Non-convex nested Benders decomposition

We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 196; číslo 1-2; s. 987 - 1024
Hlavní autoři: Füllner, Christian, Rebennack, Steffen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε -optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
AbstractList We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an $$\varepsilon $$ ε -optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an [Formula omitted]-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε -optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
Audience Academic
Author Rebennack, Steffen
Füllner, Christian
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0003-2485-6199
  surname: Füllner
  fullname: Füllner, Christian
  email: christian.fuellner@kit.edu
  organization: Institute for Operations Research (IOR), Stochastic Optimization (SOP), Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Steffen
  surname: Rebennack
  fullname: Rebennack, Steffen
  organization: Institute for Operations Research (IOR), Stochastic Optimization (SOP), Karlsruhe Institute of Technology (KIT)
BookMark eNp9kE9LAzEQxYNUsK1-AU8FD55SJ8lms3usxX9Q9KLnsLuZlC1tUpOt6Lc36wqChzKHMOH9Zua9CRk575CQSwZzBqBuIgMGigJnFJjKgMIJGbNM5DTLs3xExgBcUpkzOCOTGDcAwERRjMn1s3e08e4DP2cOY4dmdovOYIgzg43f7X1su9a7c3Jqq23Ei993St7u716Xj3T18vC0XKxokwHvaGlrK2UpKlWCMlj0PdSQVwUXtUitqUsFvMYSbc3zQkpmrGoaNExkloOYkqth7j7490M6SG_8Ibi0UnMlhCgUFyqp5oNqXW1Rt876LlRNKoO7NrlB26b_heIyV5DLIgHFADTBxxjQ6qbtqt5YAtutZqD7HPWQo0456p8cdX8R_4fuQ7urwtdxSAxQTGK3xvBn4wj1DQyUhaA
CitedBy_id crossref_primary_10_1007_s10898_025_01480_x
crossref_primary_10_1016_j_ejor_2024_05_013
crossref_primary_10_1515_revce_2024_0064
crossref_primary_10_1016_j_apenergy_2025_126052
crossref_primary_10_1007_s10107_022_01876_7
crossref_primary_10_1287_ijoc_2024_0755
crossref_primary_10_1007_s12667_023_00645_5
crossref_primary_10_3390_a15040103
crossref_primary_10_1109_TSTE_2022_3211865
crossref_primary_10_1049_rpg2_12859
crossref_primary_10_1016_j_ejor_2024_05_011
crossref_primary_10_1016_j_ejor_2025_05_022
Cites_doi 10.1287/ijoc.2020.0987
10.1007/BF02592154
10.1007/s10107-019-01368-1
10.1007/s10107-005-0581-8
10.1021/ie201262f
10.1287/opre.33.5.989
10.1007/s00186-016-0546-0
10.1007/BF01582895
10.1080/10556788.2017.1350178
10.1080/10556780903087124
10.1109/TSTE.2018.2805164
10.1007/BF01386316
10.1287/ijoc.2019.0890
10.1007/s10107-022-01875-8
10.1007/s10898-014-0166-2
10.1016/j.ejor.2011.11.040
10.1007/BF00934810
10.1007/BF01262932
10.1109/TPWRS.2018.2880996
10.1007/s10957-014-0687-3
10.1007/s10107-015-0884-3
10.1016/j.ejor.2016.08.006
10.1137/15M1020575
10.1137/0117061
10.1007/s10898-017-0559-0
10.1007/s10479-012-1102-9
10.1007/s10107-009-0295-4
10.1007/978-1-4939-0808-0_14
10.1287/mnsc.22.4.455
10.1007/s10107-016-1012-8
10.1057/jors.1990.166
10.1007/s10107-018-1249-5
10.1007/s10107-020-01569-z
10.1007/s10957-011-9888-1
10.1137/141000671
10.1007/s10898-019-00786-x
10.1007/s10898-019-00816-8
10.1007/s10107-002-0308-z
10.1017/S0962492913000032
10.1287/opre.1090.0721
10.1080/10556788.2018.1556661
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01740-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 1024
ExternalDocumentID A725670658
10_1007_s10107_021_01740_0
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: 445857709
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-9fbf5593a7907de89fbf0b06a823b389fdb9702be9efb268551df7cced134f203
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740163700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:40:45 EDT 2025
Sat Nov 29 11:02:17 EST 2025
Tue Nov 18 22:03:02 EST 2025
Sat Nov 29 03:34:03 EST 2025
Fri Feb 21 02:44:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Mixed-integer nonlinear programming (MINLP)
Global optimization
Non-convexities
90C11
Nested Benders decomposition
90C26
49M27
Non-convex value functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-9fbf5593a7907de89fbf0b06a823b389fdb9702be9efb268551df7cced134f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2485-6199
OpenAccessLink https://link.springer.com/10.1007/s10107-021-01740-0
PQID 2733387237
PQPubID 25307
PageCount 38
ParticipantIDs proquest_journals_2733387237
gale_infotracacademiconefile_A725670658
crossref_citationtrail_10_1007_s10107_021_01740_0
crossref_primary_10_1007_s10107_021_01740_0
springer_journals_10_1007_s10107_021_01740_0
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF015828950749.90057
Philpott, A.B., Wahid, F., Bonnans, F.: MIDAS: a mixed integer dynamic approximation scheme. Math. Program. (2019)
CerisolaSLatorreJMRamosAStochastic dual dynamic programming applied to nonconvex hydrothermal modelsEur. J. Oper. Res.20122183687697288174110.1016/j.ejor.2011.11.0401244.90173
ZhouKKilinçMRChenXSahinidisNVAn efficient strategy for the activation of mip relaxations in a multicore global minlp solverJ. Global Optim.2018703497516376461610.1007/s10898-017-0559-01393.90076
BeasleyJEOR-library: distributing test problems by electronic mailJ. Oper. Res. Soc.19904111106910.1057/jors.1990.166
GAMS Software GmbH. GAMS.jl. Code released on GitHub https://github.com/GAMS-dev/gams.jl (2020)
MisenerRFloudasCAAntigone: algorithms for continuous/integer global optimization of nonlinear equationsJ. Global Optim.2014592–3503526321669010.1007/s10898-014-0166-21301.90063
Dowson, O., Kapelevich, L.: SDDP.jl: a Julia package for stochastic dual dynamic programming. INFORMS J. Comput. (2020)
LiXTomasgardABartonPINonconvex generalized Benders decomposition for stochastic separable mixed-integer nonlinear programsJ. Optim. Theory Appl.2011151425454285122410.1007/s10957-011-9888-11245.90079
Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2011)
ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.20191751–2461502394289710.1007/s10107-018-1249-51412.90101
Pedroso, J. P., Kubo, M., Viana, A.: Unit commitment with valve-point loading effect. Technical report, Universidade do Porto (2014)
Rebennack, S., Krasko, V.: Piecewise linear function fitting via mixed-integer linear programming. INFORMS J. Comput. (2020)
VielmaJPNemhauserGLModeling disjunctive constraints with a logarithmic number of binary variables and constraintsMath. Program.20111281–24972281095210.1007/s10107-009-0295-41218.90137
Meyer, R.R.: Integer and mixed-integer programming models: general properties. J. Optim. Theory Appl. 3(4) (1975)
Zou, J., Ahmed, S., Sun, X.: Multistage stochastic unit commitment using stochastic dual dynamic integer programming. IEEE Trans. Power Syst. 34(3) (2019)
Schnetter, E.: Delaunay.jl. Code released on GitHub https://github.com/eschnett/Delaunay.jl (2020)
RebennackSKallrathJContinuous piecewise linear delta-approximations for univariate functions: computing minimal breakpoint systemsJ. Optim. Theory Appl.20151672617643341245310.1007/s10957-014-0687-31327.90245
Schrage, L.: LindoSystems: LindoAPI (2004)
OgbeELiXA joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programsJ. Global Optim.201875595629401996110.1007/s10898-019-00786-x1432.90092
TawarmalaniMSahinidisNConvex extensions and envelopes of lower semi-continuous functionsMath. Program.200293247263195265310.1007/s10107-002-0308-z1065.90062
TawarmalaniMSahinidisNVA polyhedral branch-and-cut approach to global optimizationMath. Program.2005103225249214637910.1007/s10107-005-0581-81099.90047
BelottiPLeeJLibertiLMargotFWächterABranching and bounds tightening techniques for non-convex minlpOptim. Methods Softw.200924597634255490210.1080/105567809030871241179.90237
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S. J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M. E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP optimization suite 7.0. Technical report, Optimization Online (2020)
Sahinidis, N.V.: BARON 17.8.9: global optimization of mixed-integer nonlinear programs, User’s Manual (2017)
Kannan, R.: Algorithms, analysis and software for the global optimization of two-stage stochastic programs. PhD thesis, Massachusetts Institute of Technology (2018)
Füllner, C.: NCNBD.jl. Code released on GitHub https://github.com/ChrisFuelOR/NCNBD.jl (2021)
LiXChenYBartonPINonconvex generalized Benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problemsInd. Eng. Chem. Res.201251217287729910.1021/ie201262f
RebennackSCombining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programmingMath. Program.20161561–2343389345920510.1007/s10107-015-0884-31342.90116
BendersJFPartitioning procedures for solving mixed-variables programming problemsNumer. Math.19624123825214730310.1007/BF013863160109.38302
Ahmed, S., Cabral, F. G., Freitas Paulo da Costa, B.: Stochastic Lipschitz dynamic programming. Math. Programm. (2020)
BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer.2013221131303869610.1017/S09624929130000321291.65172
GeoffrionAMGeneralized Benders decompositionJ. Optim. Theory Appl.197210423726032731010.1007/BF009348100229.90024
Hjelmeland, M.N., Zou, J., Helseth, A., Ahmed, S.: Nonconvex medium-term hydropower scheduling by stochastic dual dynamic integer programming. IEEE Trans. Sustain. Energy 10(1) (2019)
SteegerGLohmannTRebennackSStrategic bidding for a price-maker hydroelectric producer: stochastic dual dynamic programming and Lagrangian relaxationIISE Trans.201847114
Bacci, T., Frangioni, A., Gentile, C., Tavlaridis-Gyparakis, K.: New MINLP formulations for the unit commitment problems with ramping constraints. Preprint, http://www.optimization-online.org/DB_FILE/2019/10/7426.pdf (2019)
LLC Gurobi Optimization. Gurobi optimization reference manual (2021)
GloverFImproved linear integer programming formulations of nonlinear integer problemsManage. Sci.197522445546040113810.1287/mnsc.22.4.4550318.90044
RebennackSComputing tight bounds via piecewise linear functions through the example of circle cutting problemsMath. Methods Oper. Res.2016841357353588210.1007/s00186-016-0546-01396.90051
BezansonJEdelmanAKarpinskiSShahVBJulia: a fresh approach to numerical computingSIAM Rev.20175916598360582610.1137/1410006711356.68030
RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001
VielmaJPAhmedSNemhauserGMixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensionsOper. Res.2010582303315267479810.1287/opre.1090.07211226.90046
BirgeJRDecomposition and partitioning methods for multistage stochastic linear programsOper. Res.1985335989100780691610.1287/opre.33.5.9890581.90065
SteegerGRebennackSDynamic convexification within nested Benders decomposition using Lagrangian relaxation: an application to the strategic bidding problemEur. J. Oper. Res.20172572669686356688610.1016/j.ejor.2016.08.0061394.90442
DunningIHuchetteJLubinMJuMP: a modeling language for mathematical optimizationSIAM Rev.2017592295320364649310.1137/15M10205751368.90002
Zhang, S., Sun, X. A.: Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization. (2021). Available at https://arxiv.org/abs/1912.13278. Accessed 29 Nov 2021
Van Dinter, J., Rebennack, S., Kallrath, J., Denholm, P., Newman, A.: The unit commitment model with concave emissions costs: a hybrid benders’ decomposition with nonconvex master problems. Ann. Oper. Res. 210(1), 361–386 (2013)
KilinçMRSahinidisNVExploiting integrality in the global optimization of mixed-integer nonlinear programming problems with baronOptim. Methods Softw.2018333540562378367310.1080/10556788.2017.13501781398.90110
InfangerGMortonDPCut sharing for multistage stochastic linear programs with interstage dependencyMath. Program.1996752241256142664010.1007/BF025921540874.90147
van SlykeRMWetsRL-shaped linear programs with applications to optimal control and stochastic programmingJ. SIAM Appl. Math.196917463866325374110.1137/01170610197.45602
Kapelevich, L.: SDDiP.jl. Code released on GitHub https://github.com/lkapelevich/SDDiP.jl (2018)
FeizollahiMJAhmedSSunAExact augmented Lagrangian duality for mixed integer linear programmingMath. Program.20171611–2365387359278210.1007/s10107-016-1012-81364.90226
Kallrath, J., Rebennack, S.: Computing area-tight piecewise linear overestimators, underestimators and tubes for univariate functions. In: Optimization in Science and Engineering, pp. 273–292. Springer (2014)
LiCGrossmannIEA generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variablesJ. Global Optim.2019752247272401243010.1007/s10898-019-00816-81428.90106
BurlacuRGeißlerBScheweLSolving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear programmesOptim. Methods Softw.20203513764403294010.1080/10556788.2018.15566611432.90089
R Burlacu (1740_CR9) 2020; 35
1740_CR31
1740_CR34
1740_CR36
JE Beasley (1740_CR3) 1990; 41
J Bezanson (1740_CR7) 2017; 59
S Rebennack (1740_CR37) 2016; 156
J Zou (1740_CR55) 2019; 175
1740_CR1
1740_CR2
S Cerisola (1740_CR10) 2012; 218
MVF Pereira (1740_CR35) 1991; 52
1740_CR40
1740_CR42
1740_CR43
1740_CR44
RM van Slyke (1740_CR49) 1969; 17
P Belotti (1740_CR5) 2009; 24
AM Geoffrion (1740_CR19) 1972; 10
JF Benders (1740_CR6) 1962; 4
JP Vielma (1740_CR51) 2011; 128
JP Vielma (1740_CR50) 2010; 58
K Zhou (1740_CR53) 2018; 70
M Tawarmalani (1740_CR48) 2005; 103
S Rebennack (1740_CR38) 2016; 84
RT Rockafellar (1740_CR41) 2009
E Ogbe (1740_CR33) 2018; 75
X Li (1740_CR30) 2011; 151
1740_CR52
1740_CR54
1740_CR11
1740_CR12
JR Birge (1740_CR8) 1985; 33
1740_CR15
MR Kilinç (1740_CR27) 2018; 33
1740_CR16
1740_CR17
1740_CR18
R Misener (1740_CR32) 2014; 59
S Rebennack (1740_CR39) 2015; 167
F Glover (1740_CR21) 1975; 22
X Li (1740_CR29) 2012; 51
G Steeger (1740_CR45) 2018; 47
MJ Feizollahi (1740_CR14) 2017; 161
1740_CR20
P Belotti (1740_CR4) 2013; 22
1740_CR22
C Li (1740_CR28) 2019; 75
I Dunning (1740_CR13) 2017; 59
1740_CR24
1740_CR25
1740_CR26
G Steeger (1740_CR46) 2017; 257
M Tawarmalani (1740_CR47) 2002; 93
G Infanger (1740_CR23) 1996; 75
References_xml – reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S. J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M. E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP optimization suite 7.0. Technical report, Optimization Online (2020)
– reference: InfangerGMortonDPCut sharing for multistage stochastic linear programs with interstage dependencyMath. Program.1996752241256142664010.1007/BF025921540874.90147
– reference: Schrage, L.: LindoSystems: LindoAPI (2004)
– reference: ZhouKKilinçMRChenXSahinidisNVAn efficient strategy for the activation of mip relaxations in a multicore global minlp solverJ. Global Optim.2018703497516376461610.1007/s10898-017-0559-01393.90076
– reference: Schnetter, E.: Delaunay.jl. Code released on GitHub https://github.com/eschnett/Delaunay.jl (2020)
– reference: Van Dinter, J., Rebennack, S., Kallrath, J., Denholm, P., Newman, A.: The unit commitment model with concave emissions costs: a hybrid benders’ decomposition with nonconvex master problems. Ann. Oper. Res. 210(1), 361–386 (2013)
– reference: Philpott, A.B., Wahid, F., Bonnans, F.: MIDAS: a mixed integer dynamic approximation scheme. Math. Program. (2019)
– reference: Zhang, S., Sun, X. A.: Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization. (2021). Available at https://arxiv.org/abs/1912.13278. Accessed 29 Nov 2021
– reference: TawarmalaniMSahinidisNConvex extensions and envelopes of lower semi-continuous functionsMath. Program.200293247263195265310.1007/s10107-002-0308-z1065.90062
– reference: BelottiPLeeJLibertiLMargotFWächterABranching and bounds tightening techniques for non-convex minlpOptim. Methods Softw.200924597634255490210.1080/105567809030871241179.90237
– reference: BelottiPKirchesCLeyfferSLinderothJLuedtkeJMahajanAMixed-integer nonlinear optimizationActa Numer.2013221131303869610.1017/S09624929130000321291.65172
– reference: Ahmed, S., Cabral, F. G., Freitas Paulo da Costa, B.: Stochastic Lipschitz dynamic programming. Math. Programm. (2020)
– reference: Sahinidis, N.V.: BARON 17.8.9: global optimization of mixed-integer nonlinear programs, User’s Manual (2017)
– reference: RockafellarRTWetsRJBVariational Analysis2009BerlinSpringer0888.49001
– reference: BeasleyJEOR-library: distributing test problems by electronic mailJ. Oper. Res. Soc.19904111106910.1057/jors.1990.166
– reference: BirgeJRDecomposition and partitioning methods for multistage stochastic linear programsOper. Res.1985335989100780691610.1287/opre.33.5.9890581.90065
– reference: BurlacuRGeißlerBScheweLSolving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear programmesOptim. Methods Softw.20203513764403294010.1080/10556788.2018.15566611432.90089
– reference: ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.20191751–2461502394289710.1007/s10107-018-1249-51412.90101
– reference: Dowson, O., Kapelevich, L.: SDDP.jl: a Julia package for stochastic dual dynamic programming. INFORMS J. Comput. (2020)
– reference: LLC Gurobi Optimization. Gurobi optimization reference manual (2021)
– reference: KilinçMRSahinidisNVExploiting integrality in the global optimization of mixed-integer nonlinear programming problems with baronOptim. Methods Softw.2018333540562378367310.1080/10556788.2017.13501781398.90110
– reference: Kapelevich, L.: SDDiP.jl. Code released on GitHub https://github.com/lkapelevich/SDDiP.jl (2018)
– reference: Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2011)
– reference: PereiraMVFPintoLMVGMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF015828950749.90057
– reference: GAMS Software GmbH. GAMS.jl. Code released on GitHub https://github.com/GAMS-dev/gams.jl (2020)
– reference: DunningIHuchetteJLubinMJuMP: a modeling language for mathematical optimizationSIAM Rev.2017592295320364649310.1137/15M10205751368.90002
– reference: GloverFImproved linear integer programming formulations of nonlinear integer problemsManage. Sci.197522445546040113810.1287/mnsc.22.4.4550318.90044
– reference: Kannan, R.: Algorithms, analysis and software for the global optimization of two-stage stochastic programs. PhD thesis, Massachusetts Institute of Technology (2018)
– reference: Bacci, T., Frangioni, A., Gentile, C., Tavlaridis-Gyparakis, K.: New MINLP formulations for the unit commitment problems with ramping constraints. Preprint, http://www.optimization-online.org/DB_FILE/2019/10/7426.pdf (2019)
– reference: Pedroso, J. P., Kubo, M., Viana, A.: Unit commitment with valve-point loading effect. Technical report, Universidade do Porto (2014)
– reference: BendersJFPartitioning procedures for solving mixed-variables programming problemsNumer. Math.19624123825214730310.1007/BF013863160109.38302
– reference: OgbeELiXA joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programsJ. Global Optim.201875595629401996110.1007/s10898-019-00786-x1432.90092
– reference: RebennackSCombining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programmingMath. Program.20161561–2343389345920510.1007/s10107-015-0884-31342.90116
– reference: MisenerRFloudasCAAntigone: algorithms for continuous/integer global optimization of nonlinear equationsJ. Global Optim.2014592–3503526321669010.1007/s10898-014-0166-21301.90063
– reference: TawarmalaniMSahinidisNVA polyhedral branch-and-cut approach to global optimizationMath. Program.2005103225249214637910.1007/s10107-005-0581-81099.90047
– reference: GeoffrionAMGeneralized Benders decompositionJ. Optim. Theory Appl.197210423726032731010.1007/BF009348100229.90024
– reference: Meyer, R.R.: Integer and mixed-integer programming models: general properties. J. Optim. Theory Appl. 3(4) (1975)
– reference: SteegerGLohmannTRebennackSStrategic bidding for a price-maker hydroelectric producer: stochastic dual dynamic programming and Lagrangian relaxationIISE Trans.201847114
– reference: van SlykeRMWetsRL-shaped linear programs with applications to optimal control and stochastic programmingJ. SIAM Appl. Math.196917463866325374110.1137/01170610197.45602
– reference: BezansonJEdelmanAKarpinskiSShahVBJulia: a fresh approach to numerical computingSIAM Rev.20175916598360582610.1137/1410006711356.68030
– reference: Hjelmeland, M.N., Zou, J., Helseth, A., Ahmed, S.: Nonconvex medium-term hydropower scheduling by stochastic dual dynamic integer programming. IEEE Trans. Sustain. Energy 10(1) (2019)
– reference: Kallrath, J., Rebennack, S.: Computing area-tight piecewise linear overestimators, underestimators and tubes for univariate functions. In: Optimization in Science and Engineering, pp. 273–292. Springer (2014)
– reference: LiCGrossmannIEA generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variablesJ. Global Optim.2019752247272401243010.1007/s10898-019-00816-81428.90106
– reference: FeizollahiMJAhmedSSunAExact augmented Lagrangian duality for mixed integer linear programmingMath. Program.20171611–2365387359278210.1007/s10107-016-1012-81364.90226
– reference: LiXTomasgardABartonPINonconvex generalized Benders decomposition for stochastic separable mixed-integer nonlinear programsJ. Optim. Theory Appl.2011151425454285122410.1007/s10957-011-9888-11245.90079
– reference: Zou, J., Ahmed, S., Sun, X.: Multistage stochastic unit commitment using stochastic dual dynamic integer programming. IEEE Trans. Power Syst. 34(3) (2019)
– reference: CerisolaSLatorreJMRamosAStochastic dual dynamic programming applied to nonconvex hydrothermal modelsEur. J. Oper. Res.20122183687697288174110.1016/j.ejor.2011.11.0401244.90173
– reference: RebennackSKallrathJContinuous piecewise linear delta-approximations for univariate functions: computing minimal breakpoint systemsJ. Optim. Theory Appl.20151672617643341245310.1007/s10957-014-0687-31327.90245
– reference: LiXChenYBartonPINonconvex generalized Benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problemsInd. Eng. Chem. Res.201251217287729910.1021/ie201262f
– reference: RebennackSComputing tight bounds via piecewise linear functions through the example of circle cutting problemsMath. Methods Oper. Res.2016841357353588210.1007/s00186-016-0546-01396.90051
– reference: Rebennack, S., Krasko, V.: Piecewise linear function fitting via mixed-integer linear programming. INFORMS J. Comput. (2020)
– reference: VielmaJPAhmedSNemhauserGMixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensionsOper. Res.2010582303315267479810.1287/opre.1090.07211226.90046
– reference: SteegerGRebennackSDynamic convexification within nested Benders decomposition using Lagrangian relaxation: an application to the strategic bidding problemEur. J. Oper. Res.20172572669686356688610.1016/j.ejor.2016.08.0061394.90442
– reference: VielmaJPNemhauserGLModeling disjunctive constraints with a logarithmic number of binary variables and constraintsMath. Program.20111281–24972281095210.1007/s10107-009-0295-41218.90137
– reference: Füllner, C.: NCNBD.jl. Code released on GitHub https://github.com/ChrisFuelOR/NCNBD.jl (2021)
– ident: 1740_CR12
  doi: 10.1287/ijoc.2020.0987
– volume: 75
  start-page: 241
  issue: 2
  year: 1996
  ident: 1740_CR23
  publication-title: Math. Program.
  doi: 10.1007/BF02592154
– ident: 1740_CR36
  doi: 10.1007/s10107-019-01368-1
– volume: 103
  start-page: 225
  year: 2005
  ident: 1740_CR48
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0581-8
– volume: 51
  start-page: 7287
  issue: 21
  year: 2012
  ident: 1740_CR29
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201262f
– ident: 1740_CR26
– volume: 33
  start-page: 989
  issue: 5
  year: 1985
  ident: 1740_CR8
  publication-title: Oper. Res.
  doi: 10.1287/opre.33.5.989
– volume: 84
  start-page: 3
  issue: 1
  year: 2016
  ident: 1740_CR38
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-016-0546-0
– volume: 52
  start-page: 359
  issue: 1–3
  year: 1991
  ident: 1740_CR35
  publication-title: Math. Program.
  doi: 10.1007/BF01582895
– ident: 1740_CR17
– volume: 33
  start-page: 540
  issue: 3
  year: 2018
  ident: 1740_CR27
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1350178
– ident: 1740_CR42
– volume: 24
  start-page: 597
  year: 2009
  ident: 1740_CR5
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780903087124
– ident: 1740_CR22
  doi: 10.1109/TSTE.2018.2805164
– volume: 4
  start-page: 238
  issue: 1
  year: 1962
  ident: 1740_CR6
  publication-title: Numer. Math.
  doi: 10.1007/BF01386316
– ident: 1740_CR40
  doi: 10.1287/ijoc.2019.0890
– ident: 1740_CR52
  doi: 10.1007/s10107-022-01875-8
– volume: 59
  start-page: 503
  issue: 2–3
  year: 2014
  ident: 1740_CR32
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0166-2
– volume-title: Variational Analysis
  year: 2009
  ident: 1740_CR41
– volume: 218
  start-page: 687
  issue: 3
  year: 2012
  ident: 1740_CR10
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.11.040
– volume: 10
  start-page: 237
  issue: 4
  year: 1972
  ident: 1740_CR19
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934810
– ident: 1740_CR31
  doi: 10.1007/BF01262932
– ident: 1740_CR18
– ident: 1740_CR2
– ident: 1740_CR54
  doi: 10.1109/TPWRS.2018.2880996
– ident: 1740_CR20
– ident: 1740_CR24
– volume: 167
  start-page: 617
  issue: 2
  year: 2015
  ident: 1740_CR39
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0687-3
– volume: 156
  start-page: 343
  issue: 1–2
  year: 2016
  ident: 1740_CR37
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0884-3
– volume: 257
  start-page: 669
  issue: 2
  year: 2017
  ident: 1740_CR46
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.08.006
– volume: 59
  start-page: 295
  issue: 2
  year: 2017
  ident: 1740_CR13
  publication-title: SIAM Rev.
  doi: 10.1137/15M1020575
– ident: 1740_CR34
– volume: 17
  start-page: 638
  issue: 4
  year: 1969
  ident: 1740_CR49
  publication-title: J. SIAM Appl. Math.
  doi: 10.1137/0117061
– volume: 70
  start-page: 497
  issue: 3
  year: 2018
  ident: 1740_CR53
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0559-0
– ident: 1740_CR11
  doi: 10.1007/s10479-012-1102-9
– volume: 128
  start-page: 49
  issue: 1–2
  year: 2011
  ident: 1740_CR51
  publication-title: Math. Program.
  doi: 10.1007/s10107-009-0295-4
– ident: 1740_CR25
  doi: 10.1007/978-1-4939-0808-0_14
– ident: 1740_CR44
– volume: 22
  start-page: 455
  issue: 4
  year: 1975
  ident: 1740_CR21
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.22.4.455
– ident: 1740_CR15
– volume: 161
  start-page: 365
  issue: 1–2
  year: 2017
  ident: 1740_CR14
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1012-8
– volume: 41
  start-page: 1069
  issue: 11
  year: 1990
  ident: 1740_CR3
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1990.166
– volume: 175
  start-page: 461
  issue: 1–2
  year: 2019
  ident: 1740_CR55
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1249-5
– ident: 1740_CR1
  doi: 10.1007/s10107-020-01569-z
– volume: 151
  start-page: 425
  year: 2011
  ident: 1740_CR30
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9888-1
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 1740_CR7
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– volume: 75
  start-page: 595
  year: 2018
  ident: 1740_CR33
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-019-00786-x
– volume: 75
  start-page: 247
  issue: 2
  year: 2019
  ident: 1740_CR28
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-019-00816-8
– volume: 47
  start-page: 1
  year: 2018
  ident: 1740_CR45
  publication-title: IISE Trans.
– ident: 1740_CR43
– volume: 93
  start-page: 247
  year: 2002
  ident: 1740_CR47
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0308-z
– ident: 1740_CR16
– volume: 22
  start-page: 1
  year: 2013
  ident: 1740_CR4
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000032
– volume: 58
  start-page: 303
  issue: 2
  year: 2010
  ident: 1740_CR50
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0721
– volume: 35
  start-page: 37
  issue: 1
  year: 2020
  ident: 1740_CR9
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2018.1556661
SSID ssj0001388
Score 2.4488986
Snippet We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 987
SubjectTerms Algorithms
Approximation
Benders decomposition
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Nonlinear programming
Numerical Analysis
Optimization
Regularization
Theoretical
Unit commitment
Title Non-convex nested Benders decomposition
URI https://link.springer.com/article/10.1007/s10107-021-01740-0
https://www.proquest.com/docview/2733387237
Volume 196
WOSCitedRecordID wos000740163700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoB6QdoBKbVKa5DgQiANMiMe0W9S8JCTUoXUgfj5Jlm7jKcExbZpadh52bH8GOESiOJGCsTiXaRZnNKcxNSyNdSKSTDOhsIdd7F2Rbpf2--wmJIVVdbR77ZL0O_VMslvqrtWQM3-JC0qchwV73FFXsOH2rjfZf1NMaV2o1WkHIVXm-zE-HEefN-Uv3lF_6Fys_o_cNVgJSmbUGc-KdZjT5QYsz0AP2tb1BK-12oR2d1DGPgD9LSr9DWh06mvMVZHSLuo8hHZtwcPF-f3ZZRxKKMTSGoajmBlhrM2AC2KNYKWpa1sp5AVFWFhdxSjBSIKEZtoIlFOrPylDpNQqxZlBCd6GRjko9Q5EGUqMTpUSRtMsk6ogBcXCPqCufo-iTUhrTnIZ8MVdmYsnPkVGdizhliXcs4QnTTiafPM8Rtf4tXfbCYi7pWdHlkXIILD0ORAr3iFWf3NuW0tLq5YhD2uy4lZRs_Y4QZg04biW2fT1z__d_Vv3PVhCLkfCJyy2oDEavuh9WJSvo8dqeODn6juq9t_j
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah-EPWihTeqSPk5xKG5FdI69heYLBOlkneKfb5K12_wEfUybpsddPu5yd78DOEY8PRM8jv2GCCM_og3qUx2Hvgp4EKmYS-xgF3ttkiS0349vi6SwvIx2L12SbqeeSXYL7bUasuYvsUGJ87AQmRPLIubf3fcm-2-IKS0LtVrtoEiV-X6MD8fR5035i3fUHTqttf-Ruw6rhZLpNcezYgPmVLYJKzPQg6bVmeC15ltQTwaZ7wLQ37zM3YB6567GXO5JZaPOi9CubXhoXXYvrvyihIIvjGE48mPNtbEZcEqMESwVtW0jhUZKEeZGV9GSxyRAXMVKc9SgRn-SmgihZIgjjQK8A5VskKld8CIUaBVKybWiUSRkSlKKuXlAbf0eSasQlpxkosAXt2UuntgUGdmyhBmWMMcSFlThZPLN8xhd49fedSsgZpeeGVmkRQaBoc-CWLEmMfqbddsaWmqlDFmxJnNmFDVjjxOESRVOS5lNX__8372_dT-Cpatup83a18nNPiwjmy_hkhdrUBkNX9QBLIrX0WM-PHTz9h0yQOLH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50FdEHb3E9-yD4oGXbtDbpo9eiuC4LHvgWmgsEqbKt4s83k23X9QTxMW2ahpkcM8l83wDsEJEdSJGmfiLD2I9Zwnxm0tDXgQhinQoVOdrF2w7tdtndXdobQfG7aPf6SnKAaUCWprxsPSnTGgG-hXjERtAVphigOA4TMQbSo79-dTtci8OIsTppK1oKFWzm-zY-bE2fF-gvN6VuA2rP_b_r8zBbGZ_e4WC0LMCYzhdhZoSS0JYuhzyuxRLsdh9z3wWmv3q5Oxn1jlzuucJTGqPRq5CvZbhpn14fn_lVagVfWoex9FMjjPUlooxa51hphmWrnSRjJBLWhjFKpDQgQqfaCJIwa1cpQ6XUKoxiQ4JoBRr5Y65XwYtJYHSolDCaxbFUGc1YJOwDhnl9FGtCWEuVy4p3HNNfPPB3xmQUCbci4U4kPGjC3vCbpwHrxq-1d1FZHKekbVlmFbLA9g_JrfghtXYdXufavmzU-uTVXC24NeCsn05JRJuwX-vv_fXP_137W_VtmOqdtHnnvHuxDtMEYRQO07gBjbL_rDdhUr6U90V_yw3hNySn66s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+nested+Benders+decomposition&rft.jtitle=Mathematical+programming&rft.au=F%C3%BCllner%2C+Christian&rft.au=Rebennack%2C+Steffen&rft.date=2022-11-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=196&rft.issue=1-2&rft.spage=987&rft_id=info:doi/10.1007%2Fs10107-021-01740-0&rft.externalDocID=A725670658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon