/s11004-013-9508-8
10.2514/1.47711
10.1016/j.knosys.2020.105530
10.1016/j.ast.2020.105965
10.1631/FITEE.2000228
10.1109/LRA.2023.3293319
10.1016/j.oceaneng.2022.111101
10.1016/j.ast.2024.109146
10.3390/app9050827
10.1016/j.ejrs.2015.12.004
10.1016/j.phycom.2023.102073
10.1016/j.ejor.2005.08.015
10.1016/j.robot.2013.09.004
10.1016/j.isatra.2022.01.015
10.1016/j.eswa.2022.119243
10.1007/s10846-016-0348-x
10.3390/s18072132
10.1109/ACCESS.2023.3235207
10.1109/JSEN.2022.3168840
10.1016/j.biosystemseng.2021.12.018
10.1016/j.cja.2023.07.030
10.1007/s10462-024-10913-0
10.1016/j.cja.2020.05.011
10.1016/j.cie.2021.107612
10.1007/s12555-021-0666-z
10.3390/drones3010004
10.1109/TAES.2024.3351110
10.3390/drones7030196
ContentType Journal Article
Copyright 2025 China Ordnance Society
Copyright_xml – notice: 2025 China Ordnance Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dt.2025.01.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2214-9147
EndPage 215
ExternalDocumentID oai_doaj_org_article_b659b88488864dee80a13adeac60ca7e
10_1016_j_dt_2025_01_008
S2214914725000170
GroupedDBID -03
-0C
-SC
-S~
0R~
4.4
457
5VR
5VS
6I.
92H
92I
92M
9D9
9DC
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABJCF
ABMAC
ABUWG
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFKRA
AFTJW
AFUIB
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ARCSS
BCNDV
BENPR
BGLVJ
CAJEC
CCEZO
CCPQU
CEKLB
CHBEP
DWQXO
EBS
EJD
FA0
FDB
GROUPED_DOAJ
HCIFZ
IPNFZ
IXB
JUIAU
KQ8
M1Q
M41
M7S
OK1
PHGZM
PHGZT
PIMPY
PMFND
PTHSS
Q--
Q-2
R-C
RIG
ROL
RT3
SSZ
T8S
TCJ
TGT
U1F
U1G
U5C
U5M
~M4
AAYXX
ACVFH
ADCNI
AEUPX
AFFHD
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PQGLB
ID FETCH-LOGICAL-c402t-a093d65fc578f7cf4b5d5bf9103fa4841c36c8c94d677c733e491a159ec537903
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514935200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-9147
IngestDate Tue Oct 14 19:04:02 EDT 2025
Tue Nov 18 21:22:28 EST 2025
Sat Nov 29 07:57:13 EST 2025
Sat Jun 07 17:02:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dubins curves
Multi-fixed-wing UAVs (multi-UAV)
Improved dynamic programming algorithm (IDP)
Dynamic complete coverage path planning (DCCPP)
Minimum time cooperative coverage
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-a093d65fc578f7cf4b5d5bf9103fa4841c36c8c94d677c733e491a159ec537903
ORCID 0009-0008-2114-1837
0000-0001-9523-3592
OpenAccessLink https://doaj.org/article/b659b88488864dee80a13adeac60ca7e
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_b659b88488864dee80a13adeac60ca7e
crossref_citationtrail_10_1016_j_dt_2025_01_008
crossref_primary_10_1016_j_dt_2025_01_008
elsevier_sciencedirect_doi_10_1016_j_dt_2025_01_008
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Defence technology
PublicationYear 2025
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Babaei, Mortazavi (bib44) 2010; 47
Wen, Shi, Wang (bib3) 2024; 310
Cho, Park, Lee (bib29) 2021; 161
Zhang, Xin, Dou (bib8) 2020; 21
Alotaibi, Alqefari, Koubaa (bib6) 2019; 7
Zhang, Zhou, Qin (bib1) 2023; 215
Qu, Gai, Zhang, Zhong (bib24) 2020; 194
Zhang, Wang, Wang (bib49) 2022; 5
Li, Lu, Yang (bib2) 2024; 248
Mayilvaganam, Shrivastava, Rajagopal (bib37) 2022; 252
Bähnemann, Lawrance, Chung (bib33) 2021
Mukhamediev, Yakunin, Aubakirov (bib36) 2023; 11
Li, Song, Bai (bib21) 2023; 7
Lu, Zeng, Tang (bib46) 2023; 8
Zhu (bib39) 1994; 30
Chávez (bib5) 2023; 53
Yu, Xu, Duan (bib14) 2023; 44
Galceran, Carreras (bib15) 2013; 61
Radmanesh, Kumar, French (bib10) 2020; 105
Cao, Cheng, Mu (bib32) 2022; 22
Di Franco, Buttazzo (bib43) 2016; 83
Tong, Jiang, Biyue (bib23) 2021; 34
Xue, Chen, Zhang (bib42) 2022; 43
Ouelmokhtar, Benmoussa, Benazzouz (bib30) 2022; 253
Seo, Kang (bib22) 2023; 21
Lin, Goodrich (bib17) 2014; 44
Liu, Li, Ji (bib18) 2022; 129
Shi, Wang, Tian (bib40) 2014; 46
Martinez-Alpiste, Golcarenarenji, Wang (bib4) 2021; 178
Modares, Ghanei, Mastronarde (bib27) 2017
Crevier, Cordeau, Laporte (bib12) 2007; 176
Cabreira, Brisolara, Paulo (bib9) 2019; 3
Liu, Lu, Zheng (bib16) 2021; 42
Sheng, Zhang, Yan (bib19) 2023; 36
Mohsan, Othman, Li (bib7) 2023; 16
Tang, Chen, Zhu (bib38) 2022; 59
Luo, Shao, Xu (bib26) 2019; 9
Wu, Xiao, Bi (bib48) 2020; 21
Kan, Jiang, Liu (bib25) 2020; 41
Coombes, Fletcher, Chen (bib11) 2018; 18
Wang, Wang, Wang (bib47) 2024; 149
Motamedi, Mortazavi, Sabzehparvar (bib28) 2024; 165
Patel, Katiyar, Prasad (bib41) 2016; 19
Bouman, Agatz, Schmidt (bib45) 2018; 72
Jiang, Xu, Zheng (bib35) 2024; 57
Chen, He, Qian (bib31) 2016; 37
Tang, Pan, Chen (bib20) 2024; 60
Kumar, Kumar (bib13) 2023; 59
Li, Xu, Xue (bib34) 2022; 214
Seo (10.1016/j.dt.2025.01.008_bib22) 2023; 21
Tang (10.1016/j.dt.2025.01.008_bib20) 2024; 60
Radmanesh (10.1016/j.dt.2025.01.008_bib10) 2020; 105
Coombes (10.1016/j.dt.2025.01.008_bib11) 2018; 18
Bähnemann (10.1016/j.dt.2025.01.008_bib33) 2021
Di Franco (10.1016/j.dt.2025.01.008_bib43) 2016; 83
Babaei (10.1016/j.dt.2025.01.008_bib44) 2010; 47
Jiang (10.1016/j.dt.2025.01.008_bib35) 2024; 57
Zhang (10.1016/j.dt.2025.01.008_bib49) 2022; 5
Cao (10.1016/j.dt.2025.01.008_bib32) 2022; 22
Tong (10.1016/j.dt.2025.01.008_bib23) 2021; 34
Kumar (10.1016/j.dt.2025.01.008_bib13) 2023; 59
Lin (10.1016/j.dt.2025.01.008_bib17) 2014; 44
Liu (10.1016/j.dt.2025.01.008_bib18) 2022; 129
Alotaibi (10.1016/j.dt.2025.01.008_bib6) 2019; 7
Cho (10.1016/j.dt.2025.01.008_bib29) 2021; 161
Mayilvaganam (10.1016/j.dt.2025.01.008_bib37) 2022; 252
Cabreira (10.1016/j.dt.2025.01.008_bib9) 2019; 3
Crevier (10.1016/j.dt.2025.01.008_bib12) 2007; 176
Ouelmokhtar (10.1016/j.dt.2025.01.008_bib30) 2022; 253
Sheng (10.1016/j.dt.2025.01.008_bib19) 2023; 36
Wu (10.1016/j.dt.2025.01.008_bib48) 2020; 21
Qu (10.1016/j.dt.2025.01.008_bib24) 2020; 194
Li (10.1016/j.dt.2025.01.008_bib34) 2022; 214
Yu (10.1016/j.dt.2025.01.008_bib14) 2023; 44
Martinez-Alpiste (10.1016/j.dt.2025.01.008_bib4) 2021; 178
Shi (10.1016/j.dt.2025.01.008_bib40) 2014; 46
Zhang (10.1016/j.dt.2025.01.008_bib1) 2023; 215
Chávez (10.1016/j.dt.2025.01.008_bib5) 2023; 53
Galceran (10.1016/j.dt.2025.01.008_bib15) 2013; 61
Kan (10.1016/j.dt.2025.01.008_bib25) 2020; 41
Liu (10.1016/j.dt.2025.01.008_bib16) 2021; 42
Zhang (10.1016/j.dt.2025.01.008_bib8) 2020; 21
Modares (10.1016/j.dt.2025.01.008_bib27) 2017
Li (10.1016/j.dt.2025.01.008_bib2) 2024; 248
Bouman (10.1016/j.dt.2025.01.008_bib45) 2018; 72
Chen (10.1016/j.dt.2025.01.008_bib31) 2016; 37
Wang (10.1016/j.dt.2025.01.008_bib47) 2024; 149
Li (10.1016/j.dt.2025.01.008_bib21) 2023; 7
Zhu (10.1016/j.dt.2025.01.008_bib39) 1994; 30
Wen (10.1016/j.dt.2025.01.008_bib3) 2024; 310
Motamedi (10.1016/j.dt.2025.01.008_bib28) 2024; 165
Mukhamediev (10.1016/j.dt.2025.01.008_bib36) 2023; 11
Lu (10.1016/j.dt.2025.01.008_bib46) 2023; 8
Luo (10.1016/j.dt.2025.01.008_bib26) 2019; 9
Tang (10.1016/j.dt.2025.01.008_bib38) 2022; 59
Mohsan (10.1016/j.dt.2025.01.008_bib7) 2023; 16
Patel (10.1016/j.dt.2025.01.008_bib41) 2016; 19
Xue (10.1016/j.dt.2025.01.008_bib42) 2022; 43
References_xml – volume: 21
  start-page: 346
  year: 2020
  end-page: 354
  ident: bib48
  article-title: Software design of monitoring and flight simulation for UAV swarms based on OSGEarth
  publication-title: Int J Comput Sci Eng
– volume: 19
  start-page: 7
  year: 2016
  end-page: 16
  ident: bib41
  article-title: Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS)
  publication-title: Egyptian J Remote Sensing Space ence
– volume: 59
  year: 2023
  ident: bib13
  article-title: Region coverage-aware path planning for unmanned aerial vehicles: a systematic review
  publication-title: Physical Commun.
– volume: 72
  start-page: 528
  year: 2018
  end-page: 542
  ident: bib45
  article-title: Dynamic programming approaches for the traveling salesman problem with drone
  publication-title: ERIM Report Series Res Manag
– volume: 16
  start-page: 109
  year: 2023
  end-page: 137
  ident: bib7
  article-title: Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends
  publication-title: Intell Service RobotAerospac Elect Sys IEEE Trans on
– volume: 5
  start-page: 90
  year: 2022
  end-page: 101
  ident: bib49
  article-title: Design and implementation of hardware-in-the-loop simulation system based on virtual-real combination for fixed-wing uavs swarms
  publication-title: Unmanned Sys Tech
– volume: 310
  year: 2024
  ident: bib3
  article-title: Route planning for UAVs maritime search and rescue considering the targets moving situation
  publication-title: Ocean Eng
– volume: 41
  year: 2020
  ident: bib25
  article-title: Cooperative path planning for multi-sprayer uavs
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 248
  year: 2024
  ident: bib2
  article-title: Aerial visual data-driven approach for berthing capacity estimation in restricted waters
  publication-title: Ocean Coast Manag
– volume: 21
  start-page: 231
  year: 2023
  end-page: 243
  ident: bib22
  article-title: Collision-avoided tracking control of UAV using velocity-adaptive 3D local path planning
  publication-title: Int J Control Autom Syst
– volume: 18
  start-page: 2132
  year: 2018
  ident: bib11
  article-title: Optimal polygon decomposition for UAV survey coverage path planning in wind
  publication-title: Sensors
– volume: 252
  year: 2022
  ident: bib37
  article-title: An optimal coverage path plan for an autonomous vehicle based on polygon decomposition and ant colony optimisation
  publication-title: Ocean Eng
– start-page: 277
  year: 2021
  end-page: 290
  ident: bib33
  article-title: Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem
  publication-title: Proceedings of the field and service robotics: results of the 12th international conference
– volume: 3
  start-page: 4
  year: 2019
  ident: bib9
  article-title: Survey on coverage path planning with unmanned aerial vehicles
  publication-title: Drones
– volume: 178
  year: 2021
  ident: bib4
  article-title: Search and rescue operation using UAVs: a case study
  publication-title: Expert Syst Appl
– volume: 44
  start-page: 2532
  year: 2014
  end-page: 2544
  ident: bib17
  article-title: Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning
  publication-title: IEEE Trans Cybern
– volume: 215
  year: 2023
  ident: bib1
  article-title: A novel UAV path planning approach: heuristic crossing search and rescue optimization algorithm
  publication-title: Expert Syst Appl
– volume: 8
  start-page: 5275
  year: 2023
  end-page: 5282
  ident: bib46
  article-title: Tmstc∗: a path planning algorithm for minimizing turns in multi-robot coverage
  publication-title: IEEE Rob Autom Lett
– volume: 149
  year: 2024
  ident: bib47
  article-title: Collaborative target assignment problem for large-scale UAV swarm based on two-stage greedy auction algorithm
  publication-title: Aero Sci Technol
– volume: 7
  start-page: 196
  year: 2023
  ident: bib21
  article-title: Multi-UAV trajectory planning during cooperative tracking based on a Fusion Algorithm integrating MPC and standoff
  publication-title: Drones
– volume: 7
  start-page: 55817
  year: 2019
  end-page: 55832
  ident: bib6
  article-title: Lsar: multi-uav collaboration for search and rescue missions
  publication-title: IEEE Access
– volume: 59
  start-page: 1139
  year: 2022
  end-page: 1155
  ident: bib38
  article-title: Dynamic reallocation model of multiple unmanned aerial vehicle tasks in emergent adjustment scenarios
  publication-title: IEEE Trans Aero Electron Syst
– volume: 61
  start-page: 1258
  year: 2013
  end-page: 1276
  ident: bib15
  article-title: A survey on coverage path planning for robotics
  publication-title: Robot Autonom Syst
– volume: 22
  start-page: 11098
  year: 2022
  end-page: 11111
  ident: bib32
  article-title: Concentrated coverage path planning algorithm of UAV formation for aerial photography
  publication-title: IEEE Sensor J
– volume: 129
  start-page: 217
  year: 2022
  end-page: 229
  ident: bib18
  article-title: A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration
  publication-title: ISA Trans
– volume: 214
  start-page: 177
  year: 2022
  end-page: 192
  ident: bib34
  article-title: Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution
  publication-title: Biosyst Eng
– volume: 37
  start-page: 928
  year: 2016
  end-page: 935
  ident: bib31
  article-title: Cooperative coverage path planning for multiple uavs
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 105
  year: 2020
  ident: bib10
  article-title: Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace
  publication-title: Aero Sci Technol
– volume: 253
  year: 2022
  ident: bib30
  article-title: Energy-based USV maritime monitoring using multi-objective evolutionary algorithms
  publication-title: Ocean Eng
– volume: 36
  start-page: 249
  year: 2023
  end-page: 270
  ident: bib19
  article-title: New multi-UAV formation keeping method based on improved artificial potential field
  publication-title: Chin J Aeronaut
– volume: 44
  start-page: 303
  year: 2023
  end-page: 315
  ident: bib14
  article-title: Coverage operation path planning of uav with endurance constraints based on improved aco
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 47
  start-page: 1391
  year: 2010
  end-page: 1398
  ident: bib44
  article-title: Three-dimensional curvature-constrained trajectory planning based on in-flight waypoints
  publication-title: J Aircraft
– volume: 53
  start-page: 6
  year: 2023
  end-page: 11
  ident: bib5
  article-title: Learning on the fly: drones in the Russian-Ukrainian war
  publication-title: Arms Control Today
– volume: 57
  start-page: 267
  year: 2024
  ident: bib35
  article-title: Evolutionary computation for unmanned aerial vehicle path planning: a survey
  publication-title: Artif Intell Rev
– volume: 165
  year: 2024
  ident: bib28
  article-title: Minimum time search using ant colony optimization for multiple fixed-wing UAVs in dynamic environments
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 5789
  year: 2023
  end-page: 5803
  ident: bib36
  article-title: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture
  publication-title: IEEE Access
– volume: 43
  year: 2022
  ident: bib42
  article-title: Multi-uav coverage path planning based on optimization of convex division of complex plots
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 21
  start-page: 1671
  year: 2020
  end-page: 1694
  ident: bib8
  article-title: A review of cooperative path planning of an unmanned aerial vehicle group
  publication-title: Front Info Tech Elect Eng
– volume: 9
  start-page: 827
  year: 2019
  ident: bib26
  article-title: Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search
  publication-title: Appl Sci
– volume: 83
  start-page: 445
  year: 2016
  end-page: 462
  ident: bib43
  article-title: Coverage path planning for UAVs photogrammetry with energy and resolution constraints
  publication-title: J Intell Rob Syst
– start-page: 6182
  year: 2017
  end-page: 6189
  ident: bib27
  article-title: Ub-anc planner: energy efficient coverage path planning with multiple drones
  publication-title: Proceedings of the 2017 IEEE international conference on robotics and automation (ICRA)
– volume: 176
  start-page: 756
  year: 2007
  end-page: 773
  ident: bib12
  article-title: The multi-depot vehicle routing problem with inter-depot routes
  publication-title: Eur J Oper Res
– volume: 60
  start-page: 2292
  year: 2024
  end-page: 2304
  ident: bib20
  article-title: An improved artificial electric field algorithm for robot path planning
  publication-title: IEEE Trans Aero Electron Syst
– volume: 42
  start-page: 317
  year: 2021
  end-page: 331
  ident: bib16
  article-title: A rapid time-coordination trajectory planning method for multi-glide vehicles
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 34
  start-page: 479
  year: 2021
  end-page: 489
  ident: bib23
  article-title: UAV navigation in high dynamic environments: a deep reinforcement learning approach
  publication-title: Chin J Aeronaut
– volume: 194
  year: 2020
  ident: bib24
  article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning
  publication-title: Knowl Base Syst
– volume: 161
  year: 2021
  ident: bib29
  article-title: Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations
  publication-title: Comput Ind Eng
– volume: 30
  start-page: 957
  year: 1994
  end-page: 961
  ident: bib39
  article-title: Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates
  publication-title: Aerospace & Electronic Systems IEEE Transactions on
– volume: 46
  start-page: 445
  year: 2014
  end-page: 481
  ident: bib40
  article-title: Accuracy analysis of digital elevation model relating to spatial resolution and terrain slope by bilinear interpolation
  publication-title: Math Geosci
– volume: 310
  year: 2024
  ident: 10.1016/j.dt.2025.01.008_bib3
  article-title: Route planning for UAVs maritime search and rescue considering the targets moving situation
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.118623
– volume: 253
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib30
  article-title: Energy-based USV maritime monitoring using multi-objective evolutionary algorithms
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111182
– volume: 7
  start-page: 55817
  year: 2019
  ident: 10.1016/j.dt.2025.01.008_bib6
  article-title: Lsar: multi-uav collaboration for search and rescue missions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912306
– volume: 248
  year: 2024
  ident: 10.1016/j.dt.2025.01.008_bib2
  article-title: Aerial visual data-driven approach for berthing capacity estimation in restricted waters
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2023.106961
– volume: 41
  issue: 4
  year: 2020
  ident: 10.1016/j.dt.2025.01.008_bib25
  article-title: Cooperative path planning for multi-sprayer uavs
  publication-title: Acta Aeronautica Astronautica Sinica
– start-page: 6182
  year: 2017
  ident: 10.1016/j.dt.2025.01.008_bib27
  article-title: Ub-anc planner: energy efficient coverage path planning with multiple drones
– volume: 178
  year: 2021
  ident: 10.1016/j.dt.2025.01.008_bib4
  article-title: Search and rescue operation using UAVs: a case study
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114937
– volume: 165
  year: 2024
  ident: 10.1016/j.dt.2025.01.008_bib28
  article-title: Minimum time search using ant colony optimization for multiple fixed-wing UAVs in dynamic environments
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2024.112025
– volume: 30
  start-page: 957
  issue: 3
  year: 1994
  ident: 10.1016/j.dt.2025.01.008_bib39
  article-title: Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates
  publication-title: Aerospace & Electronic Systems IEEE Transactions on
  doi: 10.1109/7.303772
– volume: 72
  start-page: 528
  issue: 4
  year: 2018
  ident: 10.1016/j.dt.2025.01.008_bib45
  article-title: Dynamic programming approaches for the traveling salesman problem with drone
  publication-title: ERIM Report Series Res Manag
– volume: 21
  start-page: 346
  issue: 3
  year: 2020
  ident: 10.1016/j.dt.2025.01.008_bib48
  article-title: Software design of monitoring and flight simulation for UAV swarms based on OSGEarth
  publication-title: Int J Comput Sci Eng
– volume: 44
  start-page: 2532
  issue: 12
  year: 2014
  ident: 10.1016/j.dt.2025.01.008_bib17
  article-title: Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2309898
– volume: 16
  start-page: 109
  issue: 1
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib7
  article-title: Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends
  publication-title: Intell Service RobotAerospac Elect Sys IEEE Trans on
– volume: 43
  issue: 12
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib42
  article-title: Multi-uav coverage path planning based on optimization of convex division of complex plots
  publication-title: Acta Aeronautica Astronautica Sinica
– start-page: 277
  year: 2021
  ident: 10.1016/j.dt.2025.01.008_bib33
  article-title: Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem
– volume: 46
  start-page: 445
  issue: 4
  year: 2014
  ident: 10.1016/j.dt.2025.01.008_bib40
  article-title: Accuracy analysis of digital elevation model relating to spatial resolution and terrain slope by bilinear interpolation
  publication-title: Math Geosci
  doi: 10.1007/s11004-013-9508-8
– volume: 47
  start-page: 1391
  issue: 4
  year: 2010
  ident: 10.1016/j.dt.2025.01.008_bib44
  article-title: Three-dimensional curvature-constrained trajectory planning based on in-flight waypoints
  publication-title: J Aircraft
  doi: 10.2514/1.47711
– volume: 194
  year: 2020
  ident: 10.1016/j.dt.2025.01.008_bib24
  article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2020.105530
– volume: 105
  year: 2020
  ident: 10.1016/j.dt.2025.01.008_bib10
  article-title: Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace
  publication-title: Aero Sci Technol
  doi: 10.1016/j.ast.2020.105965
– volume: 21
  start-page: 1671
  issue: 12
  year: 2020
  ident: 10.1016/j.dt.2025.01.008_bib8
  article-title: A review of cooperative path planning of an unmanned aerial vehicle group
  publication-title: Front Info Tech Elect Eng
  doi: 10.1631/FITEE.2000228
– volume: 8
  start-page: 5275
  issue: 8
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib46
  article-title: Tmstc∗: a path planning algorithm for minimizing turns in multi-robot coverage
  publication-title: IEEE Rob Autom Lett
  doi: 10.1109/LRA.2023.3293319
– volume: 252
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib37
  article-title: An optimal coverage path plan for an autonomous vehicle based on polygon decomposition and ant colony optimisation
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111101
– volume: 44
  start-page: 303
  issue: 12
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib14
  article-title: Coverage operation path planning of uav with endurance constraints based on improved aco
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 149
  year: 2024
  ident: 10.1016/j.dt.2025.01.008_bib47
  article-title: Collaborative target assignment problem for large-scale UAV swarm based on two-stage greedy auction algorithm
  publication-title: Aero Sci Technol
  doi: 10.1016/j.ast.2024.109146
– volume: 9
  start-page: 827
  issue: 5
  year: 2019
  ident: 10.1016/j.dt.2025.01.008_bib26
  article-title: Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search
  publication-title: Appl Sci
  doi: 10.3390/app9050827
– volume: 19
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.dt.2025.01.008_bib41
  article-title: Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS)
  publication-title: Egyptian J Remote Sensing Space ence
  doi: 10.1016/j.ejrs.2015.12.004
– volume: 59
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib13
  article-title: Region coverage-aware path planning for unmanned aerial vehicles: a systematic review
  publication-title: Physical Commun.
  doi: 10.1016/j.phycom.2023.102073
– volume: 5
  start-page: 90
  issue: 5
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib49
  article-title: Design and implementation of hardware-in-the-loop simulation system based on virtual-real combination for fixed-wing uavs swarms
  publication-title: Unmanned Sys Tech
– volume: 176
  start-page: 756
  issue: 2
  year: 2007
  ident: 10.1016/j.dt.2025.01.008_bib12
  article-title: The multi-depot vehicle routing problem with inter-depot routes
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.08.015
– volume: 61
  start-page: 1258
  issue: 12
  year: 2013
  ident: 10.1016/j.dt.2025.01.008_bib15
  article-title: A survey on coverage path planning for robotics
  publication-title: Robot Autonom Syst
  doi: 10.1016/j.robot.2013.09.004
– volume: 129
  start-page: 217
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib18
  article-title: A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2022.01.015
– volume: 59
  start-page: 1139
  issue: 2
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib38
  article-title: Dynamic reallocation model of multiple unmanned aerial vehicle tasks in emergent adjustment scenarios
  publication-title: IEEE Trans Aero Electron Syst
– volume: 215
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib1
  article-title: A novel UAV path planning approach: heuristic crossing search and rescue optimization algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119243
– volume: 42
  start-page: 317
  issue: 11
  year: 2021
  ident: 10.1016/j.dt.2025.01.008_bib16
  article-title: A rapid time-coordination trajectory planning method for multi-glide vehicles
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 83
  start-page: 445
  issue: 3–4
  year: 2016
  ident: 10.1016/j.dt.2025.01.008_bib43
  article-title: Coverage path planning for UAVs photogrammetry with energy and resolution constraints
  publication-title: J Intell Rob Syst
  doi: 10.1007/s10846-016-0348-x
– volume: 18
  start-page: 2132
  issue: 7
  year: 2018
  ident: 10.1016/j.dt.2025.01.008_bib11
  article-title: Optimal polygon decomposition for UAV survey coverage path planning in wind
  publication-title: Sensors
  doi: 10.3390/s18072132
– volume: 11
  start-page: 5789
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib36
  article-title: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3235207
– volume: 22
  start-page: 11098
  issue: 11
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib32
  article-title: Concentrated coverage path planning algorithm of UAV formation for aerial photography
  publication-title: IEEE Sensor J
  doi: 10.1109/JSEN.2022.3168840
– volume: 214
  start-page: 177
  year: 2022
  ident: 10.1016/j.dt.2025.01.008_bib34
  article-title: Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2021.12.018
– volume: 36
  start-page: 249
  issue: 11
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib19
  article-title: New multi-UAV formation keeping method based on improved artificial potential field
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2023.07.030
– volume: 57
  start-page: 267
  issue: 10
  year: 2024
  ident: 10.1016/j.dt.2025.01.008_bib35
  article-title: Evolutionary computation for unmanned aerial vehicle path planning: a survey
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-024-10913-0
– volume: 34
  start-page: 479
  issue: 2
  year: 2021
  ident: 10.1016/j.dt.2025.01.008_bib23
  article-title: UAV navigation in high dynamic environments: a deep reinforcement learning approach
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.05.011
– volume: 161
  year: 2021
  ident: 10.1016/j.dt.2025.01.008_bib29
  article-title: Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107612
– volume: 37
  start-page: 928
  issue: 3
  year: 2016
  ident: 10.1016/j.dt.2025.01.008_bib31
  article-title: Cooperative coverage path planning for multiple uavs
  publication-title: Acta Aeronautica Astronautica Sinica
– volume: 21
  start-page: 231
  issue: 1
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib22
  article-title: Collision-avoided tracking control of UAV using velocity-adaptive 3D local path planning
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-021-0666-z
– volume: 3
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.dt.2025.01.008_bib9
  article-title: Survey on coverage path planning with unmanned aerial vehicles
  publication-title: Drones
  doi: 10.3390/drones3010004
– volume: 53
  start-page: 6
  issue: 1
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib5
  article-title: Learning on the fly: drones in the Russian-Ukrainian war
  publication-title: Arms Control Today
– volume: 60
  start-page: 2292
  issue: 2
  year: 2024
  ident: 10.1016/j.dt.2025.01.008_bib20
  article-title: An improved artificial electric field algorithm for robot path planning
  publication-title: IEEE Trans Aero Electron Syst
  doi: 10.1109/TAES.2024.3351110
– volume: 7
  start-page: 196
  issue: 3
  year: 2023
  ident: 10.1016/j.dt.2025.01.008_bib21
  article-title: Multi-UAV trajectory planning during cooperative tracking based on a Fusion Algorithm integrating MPC and standoff
  publication-title: Drones
  doi: 10.3390/drones7030196
SSID ssj0001822157
Score 2.310234
Snippet Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs (multi-UAV). This study...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 197
SubjectTerms Dubins curves
Dynamic complete coverage path planning (DCCPP)
Improved dynamic programming algorithm (IDP)
Minimum time cooperative coverage
Multi-fixed-wing UAVs (multi-UAV)
Title Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas
URI https://dx.doi.org/10.1016/j.dt.2025.01.008
https://doaj.org/article/b659b88488864dee80a13adeac60ca7e
Volume 47
WOSCitedRecordID wos001514935200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-9147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001822157
  issn: 2214-9147
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2214-9147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001822157
  issn: 2214-9147
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 2214-9147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001822157
  issn: 2214-9147
  databaseCode: M1Q
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2214-9147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001822157
  issn: 2214-9147
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2214-9147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001822157
  issn: 2214-9147
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQYIF8RTlUXlgYYia1O-xhSIWqgpRVCbLr0hFqFRtKP352HFaZQEWxkSOHZ0vd2fn8_cBcO2U04RzmlArbILDIS5BFUksC-RfXHOlo9gEGwz4eCyGNamvgAmL9MDRcG1NidCcez_jFFvneKoypKyPFzQ1irkQfVMmaoupcnfF572MsOq_ZAR02QCd7ESWzqAmWctDJV1_LR3VUsz9AdivakPYje90CLbc9Ajsro8OL47B62MF_4P5ZOVs8uXzDhx1XxawNp1L56-8g_pAAdEdDJLDcFZJE8EoGA19pQpLMLlbQRVg6SdgdN9_vn1IKm2ExPgVX5GoVCBLSW78F5czk2NNLNG5T_4oV5jjzCBquBHYUsYMQ8hhkSlfuzhDEBMpOgWN6cfUnQFIeCnYm3e4cpi7VBPUcb6MEjZwzfOsCdprS0lTEYcH_Yp3uUaIvUlbyGBbmWbS27YJbjZPzCJpxi9te8H4m3aB7rq84Z1AVk4g_3KCJkDrqZNV5RArAt_V5Mehz_9j6AuwF7qMGMhL0Cjmn-4K7JhlMVnMW2C71x8Mn1qld34DX7Tnvw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+fixed-wing+UAVs+collaborative+coverage+3D+path+planning+method+for+complex+areas&rft.jtitle=Defence+technology&rft.au=Wang%2C+Mengyang&rft.au=Zhang%2C+Dong&rft.au=Li%2C+Chaoyue&rft.au=Zhang%2C+Zhaohua&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=2214-9147&rft.eissn=2214-9147&rft.volume=47&rft.spage=197&rft.epage=215&rft_id=info:doi/10.1016%2Fj.dt.2025.01.008&rft.externalDocID=S2214914725000170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-9147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-9147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-9147&client=summon