Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis
We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective fu...
Saved in:
| Published in: | Mathematical programming Vol. 193; no. 1; pp. 225 - 269 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2022
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate
o
(1/
n
) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results. |
|---|---|
| AbstractList | We study the block-coordinate forward-backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o(1/n) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results. We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o (1/ n ) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results. |
| Audience | Academic |
| Author | Villa, Silvia Salzo, Saverio |
| Author_xml | – sequence: 1 givenname: Saverio orcidid: 0000-0003-0494-9101 surname: Salzo fullname: Salzo, Saverio email: saverio.salzo@iit.it organization: Istituto Italiano di Tecnologia – sequence: 2 givenname: Silvia surname: Villa fullname: Villa, Silvia organization: Università degli Studi di Genova, DIMA |
| BookMark | eNp9kM9uFDEMxiPUSmxbXoDTSJynOMkkmeFWVfyTKsGBHqvIk_EsabNJSWapeuMdeEOehCyDhMSh8sGW5Z_9-TthRzFFYuwlh3MOYF4XDhxMCwJa4BpEy5-xDe-kbjvd6SO2ARCqVZrDc3ZSyi0AcNn3G3bzGTOGQKHJGKe0a8aQ3F3rUsqTj7hQM6f8gHn69ePniO7uUDYYtin75evuTYPNPvrZ09S4FL9T3lJ01GDE8Fh8OWPHM4ZCL_7mU3b97u2Xyw_t1af3Hy8vrlrXgVjaQarRoVGDxk4I6PteykkZBSN0UzdQP2qDOI2CD5ponrvZjD2QkaMDxQWXp-zVuvc-p297Kou9TftcRRQrtFJcai6hTp2vU1sMZH2c05LR1Zho56t8mn3tXxiQQ2d6qSogVsDlVEqm2d5nv8P8aDnYg-929d1W3-0f3-1BS_8f5PyCi0-xXvPhaVSuaKl34pbyvzeeoH4DQLKaGQ |
| CitedBy_id | crossref_primary_10_1007_s10107_024_02124_w crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1007_s10589_023_00489_w crossref_primary_10_1109_TAC_2024_3419186 crossref_primary_10_3390_ijerph191811169 crossref_primary_10_1016_j_jmaa_2024_128925 crossref_primary_10_1016_j_ejco_2023_100079 |
| Cites_doi | 10.1007/s10107-011-0472-0 10.1287/moor.2017.0889 10.1137/100802001 10.1017/CBO9780511779398 10.1287/moor.1100.0456 10.1137/120887679 10.1007/978-3-319-48311-5 10.1137/130950288 10.1007/s10107-015-0901-6 10.1007/s10107-018-1232-1 10.1007/978-1-4419-8853-9 10.1007/s10589-019-00137-2 10.1137/18M1168480 10.1007/s11590-015-0916-1 10.1007/BF02096261 10.1080/10556788.2016.1190360 10.1007/978-3-319-41589-5_4 10.1137/S1052623400376366 10.1007/s00041-008-9030-4 10.1080/10556788.2017.1392517 10.1137/070704277 10.1137/050626090 10.1137/130949993 10.1007/s10107-012-0614-z 10.1007/s10107-016-1009-3 10.1007/978-3-319-46128-1_50 10.1007/BF01071091 10.1080/10556788.2016.1190361 10.1137/16M1073741 10.1007/s10107-015-0892-3 10.1007/s10957-016-1058-z 10.1007/s10589-017-9962-1 10.1137/140971233 10.1007/s10107-014-0800-2 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-020-01602-1 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 269 |
| ExternalDocumentID | A703947835 10_1007_s10107_020_01602_1 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-935bca7596a422088833d5750b04d49e8b67aadb2196eeff4f7b80e73bc051213 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639047400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:42:05 EDT 2025 Sat Nov 29 10:25:33 EST 2025 Tue Nov 18 22:24:31 EST 2025 Sat Nov 29 03:34:02 EST 2025 Fri Feb 21 02:46:03 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Random block-coordinate descent 65K05 Convex optimization 90C25 Convergence rates Error bounds 90C06 49M27 Arbitrary sampling Stochastic quasi-Fejér sequences Parallel algorithms Forward–backward algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-935bca7596a422088833d5750b04d49e8b67aadb2196eeff4f7b80e73bc051213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0494-9101 |
| OpenAccessLink | https://hdl.handle.net/11567/1061061 |
| PQID | 2655136130 |
| PQPubID | 25307 |
| PageCount | 45 |
| ParticipantIDs | proquest_journals_2655136130 gale_infotracacademiconefile_A703947835 crossref_primary_10_1007_s10107_020_01602_1 crossref_citationtrail_10_1007_s10107_020_01602_1 springer_journals_10_1007_s10107_020_01602_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | QuZRichtàrikPCoordinate descent with arbitrary sampling II: expected separable over approximationOptim. Methods Softw.201631858884353456110.1080/10556788.2016.1190361 Garrigos, G., Rosasco, L., Villa, S.: Convergence of the forward–backward algorithm: beyond the worst-case with the help of geometry. arXiv:1703.09477 (2017) DavisDYinYGlowinskiROsherSJYinWConvergence rate analysis of several splitting schemesSplitting Methods in Communication, Imaging, Science, and Engineering2016ChamSpringer11516310.1007/978-3-319-41589-5_4 NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.20091915741609248604110.1137/070704277 RichtàrikPTakàčMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program. Ser. A2014144138317995310.1007/s10107-012-0614-z QuZRichtàrikPZhangTQuartz: randomized dual coordinate ascent with arbitrary samplingAdv. Neural Inform. Process. Syst.201528865873 LeventhalDLewisASRandomized method for linear constraints: convergence rates and conditioningMath. Oper. Res.201035641654272406810.1287/moor.1100.0456 KnoppKInfinite Sequences and Series1956New YorkDover Publications Inc0070.05807 FercoqOQuZRestarting the accelerated coordinate descent method with a rough strong convexity estimateComput. Optim. Appl.2020756391404707310.1007/s10589-019-00137-2 RichtàrikPTakàčMOn optimal probabilities in stochastic coordinate descent methodsOptim. Lett.20161012331243352984310.1007/s11590-015-0916-1 NesterovYEfficiency of coordinate descent methods on huge-scale optimization problemsSIAM J. Optim.201222341362296885710.1137/100802001 RichtàrikPTakàčMParallel coordinate descent methods for big data optimizationMath. Program. Ser. A2016156156484345920710.1007/s10107-015-0901-6 Ermol’evYMOn the method of generalized stochastic gradients and quasi-Fejér sequencesCybernetics1969520822010.1007/BF01071091 BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172New YorkSpringer10.1007/978-3-319-48311-5 LuZXiaoLOn the complexity analysis of randomized block-coordinate descent methodsMath. Program. Ser. A2015152615642336949510.1007/s10107-014-0800-2 DrusvyatskiyDLewisASError bounds, quadratic growth, and linear convergence of proximal methodsMath. Oper. Res.201843919948384607810.1287/moor.2017.0889 CombettesPLWajsVRSignal recovery by proximal forward–backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090 BertsekasDPIncremental proximal methods for large scale convex optimizationMath. Program. Ser. B2011129163283787910.1007/s10107-011-0472-0 NecoaraINesterovYGlineurFRandom block coordinate descent methods for linearly constrained optimization over networksJ. Optim. Theory Appl.2017173227254362664510.1007/s10957-016-1058-z NecoaraINesterovYGlineurFLinear convergence of first order methods for non-strongly convex optimizationMath. Program.201917569107394288610.1007/s10107-018-1232-1 QuZRichtàrikPCoordinate descent with arbitrary sampling I: algorithms and complexityOptim. Method Softw.201631829857353456010.1080/10556788.2016.1190360 DünnerCForteSTakàčMJaggiMPrimal–dual rates and certificatesInt. Conf. Mach. Learn. PMLR201648783792 LuoZ-QTsengPError bounds and convergence analysis of feasible descent methods: a general approachAnn. Oper. Res.199346157178126001610.1007/BF02096261 StrohmerTVershyninRA randomized Kaczmarz algorithm with exponential convergenceJ. Fourier Anal. Appl.2009152262278250092410.1007/s00041-008-9030-4 KarimiHNutiniJSchmidtMFrasconiPLandwehrNMancoGVreekenJLinear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz conditionMachine Learning and Knowledge Discovery in Databases2016ChamSpringer79581110.1007/978-3-319-46128-1_50 KiwielKKConvergence of approximate and incremental subgradient methods for convex optimizationSIAM J. Optim.200614807840208594410.1137/S1052623400376366 RichtàrikPTakàčMDistributed coordinate descent method for learning with big dataJ. Mach. Learn. Res.20161712535170981360.68709 SalzoSThe variable metric forward–backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M1073741 WangP-WLinC-JIteration complexity of feasible descent methods for convex optimizationJ. Mach. Learn. Res.2014151523154832147901319.90051 CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergenceMath. Program. Ser. B2018174119 FercoqOBianchiPA coordinate-descent primal–dual algorithm with large step size and possibly nonseparable functionsSIAM J. Optim.201929100134389664210.1137/18M1168480 TaylorABHendrickxJMGlineurFSmooth strongly convex interpolation and exact worst-case performance of first-order methodsMath. Program.2017161307345359278010.1007/s10107-016-1009-3 DurrettRProbability, Theory and Examples20104New YorkCambridge University Press10.1017/CBO9780511779398 TappendenRTakàčMRichtàrikPOn the complexity of parallel coordinate descentOptim. Methods Softw.201833373395375060810.1080/10556788.2017.1392517 CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.20152521121124810.1137/140971233 LinJRosascoLVillaSZhouD-XModified Fejér sequences and applicationsComput. Optim. Appl.20187195113384117810.1007/s10589-017-9962-1 NesterovYIntroductory Lectures on Convex Optimization. A Basic Course2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-9 BeckATetruashviliLOn the convergence of the block coordinate descent type methodsSIAM J. Optim.201323420372060311664910.1137/120887679 FercoqORichtàrikPAccelerated, parallel, and proximal coordinate descentSIAM J. Optim.20152519972023340468710.1137/130949993 NecoaraIClipiciDParallel random coordinate descent method for composite minimization: convergence analysis and error boundsSIAM J. Optim.201626197226344991410.1137/130950288 WrightSCoordinate descent algorithmsMath. Program. Ser. B2015151334334754810.1007/s10107-015-0892-3 O Fercoq (1602_CR12) 2019; 29 P Richtàrik (1602_CR34) 2016; 156 Z Qu (1602_CR29) 2015; 28 Z Lu (1602_CR21) 2015; 152 Z-Q Luo (1602_CR22) 1993; 46 P Richtàrik (1602_CR35) 2016; 10 D Leventhal (1602_CR19) 2010; 35 O Fercoq (1602_CR13) 2015; 25 Z Qu (1602_CR31) 2016; 31 Z Qu (1602_CR30) 2016; 31 A Beck (1602_CR2) 2013; 23 PL Combettes (1602_CR6) 2005; 4 I Necoara (1602_CR25) 2019; 175 R Tappenden (1602_CR38) 2018; 33 J Lin (1602_CR20) 2018; 71 DP Bertsekas (1602_CR3) 2011; 129 I Necoara (1602_CR23) 2016; 26 1602_CR15 I Necoara (1602_CR24) 2017; 173 PL Combettes (1602_CR4) 2015; 25 P Richtàrik (1602_CR32) 2016; 17 S Salzo (1602_CR36) 2017; 27 A Nemirovski (1602_CR26) 2009; 19 HH Bauschke (1602_CR1) 2017 K Knopp (1602_CR17) 1956 S Wright (1602_CR41) 2015; 151 P Richtàrik (1602_CR33) 2014; 144 C Dünner (1602_CR9) 2016; 48 Y Nesterov (1602_CR27) 2004 T Strohmer (1602_CR37) 2009; 15 YM Ermol’ev (1602_CR11) 1969; 5 O Fercoq (1602_CR14) 2020; 75 KK Kiwiel (1602_CR18) 2006; 14 PL Combettes (1602_CR5) 2018; 174 P-W Wang (1602_CR40) 2014; 15 R Durrett (1602_CR10) 2010 D Davis (1602_CR7) 2016 H Karimi (1602_CR16) 2016 Y Nesterov (1602_CR28) 2012; 22 D Drusvyatskiy (1602_CR8) 2018; 43 AB Taylor (1602_CR39) 2017; 161 |
| References_xml | – reference: CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.20152521121124810.1137/140971233 – reference: BeckATetruashviliLOn the convergence of the block coordinate descent type methodsSIAM J. Optim.201323420372060311664910.1137/120887679 – reference: LeventhalDLewisASRandomized method for linear constraints: convergence rates and conditioningMath. Oper. Res.201035641654272406810.1287/moor.1100.0456 – reference: NecoaraINesterovYGlineurFRandom block coordinate descent methods for linearly constrained optimization over networksJ. Optim. Theory Appl.2017173227254362664510.1007/s10957-016-1058-z – reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172New YorkSpringer10.1007/978-3-319-48311-5 – reference: KarimiHNutiniJSchmidtMFrasconiPLandwehrNMancoGVreekenJLinear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz conditionMachine Learning and Knowledge Discovery in Databases2016ChamSpringer79581110.1007/978-3-319-46128-1_50 – reference: TaylorABHendrickxJMGlineurFSmooth strongly convex interpolation and exact worst-case performance of first-order methodsMath. Program.2017161307345359278010.1007/s10107-016-1009-3 – reference: QuZRichtàrikPZhangTQuartz: randomized dual coordinate ascent with arbitrary samplingAdv. Neural Inform. Process. Syst.201528865873 – reference: QuZRichtàrikPCoordinate descent with arbitrary sampling II: expected separable over approximationOptim. Methods Softw.201631858884353456110.1080/10556788.2016.1190361 – reference: RichtàrikPTakàčMDistributed coordinate descent method for learning with big dataJ. Mach. Learn. Res.20161712535170981360.68709 – reference: LuoZ-QTsengPError bounds and convergence analysis of feasible descent methods: a general approachAnn. Oper. Res.199346157178126001610.1007/BF02096261 – reference: KnoppKInfinite Sequences and Series1956New YorkDover Publications Inc0070.05807 – reference: DurrettRProbability, Theory and Examples20104New YorkCambridge University Press10.1017/CBO9780511779398 – reference: Garrigos, G., Rosasco, L., Villa, S.: Convergence of the forward–backward algorithm: beyond the worst-case with the help of geometry. arXiv:1703.09477 (2017) – reference: NecoaraINesterovYGlineurFLinear convergence of first order methods for non-strongly convex optimizationMath. Program.201917569107394288610.1007/s10107-018-1232-1 – reference: RichtàrikPTakàčMParallel coordinate descent methods for big data optimizationMath. Program. Ser. A2016156156484345920710.1007/s10107-015-0901-6 – reference: Ermol’evYMOn the method of generalized stochastic gradients and quasi-Fejér sequencesCybernetics1969520822010.1007/BF01071091 – reference: CombettesPLWajsVRSignal recovery by proximal forward–backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090 – reference: DünnerCForteSTakàčMJaggiMPrimal–dual rates and certificatesInt. Conf. Mach. Learn. PMLR201648783792 – reference: DavisDYinYGlowinskiROsherSJYinWConvergence rate analysis of several splitting schemesSplitting Methods in Communication, Imaging, Science, and Engineering2016ChamSpringer11516310.1007/978-3-319-41589-5_4 – reference: TappendenRTakàčMRichtàrikPOn the complexity of parallel coordinate descentOptim. Methods Softw.201833373395375060810.1080/10556788.2017.1392517 – reference: FercoqORichtàrikPAccelerated, parallel, and proximal coordinate descentSIAM J. Optim.20152519972023340468710.1137/130949993 – reference: CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergenceMath. Program. Ser. B2018174119 – reference: LuZXiaoLOn the complexity analysis of randomized block-coordinate descent methodsMath. Program. Ser. A2015152615642336949510.1007/s10107-014-0800-2 – reference: NesterovYEfficiency of coordinate descent methods on huge-scale optimization problemsSIAM J. Optim.201222341362296885710.1137/100802001 – reference: LinJRosascoLVillaSZhouD-XModified Fejér sequences and applicationsComput. Optim. Appl.20187195113384117810.1007/s10589-017-9962-1 – reference: QuZRichtàrikPCoordinate descent with arbitrary sampling I: algorithms and complexityOptim. Method Softw.201631829857353456010.1080/10556788.2016.1190360 – reference: StrohmerTVershyninRA randomized Kaczmarz algorithm with exponential convergenceJ. Fourier Anal. Appl.2009152262278250092410.1007/s00041-008-9030-4 – reference: NesterovYIntroductory Lectures on Convex Optimization. A Basic Course2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-9 – reference: RichtàrikPTakàčMOn optimal probabilities in stochastic coordinate descent methodsOptim. Lett.20161012331243352984310.1007/s11590-015-0916-1 – reference: FercoqOBianchiPA coordinate-descent primal–dual algorithm with large step size and possibly nonseparable functionsSIAM J. Optim.201929100134389664210.1137/18M1168480 – reference: FercoqOQuZRestarting the accelerated coordinate descent method with a rough strong convexity estimateComput. Optim. Appl.2020756391404707310.1007/s10589-019-00137-2 – reference: BertsekasDPIncremental proximal methods for large scale convex optimizationMath. Program. Ser. B2011129163283787910.1007/s10107-011-0472-0 – reference: NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.20091915741609248604110.1137/070704277 – reference: SalzoSThe variable metric forward–backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M1073741 – reference: WrightSCoordinate descent algorithmsMath. Program. Ser. B2015151334334754810.1007/s10107-015-0892-3 – reference: KiwielKKConvergence of approximate and incremental subgradient methods for convex optimizationSIAM J. Optim.200614807840208594410.1137/S1052623400376366 – reference: NecoaraIClipiciDParallel random coordinate descent method for composite minimization: convergence analysis and error boundsSIAM J. Optim.201626197226344991410.1137/130950288 – reference: WangP-WLinC-JIteration complexity of feasible descent methods for convex optimizationJ. Mach. Learn. Res.2014151523154832147901319.90051 – reference: DrusvyatskiyDLewisASError bounds, quadratic growth, and linear convergence of proximal methodsMath. Oper. Res.201843919948384607810.1287/moor.2017.0889 – reference: RichtàrikPTakàčMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program. Ser. A2014144138317995310.1007/s10107-012-0614-z – ident: 1602_CR15 – volume: 129 start-page: 163 year: 2011 ident: 1602_CR3 publication-title: Math. Program. Ser. B doi: 10.1007/s10107-011-0472-0 – volume: 43 start-page: 919 year: 2018 ident: 1602_CR8 publication-title: Math. Oper. Res. doi: 10.1287/moor.2017.0889 – volume: 22 start-page: 341 year: 2012 ident: 1602_CR28 publication-title: SIAM J. Optim. doi: 10.1137/100802001 – volume-title: Probability, Theory and Examples year: 2010 ident: 1602_CR10 doi: 10.1017/CBO9780511779398 – volume: 35 start-page: 641 year: 2010 ident: 1602_CR19 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0456 – volume: 23 start-page: 2037 issue: 4 year: 2013 ident: 1602_CR2 publication-title: SIAM J. Optim. doi: 10.1137/120887679 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2017 ident: 1602_CR1 doi: 10.1007/978-3-319-48311-5 – volume: 28 start-page: 865 year: 2015 ident: 1602_CR29 publication-title: Adv. Neural Inform. Process. Syst. – volume: 26 start-page: 197 year: 2016 ident: 1602_CR23 publication-title: SIAM J. Optim. doi: 10.1137/130950288 – volume: 156 start-page: 156 year: 2016 ident: 1602_CR34 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-015-0901-6 – volume: 48 start-page: 783 year: 2016 ident: 1602_CR9 publication-title: Int. Conf. Mach. Learn. PMLR – volume: 175 start-page: 69 year: 2019 ident: 1602_CR25 publication-title: Math. Program. doi: 10.1007/s10107-018-1232-1 – volume-title: Introductory Lectures on Convex Optimization. A Basic Course year: 2004 ident: 1602_CR27 doi: 10.1007/978-1-4419-8853-9 – volume: 75 start-page: 63 year: 2020 ident: 1602_CR14 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00137-2 – volume: 29 start-page: 100 year: 2019 ident: 1602_CR12 publication-title: SIAM J. Optim. doi: 10.1137/18M1168480 – volume: 10 start-page: 1233 year: 2016 ident: 1602_CR35 publication-title: Optim. Lett. doi: 10.1007/s11590-015-0916-1 – volume: 46 start-page: 157 year: 1993 ident: 1602_CR22 publication-title: Ann. Oper. Res. doi: 10.1007/BF02096261 – volume: 31 start-page: 829 year: 2016 ident: 1602_CR30 publication-title: Optim. Method Softw. doi: 10.1080/10556788.2016.1190360 – volume-title: Infinite Sequences and Series year: 1956 ident: 1602_CR17 – start-page: 115 volume-title: Splitting Methods in Communication, Imaging, Science, and Engineering year: 2016 ident: 1602_CR7 doi: 10.1007/978-3-319-41589-5_4 – volume: 14 start-page: 807 year: 2006 ident: 1602_CR18 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400376366 – volume: 15 start-page: 262 issue: 2 year: 2009 ident: 1602_CR37 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9030-4 – volume: 33 start-page: 373 year: 2018 ident: 1602_CR38 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2017.1392517 – volume: 19 start-page: 1574 year: 2009 ident: 1602_CR26 publication-title: SIAM J. Optim. doi: 10.1137/070704277 – volume: 4 start-page: 1168 year: 2005 ident: 1602_CR6 publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – volume: 25 start-page: 1997 year: 2015 ident: 1602_CR13 publication-title: SIAM J. Optim. doi: 10.1137/130949993 – volume: 144 start-page: 1 year: 2014 ident: 1602_CR33 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-012-0614-z – volume: 161 start-page: 307 year: 2017 ident: 1602_CR39 publication-title: Math. Program. doi: 10.1007/s10107-016-1009-3 – start-page: 795 volume-title: Machine Learning and Knowledge Discovery in Databases year: 2016 ident: 1602_CR16 doi: 10.1007/978-3-319-46128-1_50 – volume: 5 start-page: 208 year: 1969 ident: 1602_CR11 publication-title: Cybernetics doi: 10.1007/BF01071091 – volume: 31 start-page: 858 year: 2016 ident: 1602_CR31 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2016.1190361 – volume: 27 start-page: 2153 year: 2017 ident: 1602_CR36 publication-title: SIAM J. Optim. doi: 10.1137/16M1073741 – volume: 151 start-page: 3 year: 2015 ident: 1602_CR41 publication-title: Math. Program. Ser. B doi: 10.1007/s10107-015-0892-3 – volume: 173 start-page: 227 year: 2017 ident: 1602_CR24 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-1058-z – volume: 17 start-page: 1 year: 2016 ident: 1602_CR32 publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 1523 year: 2014 ident: 1602_CR40 publication-title: J. Mach. Learn. Res. – volume: 71 start-page: 95 year: 2018 ident: 1602_CR20 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9962-1 – volume: 25 start-page: 1121 issue: 2 year: 2015 ident: 1602_CR4 publication-title: SIAM J. Optim. doi: 10.1137/140971233 – volume: 174 start-page: 1 year: 2018 ident: 1602_CR5 publication-title: Math. Program. Ser. B – volume: 152 start-page: 615 year: 2015 ident: 1602_CR21 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-014-0800-2 |
| SSID | ssj0001388 |
| Score | 2.4153457 |
| Snippet | We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary... We study the block-coordinate forward-backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 225 |
| SubjectTerms | Algorithms Analysis Calculus of Variations and Optimal Control; Optimization Combinatorics Convergence Convexity Error analysis Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Smoothness Theoretical |
| Title | Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis |
| URI | https://link.springer.com/article/10.1007/s10107-020-01602-1 https://www.proquest.com/docview/2655136130 |
| Volume | 193 |
| WOSCitedRecordID | wos000639047400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMSA0RK4jSx2SpExQBVxUtdkGU7DlSUFLWFmf_AP-SXcJcmbXlKsCWK7Vhn33d39j0I2XUNiJHQ044WHneCaqIdZbzECavMWs4SJlQWKHwaNRq81RLNPCisX3i7F1eSGVJPBLt5eKzmoyNViCU5pskMiDuO7Hh-cT3CX49xXhRqRe0gD5X5fowP4ugzKH-5Hc2ETn3xf9NdIgu5kklrw12xTKZsukLmJ1IPwtvZKF9rf5XcNFUPi6p0KIiuuPtANci4e8d0wTRtp6COUtBt0b_27eVV44kfPFLVue322oO7h0Oq6FPaTkCbpZkXexbQaanKE56skav68eXRiZMXXnAMmJMDR7CqNiqqilAFvg84xBmLQa9ztRvEgbBch5FSsQa0C61NkiCJNHdtxLQBHvc9tk5KaTe1G4QKl0eGa81sKILExNxnsdUuCxQACWh3ZeIV9Jcmz0qOxTE6cpxPGQkpgZAyI6SEPvujPo_DnBy_tt7DZZXIsDCyUXncAcwPU1_JGmCeCPAArEwqxcrLnJP70g-xBA5aWWVyUKz0-PPP_938W_MtMudjZEXmS1khpUHvyW6TWfM8aPd7O9kOfweek_Pm |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4VWgk40FJALH_1AakHiJTE3sTmhhCIimWFWoq4VJbtOLBiyaLdhTPvwBvyJMyEZIFCK8EtUWzHGtszY3u-bwDWQodmJIlsYFUkA9HMbWBclAdJk3svec6VKYHCrbTdlicn6rAChQ3qaPf6SrLU1E_AbhEdq8UUSJVQSo4x-CjQYlEg389fxyP9G3Ep60St5B1UUJnX23hmjv5Wyi9uR0ujs_v5fd39AtOVk8m2HmbFDHzwxVeYekI9iG8HI77WwSz8OTR9SqrSZWi6st4Fs2jjzgPXw61pp0B3lKFvS_G1dze3lk788JGZ7mmv3xmeXWwyw66KTo7eLCuj2EtAp2emIjyZg9-7O0fbe0GVeCFwuJ0cBoo3rTNpUyVGxDHqIcl5hn5daEORCeWlTVJjMovaLvE-z0WeWhn6lFuHazyO-DyMF73CLwBToUydtJb7RIncZTLmmbchFwYVCXp3DYhq-WtXsZJTcoyufuRTJkFqFKQuBamxzvqozuUDJ8d_S3-nYdW0YLFlZyrcAfaPqK_0Fuo8JegArAHL9cjraiUPdJxQChzaZTVgox7px8___u_i24p_g4m9o4OWbv1o7y_BZEwoizKuchnGh_0rvwKf3PWwM-ivlrP9HhSo9so |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFqFygBaKWCjUh0o9QNQk9iY2twpYgdquVqJFvVSW7dhl1W222k058w68IU_CTDbZbqEgIW6JYjuWf-bHnu8bgO3YoRrJEhtZlchIdIONjEtClHW595IHrkwNFD7I-315cqIGCyj-Otq9vZKcYRqIpamsdi-LsLsAfEvoiC2loKqM0nPcgRVBSYPIX__0eS6LEy5lm7SVLIUGNnN7GzdU068C-reb0loB9R7-f9fX4EFjfLK92WpZhyVfPoL7C5SE-HY453GdPobTgZlQspURQ5VWjC-YRd13HrkxuqzDEs1UhjYvxd3--Pbd0kkgPjIzOhtPhtWXizfMsKtyGNDKZXV0ew309Mw0RCgbcNx7f_T2Q9QkZIgcuplVpHjXOpN3VWZEmqJ8kpwXaO_FNhaFUF7aLDemsCgFM-9DECG3MvY5tw73fprwJ7Bcjkv_FJiKZe6ktdxnSgRXyJQX3sZcGBQwaPV1IGnnQruGrZySZoz0Nc8yDaTGgdT1QGqs82pe53LG1fHX0js0xZo2MrbsTINHwP4RJZbeQ1moBB2MdWCzXQW62eFTnWaUGoe8rw68bmf9-vOf__vs34pvwb3Bu54--Njffw6rKYEv6nDLTViuJlf-Bdx1X6vhdPKyXvg_Ae36_64 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+random+block-coordinate+forward-backward+algorithm%3A+a+unified+convergence+analysis&rft.jtitle=Mathematical+programming&rft.au=Salzo%2C+Saverio&rft.au=Villa%2C+Silvia&rft.date=2022-05-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=193&rft.issue=1&rft.spage=225&rft_id=info:doi/10.1007%2Fs10107-020-01602-1&rft.externalDocID=A703947835 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |