Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis

We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective fu...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 193; no. 1; pp. 225 - 269
Main Authors: Salzo, Saverio, Villa, Silvia
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022
Springer
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o (1/ n ) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results.
AbstractList We study the block-coordinate forward-backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o(1/n) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results.
We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary probabilities. The algorithm allows different stepsizes along the block-coordinates to fully exploit the smoothness properties of the objective function. In the convex case and in an infinite dimensional setting, we establish almost sure weak convergence of the iterates and the asymptotic rate o (1/ n ) for the mean of the function values. We derive linear rates under strong convexity and error bound conditions. Our analysis is based on an abstract convergence principle for stochastic descent algorithms which allows to extend and simplify existing results.
Audience Academic
Author Villa, Silvia
Salzo, Saverio
Author_xml – sequence: 1
  givenname: Saverio
  orcidid: 0000-0003-0494-9101
  surname: Salzo
  fullname: Salzo, Saverio
  email: saverio.salzo@iit.it
  organization: Istituto Italiano di Tecnologia
– sequence: 2
  givenname: Silvia
  surname: Villa
  fullname: Villa, Silvia
  organization: Università degli Studi di Genova, DIMA
BookMark eNp9kM9uFDEMxiPUSmxbXoDTSJynOMkkmeFWVfyTKsGBHqvIk_EsabNJSWapeuMdeEOehCyDhMSh8sGW5Z_9-TthRzFFYuwlh3MOYF4XDhxMCwJa4BpEy5-xDe-kbjvd6SO2ARCqVZrDc3ZSyi0AcNn3G3bzGTOGQKHJGKe0a8aQ3F3rUsqTj7hQM6f8gHn69ePniO7uUDYYtin75evuTYPNPvrZ09S4FL9T3lJ01GDE8Fh8OWPHM4ZCL_7mU3b97u2Xyw_t1af3Hy8vrlrXgVjaQarRoVGDxk4I6PteykkZBSN0UzdQP2qDOI2CD5ponrvZjD2QkaMDxQWXp-zVuvc-p297Kou9TftcRRQrtFJcai6hTp2vU1sMZH2c05LR1Zho56t8mn3tXxiQQ2d6qSogVsDlVEqm2d5nv8P8aDnYg-929d1W3-0f3-1BS_8f5PyCi0-xXvPhaVSuaKl34pbyvzeeoH4DQLKaGQ
CitedBy_id crossref_primary_10_1007_s10107_024_02124_w
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1007_s10589_023_00489_w
crossref_primary_10_1109_TAC_2024_3419186
crossref_primary_10_3390_ijerph191811169
crossref_primary_10_1016_j_jmaa_2024_128925
crossref_primary_10_1016_j_ejco_2023_100079
Cites_doi 10.1007/s10107-011-0472-0
10.1287/moor.2017.0889
10.1137/100802001
10.1017/CBO9780511779398
10.1287/moor.1100.0456
10.1137/120887679
10.1007/978-3-319-48311-5
10.1137/130950288
10.1007/s10107-015-0901-6
10.1007/s10107-018-1232-1
10.1007/978-1-4419-8853-9
10.1007/s10589-019-00137-2
10.1137/18M1168480
10.1007/s11590-015-0916-1
10.1007/BF02096261
10.1080/10556788.2016.1190360
10.1007/978-3-319-41589-5_4
10.1137/S1052623400376366
10.1007/s00041-008-9030-4
10.1080/10556788.2017.1392517
10.1137/070704277
10.1137/050626090
10.1137/130949993
10.1007/s10107-012-0614-z
10.1007/s10107-016-1009-3
10.1007/978-3-319-46128-1_50
10.1007/BF01071091
10.1080/10556788.2016.1190361
10.1137/16M1073741
10.1007/s10107-015-0892-3
10.1007/s10957-016-1058-z
10.1007/s10589-017-9962-1
10.1137/140971233
10.1007/s10107-014-0800-2
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-020-01602-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 269
ExternalDocumentID A703947835
10_1007_s10107_020_01602_1
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-935bca7596a422088833d5750b04d49e8b67aadb2196eeff4f7b80e73bc051213
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639047400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:42:05 EDT 2025
Sat Nov 29 10:25:33 EST 2025
Tue Nov 18 22:24:31 EST 2025
Sat Nov 29 03:34:02 EST 2025
Fri Feb 21 02:46:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Random block-coordinate descent
65K05
Convex optimization
90C25
Convergence rates
Error bounds
90C06
49M27
Arbitrary sampling
Stochastic quasi-Fejér sequences
Parallel algorithms
Forward–backward algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-935bca7596a422088833d5750b04d49e8b67aadb2196eeff4f7b80e73bc051213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0494-9101
OpenAccessLink https://hdl.handle.net/11567/1061061
PQID 2655136130
PQPubID 25307
PageCount 45
ParticipantIDs proquest_journals_2655136130
gale_infotracacademiconefile_A703947835
crossref_primary_10_1007_s10107_020_01602_1
crossref_citationtrail_10_1007_s10107_020_01602_1
springer_journals_10_1007_s10107_020_01602_1
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References QuZRichtàrikPCoordinate descent with arbitrary sampling II: expected separable over approximationOptim. Methods Softw.201631858884353456110.1080/10556788.2016.1190361
Garrigos, G., Rosasco, L., Villa, S.: Convergence of the forward–backward algorithm: beyond the worst-case with the help of geometry. arXiv:1703.09477 (2017)
DavisDYinYGlowinskiROsherSJYinWConvergence rate analysis of several splitting schemesSplitting Methods in Communication, Imaging, Science, and Engineering2016ChamSpringer11516310.1007/978-3-319-41589-5_4
NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.20091915741609248604110.1137/070704277
RichtàrikPTakàčMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program. Ser. A2014144138317995310.1007/s10107-012-0614-z
QuZRichtàrikPZhangTQuartz: randomized dual coordinate ascent with arbitrary samplingAdv. Neural Inform. Process. Syst.201528865873
LeventhalDLewisASRandomized method for linear constraints: convergence rates and conditioningMath. Oper. Res.201035641654272406810.1287/moor.1100.0456
KnoppKInfinite Sequences and Series1956New YorkDover Publications Inc0070.05807
FercoqOQuZRestarting the accelerated coordinate descent method with a rough strong convexity estimateComput. Optim. Appl.2020756391404707310.1007/s10589-019-00137-2
RichtàrikPTakàčMOn optimal probabilities in stochastic coordinate descent methodsOptim. Lett.20161012331243352984310.1007/s11590-015-0916-1
NesterovYEfficiency of coordinate descent methods on huge-scale optimization problemsSIAM J. Optim.201222341362296885710.1137/100802001
RichtàrikPTakàčMParallel coordinate descent methods for big data optimizationMath. Program. Ser. A2016156156484345920710.1007/s10107-015-0901-6
Ermol’evYMOn the method of generalized stochastic gradients and quasi-Fejér sequencesCybernetics1969520822010.1007/BF01071091
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172New YorkSpringer10.1007/978-3-319-48311-5
LuZXiaoLOn the complexity analysis of randomized block-coordinate descent methodsMath. Program. Ser. A2015152615642336949510.1007/s10107-014-0800-2
DrusvyatskiyDLewisASError bounds, quadratic growth, and linear convergence of proximal methodsMath. Oper. Res.201843919948384607810.1287/moor.2017.0889
CombettesPLWajsVRSignal recovery by proximal forward–backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090
BertsekasDPIncremental proximal methods for large scale convex optimizationMath. Program. Ser. B2011129163283787910.1007/s10107-011-0472-0
NecoaraINesterovYGlineurFRandom block coordinate descent methods for linearly constrained optimization over networksJ. Optim. Theory Appl.2017173227254362664510.1007/s10957-016-1058-z
NecoaraINesterovYGlineurFLinear convergence of first order methods for non-strongly convex optimizationMath. Program.201917569107394288610.1007/s10107-018-1232-1
QuZRichtàrikPCoordinate descent with arbitrary sampling I: algorithms and complexityOptim. Method Softw.201631829857353456010.1080/10556788.2016.1190360
DünnerCForteSTakàčMJaggiMPrimal–dual rates and certificatesInt. Conf. Mach. Learn. PMLR201648783792
LuoZ-QTsengPError bounds and convergence analysis of feasible descent methods: a general approachAnn. Oper. Res.199346157178126001610.1007/BF02096261
StrohmerTVershyninRA randomized Kaczmarz algorithm with exponential convergenceJ. Fourier Anal. Appl.2009152262278250092410.1007/s00041-008-9030-4
KarimiHNutiniJSchmidtMFrasconiPLandwehrNMancoGVreekenJLinear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz conditionMachine Learning and Knowledge Discovery in Databases2016ChamSpringer79581110.1007/978-3-319-46128-1_50
KiwielKKConvergence of approximate and incremental subgradient methods for convex optimizationSIAM J. Optim.200614807840208594410.1137/S1052623400376366
RichtàrikPTakàčMDistributed coordinate descent method for learning with big dataJ. Mach. Learn. Res.20161712535170981360.68709
SalzoSThe variable metric forward–backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M1073741
WangP-WLinC-JIteration complexity of feasible descent methods for convex optimizationJ. Mach. Learn. Res.2014151523154832147901319.90051
CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergenceMath. Program. Ser. B2018174119
FercoqOBianchiPA coordinate-descent primal–dual algorithm with large step size and possibly nonseparable functionsSIAM J. Optim.201929100134389664210.1137/18M1168480
TaylorABHendrickxJMGlineurFSmooth strongly convex interpolation and exact worst-case performance of first-order methodsMath. Program.2017161307345359278010.1007/s10107-016-1009-3
DurrettRProbability, Theory and Examples20104New YorkCambridge University Press10.1017/CBO9780511779398
TappendenRTakàčMRichtàrikPOn the complexity of parallel coordinate descentOptim. Methods Softw.201833373395375060810.1080/10556788.2017.1392517
CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.20152521121124810.1137/140971233
LinJRosascoLVillaSZhouD-XModified Fejér sequences and applicationsComput. Optim. Appl.20187195113384117810.1007/s10589-017-9962-1
NesterovYIntroductory Lectures on Convex Optimization. A Basic Course2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-9
BeckATetruashviliLOn the convergence of the block coordinate descent type methodsSIAM J. Optim.201323420372060311664910.1137/120887679
FercoqORichtàrikPAccelerated, parallel, and proximal coordinate descentSIAM J. Optim.20152519972023340468710.1137/130949993
NecoaraIClipiciDParallel random coordinate descent method for composite minimization: convergence analysis and error boundsSIAM J. Optim.201626197226344991410.1137/130950288
WrightSCoordinate descent algorithmsMath. Program. Ser. B2015151334334754810.1007/s10107-015-0892-3
O Fercoq (1602_CR12) 2019; 29
P Richtàrik (1602_CR34) 2016; 156
Z Qu (1602_CR29) 2015; 28
Z Lu (1602_CR21) 2015; 152
Z-Q Luo (1602_CR22) 1993; 46
P Richtàrik (1602_CR35) 2016; 10
D Leventhal (1602_CR19) 2010; 35
O Fercoq (1602_CR13) 2015; 25
Z Qu (1602_CR31) 2016; 31
Z Qu (1602_CR30) 2016; 31
A Beck (1602_CR2) 2013; 23
PL Combettes (1602_CR6) 2005; 4
I Necoara (1602_CR25) 2019; 175
R Tappenden (1602_CR38) 2018; 33
J Lin (1602_CR20) 2018; 71
DP Bertsekas (1602_CR3) 2011; 129
I Necoara (1602_CR23) 2016; 26
1602_CR15
I Necoara (1602_CR24) 2017; 173
PL Combettes (1602_CR4) 2015; 25
P Richtàrik (1602_CR32) 2016; 17
S Salzo (1602_CR36) 2017; 27
A Nemirovski (1602_CR26) 2009; 19
HH Bauschke (1602_CR1) 2017
K Knopp (1602_CR17) 1956
S Wright (1602_CR41) 2015; 151
P Richtàrik (1602_CR33) 2014; 144
C Dünner (1602_CR9) 2016; 48
Y Nesterov (1602_CR27) 2004
T Strohmer (1602_CR37) 2009; 15
YM Ermol’ev (1602_CR11) 1969; 5
O Fercoq (1602_CR14) 2020; 75
KK Kiwiel (1602_CR18) 2006; 14
PL Combettes (1602_CR5) 2018; 174
P-W Wang (1602_CR40) 2014; 15
R Durrett (1602_CR10) 2010
D Davis (1602_CR7) 2016
H Karimi (1602_CR16) 2016
Y Nesterov (1602_CR28) 2012; 22
D Drusvyatskiy (1602_CR8) 2018; 43
AB Taylor (1602_CR39) 2017; 161
References_xml – reference: CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweepingSIAM J. Optim.20152521121124810.1137/140971233
– reference: BeckATetruashviliLOn the convergence of the block coordinate descent type methodsSIAM J. Optim.201323420372060311664910.1137/120887679
– reference: LeventhalDLewisASRandomized method for linear constraints: convergence rates and conditioningMath. Oper. Res.201035641654272406810.1287/moor.1100.0456
– reference: NecoaraINesterovYGlineurFRandom block coordinate descent methods for linearly constrained optimization over networksJ. Optim. Theory Appl.2017173227254362664510.1007/s10957-016-1058-z
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172New YorkSpringer10.1007/978-3-319-48311-5
– reference: KarimiHNutiniJSchmidtMFrasconiPLandwehrNMancoGVreekenJLinear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz conditionMachine Learning and Knowledge Discovery in Databases2016ChamSpringer79581110.1007/978-3-319-46128-1_50
– reference: TaylorABHendrickxJMGlineurFSmooth strongly convex interpolation and exact worst-case performance of first-order methodsMath. Program.2017161307345359278010.1007/s10107-016-1009-3
– reference: QuZRichtàrikPZhangTQuartz: randomized dual coordinate ascent with arbitrary samplingAdv. Neural Inform. Process. Syst.201528865873
– reference: QuZRichtàrikPCoordinate descent with arbitrary sampling II: expected separable over approximationOptim. Methods Softw.201631858884353456110.1080/10556788.2016.1190361
– reference: RichtàrikPTakàčMDistributed coordinate descent method for learning with big dataJ. Mach. Learn. Res.20161712535170981360.68709
– reference: LuoZ-QTsengPError bounds and convergence analysis of feasible descent methods: a general approachAnn. Oper. Res.199346157178126001610.1007/BF02096261
– reference: KnoppKInfinite Sequences and Series1956New YorkDover Publications Inc0070.05807
– reference: DurrettRProbability, Theory and Examples20104New YorkCambridge University Press10.1017/CBO9780511779398
– reference: Garrigos, G., Rosasco, L., Villa, S.: Convergence of the forward–backward algorithm: beyond the worst-case with the help of geometry. arXiv:1703.09477 (2017)
– reference: NecoaraINesterovYGlineurFLinear convergence of first order methods for non-strongly convex optimizationMath. Program.201917569107394288610.1007/s10107-018-1232-1
– reference: RichtàrikPTakàčMParallel coordinate descent methods for big data optimizationMath. Program. Ser. A2016156156484345920710.1007/s10107-015-0901-6
– reference: Ermol’evYMOn the method of generalized stochastic gradients and quasi-Fejér sequencesCybernetics1969520822010.1007/BF01071091
– reference: CombettesPLWajsVRSignal recovery by proximal forward–backward splittingMultiscale Model. Simul.2005411681200220384910.1137/050626090
– reference: DünnerCForteSTakàčMJaggiMPrimal–dual rates and certificatesInt. Conf. Mach. Learn. PMLR201648783792
– reference: DavisDYinYGlowinskiROsherSJYinWConvergence rate analysis of several splitting schemesSplitting Methods in Communication, Imaging, Science, and Engineering2016ChamSpringer11516310.1007/978-3-319-41589-5_4
– reference: TappendenRTakàčMRichtàrikPOn the complexity of parallel coordinate descentOptim. Methods Softw.201833373395375060810.1080/10556788.2017.1392517
– reference: FercoqORichtàrikPAccelerated, parallel, and proximal coordinate descentSIAM J. Optim.20152519972023340468710.1137/130949993
– reference: CombettesPLPesquetJ-CStochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergenceMath. Program. Ser. B2018174119
– reference: LuZXiaoLOn the complexity analysis of randomized block-coordinate descent methodsMath. Program. Ser. A2015152615642336949510.1007/s10107-014-0800-2
– reference: NesterovYEfficiency of coordinate descent methods on huge-scale optimization problemsSIAM J. Optim.201222341362296885710.1137/100802001
– reference: LinJRosascoLVillaSZhouD-XModified Fejér sequences and applicationsComput. Optim. Appl.20187195113384117810.1007/s10589-017-9962-1
– reference: QuZRichtàrikPCoordinate descent with arbitrary sampling I: algorithms and complexityOptim. Method Softw.201631829857353456010.1080/10556788.2016.1190360
– reference: StrohmerTVershyninRA randomized Kaczmarz algorithm with exponential convergenceJ. Fourier Anal. Appl.2009152262278250092410.1007/s00041-008-9030-4
– reference: NesterovYIntroductory Lectures on Convex Optimization. A Basic Course2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-9
– reference: RichtàrikPTakàčMOn optimal probabilities in stochastic coordinate descent methodsOptim. Lett.20161012331243352984310.1007/s11590-015-0916-1
– reference: FercoqOBianchiPA coordinate-descent primal–dual algorithm with large step size and possibly nonseparable functionsSIAM J. Optim.201929100134389664210.1137/18M1168480
– reference: FercoqOQuZRestarting the accelerated coordinate descent method with a rough strong convexity estimateComput. Optim. Appl.2020756391404707310.1007/s10589-019-00137-2
– reference: BertsekasDPIncremental proximal methods for large scale convex optimizationMath. Program. Ser. B2011129163283787910.1007/s10107-011-0472-0
– reference: NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM J. Optim.20091915741609248604110.1137/070704277
– reference: SalzoSThe variable metric forward–backward splitting algorithm under mild differentiability assumptionsSIAM J. Optim.20172721532181370789910.1137/16M1073741
– reference: WrightSCoordinate descent algorithmsMath. Program. Ser. B2015151334334754810.1007/s10107-015-0892-3
– reference: KiwielKKConvergence of approximate and incremental subgradient methods for convex optimizationSIAM J. Optim.200614807840208594410.1137/S1052623400376366
– reference: NecoaraIClipiciDParallel random coordinate descent method for composite minimization: convergence analysis and error boundsSIAM J. Optim.201626197226344991410.1137/130950288
– reference: WangP-WLinC-JIteration complexity of feasible descent methods for convex optimizationJ. Mach. Learn. Res.2014151523154832147901319.90051
– reference: DrusvyatskiyDLewisASError bounds, quadratic growth, and linear convergence of proximal methodsMath. Oper. Res.201843919948384607810.1287/moor.2017.0889
– reference: RichtàrikPTakàčMIteration complexity of randomized block-coordinate descent methods for minimizing a composite functionMath. Program. Ser. A2014144138317995310.1007/s10107-012-0614-z
– ident: 1602_CR15
– volume: 129
  start-page: 163
  year: 2011
  ident: 1602_CR3
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-011-0472-0
– volume: 43
  start-page: 919
  year: 2018
  ident: 1602_CR8
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2017.0889
– volume: 22
  start-page: 341
  year: 2012
  ident: 1602_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/100802001
– volume-title: Probability, Theory and Examples
  year: 2010
  ident: 1602_CR10
  doi: 10.1017/CBO9780511779398
– volume: 35
  start-page: 641
  year: 2010
  ident: 1602_CR19
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0456
– volume: 23
  start-page: 2037
  issue: 4
  year: 2013
  ident: 1602_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/120887679
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2017
  ident: 1602_CR1
  doi: 10.1007/978-3-319-48311-5
– volume: 28
  start-page: 865
  year: 2015
  ident: 1602_CR29
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 26
  start-page: 197
  year: 2016
  ident: 1602_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/130950288
– volume: 156
  start-page: 156
  year: 2016
  ident: 1602_CR34
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-015-0901-6
– volume: 48
  start-page: 783
  year: 2016
  ident: 1602_CR9
  publication-title: Int. Conf. Mach. Learn. PMLR
– volume: 175
  start-page: 69
  year: 2019
  ident: 1602_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1232-1
– volume-title: Introductory Lectures on Convex Optimization. A Basic Course
  year: 2004
  ident: 1602_CR27
  doi: 10.1007/978-1-4419-8853-9
– volume: 75
  start-page: 63
  year: 2020
  ident: 1602_CR14
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00137-2
– volume: 29
  start-page: 100
  year: 2019
  ident: 1602_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1168480
– volume: 10
  start-page: 1233
  year: 2016
  ident: 1602_CR35
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-015-0916-1
– volume: 46
  start-page: 157
  year: 1993
  ident: 1602_CR22
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02096261
– volume: 31
  start-page: 829
  year: 2016
  ident: 1602_CR30
  publication-title: Optim. Method Softw.
  doi: 10.1080/10556788.2016.1190360
– volume-title: Infinite Sequences and Series
  year: 1956
  ident: 1602_CR17
– start-page: 115
  volume-title: Splitting Methods in Communication, Imaging, Science, and Engineering
  year: 2016
  ident: 1602_CR7
  doi: 10.1007/978-3-319-41589-5_4
– volume: 14
  start-page: 807
  year: 2006
  ident: 1602_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400376366
– volume: 15
  start-page: 262
  issue: 2
  year: 2009
  ident: 1602_CR37
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9030-4
– volume: 33
  start-page: 373
  year: 2018
  ident: 1602_CR38
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1392517
– volume: 19
  start-page: 1574
  year: 2009
  ident: 1602_CR26
  publication-title: SIAM J. Optim.
  doi: 10.1137/070704277
– volume: 4
  start-page: 1168
  year: 2005
  ident: 1602_CR6
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 25
  start-page: 1997
  year: 2015
  ident: 1602_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/130949993
– volume: 144
  start-page: 1
  year: 2014
  ident: 1602_CR33
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-012-0614-z
– volume: 161
  start-page: 307
  year: 2017
  ident: 1602_CR39
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1009-3
– start-page: 795
  volume-title: Machine Learning and Knowledge Discovery in Databases
  year: 2016
  ident: 1602_CR16
  doi: 10.1007/978-3-319-46128-1_50
– volume: 5
  start-page: 208
  year: 1969
  ident: 1602_CR11
  publication-title: Cybernetics
  doi: 10.1007/BF01071091
– volume: 31
  start-page: 858
  year: 2016
  ident: 1602_CR31
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2016.1190361
– volume: 27
  start-page: 2153
  year: 2017
  ident: 1602_CR36
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1073741
– volume: 151
  start-page: 3
  year: 2015
  ident: 1602_CR41
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-015-0892-3
– volume: 173
  start-page: 227
  year: 2017
  ident: 1602_CR24
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1058-z
– volume: 17
  start-page: 1
  year: 2016
  ident: 1602_CR32
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 1523
  year: 2014
  ident: 1602_CR40
  publication-title: J. Mach. Learn. Res.
– volume: 71
  start-page: 95
  year: 2018
  ident: 1602_CR20
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9962-1
– volume: 25
  start-page: 1121
  issue: 2
  year: 2015
  ident: 1602_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971233
– volume: 174
  start-page: 1
  year: 2018
  ident: 1602_CR5
  publication-title: Math. Program. Ser. B
– volume: 152
  start-page: 615
  year: 2015
  ident: 1602_CR21
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-014-0800-2
SSID ssj0001388
Score 2.4153457
Snippet We study the block-coordinate forward–backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary...
We study the block-coordinate forward-backward algorithm in which the blocks are updated in a random and possibly parallel manner, according to arbitrary...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Algorithms
Analysis
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Convergence
Convexity
Error analysis
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Smoothness
Theoretical
Title Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis
URI https://link.springer.com/article/10.1007/s10107-020-01602-1
https://www.proquest.com/docview/2655136130
Volume 193
WOSCitedRecordID wos000639047400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMSA0RK4jSx2SpExQBVxUtdkGU7DlSUFLWFmf_AP-SXcJcmbXlKsCWK7Vhn33d39j0I2XUNiJHQ044WHneCaqIdZbzECavMWs4SJlQWKHwaNRq81RLNPCisX3i7F1eSGVJPBLt5eKzmoyNViCU5pskMiDuO7Hh-cT3CX49xXhRqRe0gD5X5fowP4ugzKH-5Hc2ETn3xf9NdIgu5kklrw12xTKZsukLmJ1IPwtvZKF9rf5XcNFUPi6p0KIiuuPtANci4e8d0wTRtp6COUtBt0b_27eVV44kfPFLVue322oO7h0Oq6FPaTkCbpZkXexbQaanKE56skav68eXRiZMXXnAMmJMDR7CqNiqqilAFvg84xBmLQa9ztRvEgbBch5FSsQa0C61NkiCJNHdtxLQBHvc9tk5KaTe1G4QKl0eGa81sKILExNxnsdUuCxQACWh3ZeIV9Jcmz0qOxTE6cpxPGQkpgZAyI6SEPvujPo_DnBy_tt7DZZXIsDCyUXncAcwPU1_JGmCeCPAArEwqxcrLnJP70g-xBA5aWWVyUKz0-PPP_938W_MtMudjZEXmS1khpUHvyW6TWfM8aPd7O9kOfweek_Pm
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4VWgk40FJALH_1AakHiJTE3sTmhhCIimWFWoq4VJbtOLBiyaLdhTPvwBvyJMyEZIFCK8EtUWzHGtszY3u-bwDWQodmJIlsYFUkA9HMbWBclAdJk3svec6VKYHCrbTdlicn6rAChQ3qaPf6SrLU1E_AbhEdq8UUSJVQSo4x-CjQYlEg389fxyP9G3Ep60St5B1UUJnX23hmjv5Wyi9uR0ujs_v5fd39AtOVk8m2HmbFDHzwxVeYekI9iG8HI77WwSz8OTR9SqrSZWi6st4Fs2jjzgPXw61pp0B3lKFvS_G1dze3lk788JGZ7mmv3xmeXWwyw66KTo7eLCuj2EtAp2emIjyZg9-7O0fbe0GVeCFwuJ0cBoo3rTNpUyVGxDHqIcl5hn5daEORCeWlTVJjMovaLvE-z0WeWhn6lFuHazyO-DyMF73CLwBToUydtJb7RIncZTLmmbchFwYVCXp3DYhq-WtXsZJTcoyufuRTJkFqFKQuBamxzvqozuUDJ8d_S3-nYdW0YLFlZyrcAfaPqK_0Fuo8JegArAHL9cjraiUPdJxQChzaZTVgox7px8___u_i24p_g4m9o4OWbv1o7y_BZEwoizKuchnGh_0rvwKf3PWwM-ivlrP9HhSo9so
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFqFygBaKWCjUh0o9QNQk9iY2twpYgdquVqJFvVSW7dhl1W222k058w68IU_CTDbZbqEgIW6JYjuWf-bHnu8bgO3YoRrJEhtZlchIdIONjEtClHW595IHrkwNFD7I-315cqIGCyj-Otq9vZKcYRqIpamsdi-LsLsAfEvoiC2loKqM0nPcgRVBSYPIX__0eS6LEy5lm7SVLIUGNnN7GzdU068C-reb0loB9R7-f9fX4EFjfLK92WpZhyVfPoL7C5SE-HY453GdPobTgZlQspURQ5VWjC-YRd13HrkxuqzDEs1UhjYvxd3--Pbd0kkgPjIzOhtPhtWXizfMsKtyGNDKZXV0ew309Mw0RCgbcNx7f_T2Q9QkZIgcuplVpHjXOpN3VWZEmqJ8kpwXaO_FNhaFUF7aLDemsCgFM-9DECG3MvY5tw73fprwJ7Bcjkv_FJiKZe6ktdxnSgRXyJQX3sZcGBQwaPV1IGnnQruGrZySZoz0Nc8yDaTGgdT1QGqs82pe53LG1fHX0js0xZo2MrbsTINHwP4RJZbeQ1moBB2MdWCzXQW62eFTnWaUGoe8rw68bmf9-vOf__vs34pvwb3Bu54--Njffw6rKYEv6nDLTViuJlf-Bdx1X6vhdPKyXvg_Ae36_64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+random+block-coordinate+forward-backward+algorithm%3A+a+unified+convergence+analysis&rft.jtitle=Mathematical+programming&rft.au=Salzo%2C+Saverio&rft.au=Villa%2C+Silvia&rft.date=2022-05-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=193&rft.issue=1&rft.spage=225&rft_id=info:doi/10.1007%2Fs10107-020-01602-1&rft.externalDocID=A703947835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon