Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection

Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data fo...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 40; no. 9; pp. 2373 - 2391
Main Authors: Tsang, Chi-Ho, Kwong, Sam, Wang, Hanli
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.09.2007
Elsevier Science
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data for classification. The proposed fuzzy rule-based system is evolved from an agent-based evolutionary framework and multi-objective optimization. In addition, the proposed system can also act as a genetic feature selection wrapper to search for an optimal feature subset for dimensionality reduction. To evaluate the classification and feature selection performance of our approach, it is compared with some well-known classifiers as well as feature selection filters and wrappers. The extensive experimental results on the KDD-Cup99 intrusion detection benchmark data set demonstrate that the proposed approach produces interpretable fuzzy systems, and outperforms other classifiers and wrappers by providing the highest detection accuracy for intrusion attacks and low false alarm rate for normal network traffic with minimized number of features.
AbstractList Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data for classification. The proposed fuzzy rule-based system is evolved from an agent-based evolutionary framework and multi-objective optimization. In addition, the proposed system can also act as a genetic feature selection wrapper to search for an optimal feature subset for dimensionality reduction. To evaluate the classification and feature selection performance of our approach, it is compared with some well-known classifiers as well as feature selection filters and wrappers. The extensive experimental results on the KDD-Cup99 intrusion detection benchmark data set demonstrate that the proposed approach produces interpretable fuzzy systems, and outperforms other classifiers and wrappers by providing the highest detection accuracy for intrusion attacks and low false alarm rate for normal network traffic with minimized number of features.
Author Wang, Hanli
Kwong, Sam
Tsang, Chi-Ho
Author_xml – sequence: 1
  givenname: Chi-Ho
  surname: Tsang
  fullname: Tsang, Chi-Ho
– sequence: 2
  givenname: Sam
  surname: Kwong
  fullname: Kwong, Sam
  email: cssamk@cityu.edu.hk
– sequence: 3
  givenname: Hanli
  surname: Wang
  fullname: Wang, Hanli
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18767730$$DView record in Pascal Francis
BookMark eNp9kLFqHDEQhkVwIGfHb-BCTcpdj6S71V6KQDCJHTCkSWoxJ83aOvaktaQ1nJ8-Om9IkcLVwMz__TDfOTsLMRBjVwJaAaK73rcTFhsfWgnQtUK2ANt3bCV6rZqNWMsztgJQolES1Ad2nvMeQOh6WLGnWwpUvG2G-eXlyNM8Ej_44MMDx2lKEe0jx-A4PeM4Y_Ex8DjwgbDMiXimkezrspB9DP5ppsyHmCoSDzgeuQ8lzfkUcFSW6Ef2fsAx0-XfecF-f__26-auuf95--Pm631j1yBLsxW96BVq2wFt9LbfCY22FxvYOUv90MFGC-nUTtrebh06VNSBdroOLV2_Uxfs09I7YbY4DgmD9dlMyR8wHU2V02mtoOY-LzmbYs6JBmN9ef20JPSjEWBOks3eLJLNSbIR0lTJFV7_B__rfxv7smBUBTx7SiZbT8GS86laMi76twv-ACwSnaE
CODEN PTNRA8
CitedBy_id crossref_primary_10_1109_TFUZZ_2021_3076265
crossref_primary_10_1155_2020_8860418
crossref_primary_10_1016_j_asoc_2020_106856
crossref_primary_10_1109_TSMCC_2012_2196794
crossref_primary_10_1007_s10489_013_0452_6
crossref_primary_10_4018_ijcvip_2013100104
crossref_primary_10_1016_j_knosys_2020_105500
crossref_primary_10_1109_TFUZZ_2019_2900856
crossref_primary_10_1007_s10115_021_01641_w
crossref_primary_10_1007_s12065_007_0001_5
crossref_primary_10_1155_2018_5948146
crossref_primary_10_1016_j_patrec_2016_11_018
crossref_primary_10_1016_j_knosys_2019_02_001
crossref_primary_10_1007_s10489_022_03803_x
crossref_primary_10_1109_TFUZZ_2011_2147794
crossref_primary_10_1007_s00521_015_1964_2
crossref_primary_10_1016_j_asoc_2009_06_019
crossref_primary_10_1109_ACCESS_2025_3594986
crossref_primary_10_1016_j_neucom_2018_05_027
crossref_primary_10_1016_j_engappai_2019_08_010
crossref_primary_10_1007_s11227_020_03161_w
crossref_primary_10_1587_transinf_2015EDP7357
crossref_primary_10_1016_j_neucom_2008_12_038
crossref_primary_10_1007_s10489_017_1026_9
crossref_primary_10_1016_j_ins_2024_120498
crossref_primary_10_1007_s12046_019_1230_x
crossref_primary_10_1186_s40537_023_00834_0
crossref_primary_10_1109_ACCESS_2018_2872784
crossref_primary_10_1007_s11042_019_7591_7
crossref_primary_10_1007_s11416_022_00431_4
crossref_primary_10_1016_j_eswa_2009_02_048
crossref_primary_10_1109_TC_2016_2519914
crossref_primary_10_1109_JIOT_2018_2873125
crossref_primary_10_1016_j_ins_2022_10_017
crossref_primary_10_1162_ARTL_a_00162
crossref_primary_10_1016_j_eswa_2011_07_032
crossref_primary_10_1109_TSMC_2015_2503381
crossref_primary_10_1016_j_ecolind_2022_108583
crossref_primary_10_1007_s10462_022_10355_6
crossref_primary_10_1016_j_cose_2008_12_001
crossref_primary_10_1016_j_patcog_2024_111212
crossref_primary_10_3390_info10110356
crossref_primary_10_1016_j_eswa_2019_113105
crossref_primary_10_1007_s11277_020_07808_y
crossref_primary_10_1016_j_fss_2010_05_016
crossref_primary_10_1016_j_engappai_2024_108162
crossref_primary_10_1007_s10115_010_0340_x
crossref_primary_10_1186_s40537_015_0013_4
crossref_primary_10_1016_j_eswa_2016_09_041
crossref_primary_10_1007_s00521_011_0729_9
crossref_primary_10_1186_2195_5468_2_4
crossref_primary_10_1051_matecconf_20167604030
crossref_primary_10_4018_IJISP_2022010113
crossref_primary_10_1016_j_knosys_2017_03_012
crossref_primary_10_1016_j_patcog_2021_108378
crossref_primary_10_1016_j_jnca_2010_10_009
crossref_primary_10_1016_j_ins_2021_10_075
crossref_primary_10_3390_electronics10121375
crossref_primary_10_1016_j_knosys_2020_105659
crossref_primary_10_1016_j_eswa_2014_11_009
crossref_primary_10_1109_ACCESS_2020_2996226
crossref_primary_10_1016_j_eswa_2015_07_027
crossref_primary_10_1016_j_asoc_2021_107354
crossref_primary_10_1007_s12065_019_00293_8
crossref_primary_10_1016_j_asoc_2018_08_004
crossref_primary_10_1016_j_jnca_2009_10_003
crossref_primary_10_1016_j_jksuci_2021_06_018
crossref_primary_10_1007_s10489_011_0315_y
crossref_primary_10_1109_ACCESS_2017_2766844
crossref_primary_10_1016_j_fss_2017_07_003
crossref_primary_10_1109_TFUZZ_2014_2370677
crossref_primary_10_1109_JCN_2010_6388474
crossref_primary_10_1093_comjnl_bxab053
crossref_primary_10_1016_j_knosys_2020_105648
crossref_primary_10_1007_s13369_018_3507_5
crossref_primary_10_1007_s12652_019_01596_5
crossref_primary_10_1109_TFUZZ_2010_2060200
crossref_primary_10_1007_s10489_010_0263_y
crossref_primary_10_1016_j_neucom_2016_03_031
crossref_primary_10_1007_s10586_017_1255_z
crossref_primary_10_1016_j_ins_2015_03_005
crossref_primary_10_1016_j_comcom_2011_07_001
crossref_primary_10_1109_JIOT_2022_3194837
crossref_primary_10_1016_j_ins_2010_06_018
crossref_primary_10_1016_j_asoc_2014_09_032
crossref_primary_10_1016_j_knosys_2017_07_005
crossref_primary_10_1007_s00500_011_0794_0
crossref_primary_10_1007_s40815_016_0160_6
crossref_primary_10_1016_j_eswa_2014_08_002
crossref_primary_10_1016_j_ins_2014_06_014
crossref_primary_10_1007_s11831_024_10157_9
crossref_primary_10_1007_s10462_011_9212_3
crossref_primary_10_4018_IJISP_201907010102
crossref_primary_10_1016_j_eswa_2009_05_029
crossref_primary_10_1016_j_cose_2013_08_003
crossref_primary_10_1016_j_ijleo_2022_170079
crossref_primary_10_1038_s41598_025_85792_8
crossref_primary_10_1016_j_petrol_2021_109681
Cites_doi 10.1109/41.661317
10.1016/S0165-0114(03)00111-8
10.1109/NAFIPS.2002.1018103
10.1109/91.940965
10.1109/TSMC.1973.5408575
10.1145/846183.846199
10.1145/382912.382914
10.1109/91.842154
10.1109/3477.809036
10.1109/41.538609
10.1016/0167-8655(89)90037-8
10.1145/775047.775101
10.1109/3477.678632
10.1137/1.9781611972719.29
10.1109/NAFIPS.2001.943772
10.1016/S0164-1212(01)00088-7
10.1007/978-3-540-45248-5_3
10.1007/3-540-45474-8_8
10.1109/91.940964
10.1109/FUZZY.2000.839118
10.1109/4235.996017
10.1016/j.fss.2004.07.013
10.1016/0165-0114(92)90032-Y
10.1109/FUZZ.2002.1005001
10.1016/B978-1-55860-377-6.50023-2
10.1109/79.543973
10.1023/A:1006624031083
10.1016/j.cose.2004.09.008
ContentType Journal Article
Copyright 2007 Pattern Recognition Society
2007 INIST-CNRS
Copyright_xml – notice: 2007 Pattern Recognition Society
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2006.12.009
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 2391
ExternalDocumentID 18767730
10_1016_j_patcog_2006_12_009
S0031320306005218
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c402t-918183a7c60e5798b17ac8150bdce8f605712d3b2c8c9dada3e607d73e672d8b3
ISICitedReferencesCount 171
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246932200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Mon Jul 21 09:17:34 EDT 2025
Sat Nov 29 03:52:00 EST 2025
Tue Nov 18 22:17:21 EST 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Feature selection
Multi-objective optimization
Fuzzy classifier
Intrusion detection
Genetic algorithms
Performance evaluation
Automatic classification
Expert system
Multiobjective programming
Intruder detector
Remote sensing
Accuracy
Data transmission network
Safety
Fuzzy system
Teletraffic
Pattern recognition
Signal classification
False alarm rate
Multiagent system
Surveillance
Genetic algorithm
Signal processing
Feature extraction
Remote supervision
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-918183a7c60e5798b17ac8150bdce8f605712d3b2c8c9dada3e607d73e672d8b3
PageCount 19
ParticipantIDs pascalfrancis_primary_18767730
crossref_citationtrail_10_1016_j_patcog_2006_12_009
crossref_primary_10_1016_j_patcog_2006_12_009
elsevier_sciencedirect_doi_10_1016_j_patcog_2006_12_009
PublicationCentury 2000
PublicationDate 2007-09-01
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Pattern recognition
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Wang, Kwong, Jin, Wei, Man (bib16) 2005; 149
Jin (bib19) 2000; 8
UCI Machine Learning Repository (Online), Available
J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United States Military Academy, West Point, New York, June 2001, pp. 68–75.
de Borda (bib32) 1953; 44
Middlemiss, Dick (bib34) 2003
C. Elkan, Results of the KDD’99 classifier learning, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, vol. 1(2), 2000, pp. 63–64.
S. Maheshkumar, S. Gursel, Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context, in: Proceedings of International Conference on Machine Learning, Models, Technologies and Applications, Las Vegas, Nevadat, USA, CSREA Press, 2003, pp. 209–215.
P. Meesad, G.G. Yen, Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system, IEEE International Conference on Fuzzy Systems, vol. 1, May 2002, pp. 284–289.
O. Boz, Feature subset selection by using sorted feature relevance, in: Proceedings of International Conference on Machine Learning and Applications, Las Vegas, NV, USA, June 2002.
Man, Tang, Kwong, He (bib25) 1996; 13
L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. SMC-3 (1973) 28–44.
M. Ramadas, S. Ostermann, B. Tjaden, Detecting anomalous network traffic with self-organizing maps, in: Sixth International Symposium on Recent Advances in Intrusion Detection, RAID’03, September 2003, pp. 36–54.
Tang, Man, Liu, Kwong (bib23) 1998; 45
Roubos, Setnes (bib20) 2001; 9
Setnes, Babuška, Kaymak, van Nauta Lemke (bib17) 1998; 28
Helmer, Wong, Honavar, Miller (bib11) 2002; 60
Platt (bib31) 1999
J.E. Dickerson, J. Juslin, O. Koukousoula, J.A. Dickerson, Fuzzy intrusion detection, in: Proceedings of IFSA World Congress and 20th North American Fuzzy Information Processing Society Conference, NAFIPS 2001, Vancouver, British Columbia, July 2001, pp. 1506–1510.
R. Agarwal, M.V. Joshi, PNrule: a new framework for learning classifier models in data mining (a case-study in network intrusion detection), in: Proceedings of First SIAM Conference on Data Mining, Chicago, April 2001.
Siedlecki, Sklansky (bib33) 1989; 10
Holland (bib8) 1975
.
Özyer, Alhajj, Barker (bib10) 2003
Magdalena, Cordon, Gomide, Herrera, Hoffmann (bib26) 2004; 141
P.D. Williams, K.P. Anchor, J.L. Bebo, G.H. Gunsch, G.D. Lamont, CDIS: towards a computer immune system for detecting network intrusions, in: Fourth International Symposium on Recent Advances in Intrusion Detection, RAID’01, October 2001, pp. 117–133.
Ishibuchi, Nakashima (bib28) 2001; 9
Ishibuchi, Nozaki, Tanaka (bib29) 1992; 52
Deb, Pratap, Agarwal, Meyarivan (bib22) 2002; 6
H. Ishibuchi, T. Nakashima, T. Kuroda, A hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems, in: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, May 2000, pp. 706–711.
W. Lee, S.J. Stolfo, A framework for constructing features and models for intrusion detection systems, ACM Transactions on Information and System Security, TISSEC, vol. 3(4), November 2000, pp. 227–261.
S. Chebrolu, A. Abraham, J. Thomas, Feature Deduction and Ensemble Design of Intrusion Detection Systems, Comput. Secur. 24(4) (2005) 295–307.
J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United State Military Academy, West Point, NY, 2001, pp. 68–75.
W.W. Cohen, Fast effective rule induction, in: Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA, July 1995, pp. 115–123.
Jin, von Seelen, Sendhoff (bib18) 1999; 29
Lee, Stolfo, Mok (bib1) 2000; 14
K. Julisch, M. Dacier, Mining intrusion detection alarms for actionable knowledge, in: Proceedings of the Eighth ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, July 2002, pp. 366–375.
G. Florez, S.M. Bridges, R.B. Vaughn, An improved algorithm for fuzzy data mining for intrusion detection, in: Proceedings of North American Fuzzy Information Processing Society Conference, NAFIPS 2000, New Orleans, LA, June 2002, pp. 457–462.
Man, Tang, Kwong (bib24) 1996; 43
10.1016/j.patcog.2006.12.009_bib30
Setnes (10.1016/j.patcog.2006.12.009_bib17) 1998; 28
Roubos (10.1016/j.patcog.2006.12.009_bib20) 2001; 9
Wang (10.1016/j.patcog.2006.12.009_bib16) 2005; 149
10.1016/j.patcog.2006.12.009_bib12
10.1016/j.patcog.2006.12.009_bib13
10.1016/j.patcog.2006.12.009_bib35
10.1016/j.patcog.2006.12.009_bib14
10.1016/j.patcog.2006.12.009_bib36
Helmer (10.1016/j.patcog.2006.12.009_bib11) 2002; 60
Tang (10.1016/j.patcog.2006.12.009_bib23) 1998; 45
Jin (10.1016/j.patcog.2006.12.009_bib19) 2000; 8
Magdalena (10.1016/j.patcog.2006.12.009_bib26) 2004; 141
Lee (10.1016/j.patcog.2006.12.009_bib1) 2000; 14
Jin (10.1016/j.patcog.2006.12.009_bib18) 1999; 29
Siedlecki (10.1016/j.patcog.2006.12.009_bib33) 1989; 10
Holland (10.1016/j.patcog.2006.12.009_bib8) 1975
Platt (10.1016/j.patcog.2006.12.009_bib31) 1999
10.1016/j.patcog.2006.12.009_bib27
Deb (10.1016/j.patcog.2006.12.009_bib22) 2002; 6
10.1016/j.patcog.2006.12.009_bib5
10.1016/j.patcog.2006.12.009_bib4
Ishibuchi (10.1016/j.patcog.2006.12.009_bib29) 1992; 52
10.1016/j.patcog.2006.12.009_bib7
10.1016/j.patcog.2006.12.009_bib6
10.1016/j.patcog.2006.12.009_bib21
10.1016/j.patcog.2006.12.009_bib9
Özyer (10.1016/j.patcog.2006.12.009_bib10) 2003
de Borda (10.1016/j.patcog.2006.12.009_bib32) 1953; 44
10.1016/j.patcog.2006.12.009_bib3
10.1016/j.patcog.2006.12.009_bib2
Man (10.1016/j.patcog.2006.12.009_bib24) 1996; 43
Man (10.1016/j.patcog.2006.12.009_bib25) 1996; 13
10.1016/j.patcog.2006.12.009_bib15
10.1016/j.patcog.2006.12.009_bib37
10.1016/j.patcog.2006.12.009_bib38
Ishibuchi (10.1016/j.patcog.2006.12.009_bib28) 2001; 9
Middlemiss (10.1016/j.patcog.2006.12.009_bib34) 2003
References_xml – reference: P. Meesad, G.G. Yen, Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system, IEEE International Conference on Fuzzy Systems, vol. 1, May 2002, pp. 284–289.
– reference: G. Florez, S.M. Bridges, R.B. Vaughn, An improved algorithm for fuzzy data mining for intrusion detection, in: Proceedings of North American Fuzzy Information Processing Society Conference, NAFIPS 2000, New Orleans, LA, June 2002, pp. 457–462.
– reference: R. Agarwal, M.V. Joshi, PNrule: a new framework for learning classifier models in data mining (a case-study in network intrusion detection), in: Proceedings of First SIAM Conference on Data Mining, Chicago, April 2001.
– volume: 149
  start-page: 149
  year: 2005
  end-page: 186
  ident: bib16
  article-title: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
  publication-title: Fuzzy Sets and Systems
– reference: L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. SMC-3 (1973) 28–44.
– start-page: 519
  year: 2003
  end-page: 527
  ident: bib34
  article-title: Feature selection of intrusion detection data using a hybrid genetic algorithm/KNN approach
  publication-title: Design and Application of Hybrid Intelligent Systems
– volume: 10
  start-page: 335
  year: 1989
  end-page: 347
  ident: bib33
  article-title: A note on genetic algorithms for large-scale feature selection
  publication-title: Pattern Recognition Lett.
– reference: W.W. Cohen, Fast effective rule induction, in: Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA, July 1995, pp. 115–123.
– start-page: 983
  year: 2003
  end-page: 992
  ident: bib10
  article-title: A boosting genetic fuzzy classifier for intrusion detection using data mining techniques for rule pre-screening
  publication-title: Design and Application of Hybrid Intelligent Systems
– reference: K. Julisch, M. Dacier, Mining intrusion detection alarms for actionable knowledge, in: Proceedings of the Eighth ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, July 2002, pp. 366–375.
– volume: 9
  start-page: 516
  year: 2001
  end-page: 524
  ident: bib20
  article-title: Compact and transparent fuzzy models and classifiers through interactive complexity reduction
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 28
  start-page: 376
  year: 1998
  end-page: 386
  ident: bib17
  article-title: Similarity measures in fuzzy rule base simplification
  publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics
– volume: 52
  start-page: 21
  year: 1992
  end-page: 32
  ident: bib29
  article-title: Distributed representation of fuzzy rules and its application to pattern classification
  publication-title: Fuzzy Sets and Systems
– reference: H. Ishibuchi, T. Nakashima, T. Kuroda, A hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems, in: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, May 2000, pp. 706–711.
– reference: UCI Machine Learning Repository (Online), Available:
– year: 1975
  ident: bib8
  article-title: Adaptation in Natural and Artificial Systems
– volume: 60
  start-page: 165
  year: 2002
  end-page: 175
  ident: bib11
  article-title: Automated discovery of concise predictive rules for intrusion detection
  publication-title: Syst. Softwares
– volume: 45
  start-page: 162
  year: 1998
  end-page: 169
  ident: bib23
  article-title: Minimal fuzzy memberships and rules using hierarchical genetic algorithms
  publication-title: IEEE Trans. Ind. Electron.
– reference: J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United State Military Academy, West Point, NY, 2001, pp. 68–75.
– volume: 13
  start-page: 22
  year: 1996
  end-page: 37
  ident: bib25
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
– volume: 8
  start-page: 212
  year: 2000
  end-page: 221
  ident: bib19
  article-title: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: W. Lee, S.J. Stolfo, A framework for constructing features and models for intrusion detection systems, ACM Transactions on Information and System Security, TISSEC, vol. 3(4), November 2000, pp. 227–261.
– volume: 141
  start-page: 5
  year: 2004
  end-page: 31
  ident: bib26
  article-title: Ten years of genetic fuzzy systems: current framework and new trends
  publication-title: Fuzzy Sets and Systems
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 42
  year: 1953
  end-page: 51
  ident: bib32
  article-title: Mémoire sur les elections au scrutin, 1781
  publication-title: English translation by A. de Grazia, Math. Derivation Election Syst. Isis
– reference: J.E. Dickerson, J. Juslin, O. Koukousoula, J.A. Dickerson, Fuzzy intrusion detection, in: Proceedings of IFSA World Congress and 20th North American Fuzzy Information Processing Society Conference, NAFIPS 2001, Vancouver, British Columbia, July 2001, pp. 1506–1510.
– reference: J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United States Military Academy, West Point, New York, June 2001, pp. 68–75.
– reference: S. Maheshkumar, S. Gursel, Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context, in: Proceedings of International Conference on Machine Learning, Models, Technologies and Applications, Las Vegas, Nevadat, USA, CSREA Press, 2003, pp. 209–215.
– reference: M. Ramadas, S. Ostermann, B. Tjaden, Detecting anomalous network traffic with self-organizing maps, in: Sixth International Symposium on Recent Advances in Intrusion Detection, RAID’03, September 2003, pp. 36–54.
– reference: C. Elkan, Results of the KDD’99 classifier learning, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, vol. 1(2), 2000, pp. 63–64.
– start-page: 185
  year: 1999
  end-page: 208
  ident: bib31
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods—Support Vector Learning
– reference: O. Boz, Feature subset selection by using sorted feature relevance, in: Proceedings of International Conference on Machine Learning and Applications, Las Vegas, NV, USA, June 2002.
– reference: S. Chebrolu, A. Abraham, J. Thomas, Feature Deduction and Ensemble Design of Intrusion Detection Systems, Comput. Secur. 24(4) (2005) 295–307.
– volume: 29
  start-page: 829
  year: 1999
  end-page: 845
  ident: bib18
  article-title: On generating FC3 fuzzy rule systems with data using evolution strategies
  publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics
– volume: 14
  start-page: 533
  year: 2000
  end-page: 567
  ident: bib1
  article-title: Adaptive intrusion detection: a data mining approach
  publication-title: Artif. Intell. Rev.
– reference: P.D. Williams, K.P. Anchor, J.L. Bebo, G.H. Gunsch, G.D. Lamont, CDIS: towards a computer immune system for detecting network intrusions, in: Fourth International Symposium on Recent Advances in Intrusion Detection, RAID’01, October 2001, pp. 117–133.
– volume: 9
  start-page: 506
  year: 2001
  end-page: 515
  ident: bib28
  article-title: Effect of rule weights in fuzzy rule-based classification systems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 43
  start-page: 519
  year: 1996
  end-page: 534
  ident: bib24
  article-title: Genetic algorithms: concepts and applications
  publication-title: IEEE Trans. Ind. Electron.
– reference: .
– volume: 45
  start-page: 162
  issue: 1
  year: 1998
  ident: 10.1016/j.patcog.2006.12.009_bib23
  article-title: Minimal fuzzy memberships and rules using hierarchical genetic algorithms
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.661317
– ident: 10.1016/j.patcog.2006.12.009_bib37
– volume: 141
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.patcog.2006.12.009_bib26
  article-title: Ten years of genetic fuzzy systems: current framework and new trends
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(03)00111-8
– ident: 10.1016/j.patcog.2006.12.009_bib6
  doi: 10.1109/NAFIPS.2002.1018103
– start-page: 983
  year: 2003
  ident: 10.1016/j.patcog.2006.12.009_bib10
  article-title: A boosting genetic fuzzy classifier for intrusion detection using data mining techniques for rule pre-screening
– volume: 9
  start-page: 516
  issue: 4
  year: 2001
  ident: 10.1016/j.patcog.2006.12.009_bib20
  article-title: Compact and transparent fuzzy models and classifiers through interactive complexity reduction
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.940965
– ident: 10.1016/j.patcog.2006.12.009_bib5
  doi: 10.1109/TSMC.1973.5408575
– start-page: 185
  year: 1999
  ident: 10.1016/j.patcog.2006.12.009_bib31
  article-title: Fast training of support vector machines using sequential minimal optimization
– ident: 10.1016/j.patcog.2006.12.009_bib35
  doi: 10.1145/846183.846199
– ident: 10.1016/j.patcog.2006.12.009_bib4
  doi: 10.1145/382912.382914
– volume: 8
  start-page: 212
  issue: 2
  year: 2000
  ident: 10.1016/j.patcog.2006.12.009_bib19
  article-title: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.842154
– volume: 29
  start-page: 829
  issue: 6
  year: 1999
  ident: 10.1016/j.patcog.2006.12.009_bib18
  article-title: On generating FC3 fuzzy rule systems with data using evolution strategies
  publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics
  doi: 10.1109/3477.809036
– volume: 43
  start-page: 519
  issue: 5
  year: 1996
  ident: 10.1016/j.patcog.2006.12.009_bib24
  article-title: Genetic algorithms: concepts and applications
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.538609
– volume: 10
  start-page: 335
  year: 1989
  ident: 10.1016/j.patcog.2006.12.009_bib33
  article-title: A note on genetic algorithms for large-scale feature selection
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/0167-8655(89)90037-8
– ident: 10.1016/j.patcog.2006.12.009_bib14
  doi: 10.1145/775047.775101
– volume: 28
  start-page: 376
  issue: 3
  year: 1998
  ident: 10.1016/j.patcog.2006.12.009_bib17
  article-title: Similarity measures in fuzzy rule base simplification
  publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics
  doi: 10.1109/3477.678632
– ident: 10.1016/j.patcog.2006.12.009_bib13
  doi: 10.1137/1.9781611972719.29
– ident: 10.1016/j.patcog.2006.12.009_bib7
  doi: 10.1109/NAFIPS.2001.943772
– volume: 60
  start-page: 165
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2006.12.009_bib11
  article-title: Automated discovery of concise predictive rules for intrusion detection
  publication-title: Syst. Softwares
  doi: 10.1016/S0164-1212(01)00088-7
– ident: 10.1016/j.patcog.2006.12.009_bib2
  doi: 10.1007/978-3-540-45248-5_3
– ident: 10.1016/j.patcog.2006.12.009_bib3
  doi: 10.1007/3-540-45474-8_8
– ident: 10.1016/j.patcog.2006.12.009_bib38
– volume: 9
  start-page: 506
  issue: 4
  year: 2001
  ident: 10.1016/j.patcog.2006.12.009_bib28
  article-title: Effect of rule weights in fuzzy rule-based classification systems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.940964
– ident: 10.1016/j.patcog.2006.12.009_bib9
– ident: 10.1016/j.patcog.2006.12.009_bib15
– ident: 10.1016/j.patcog.2006.12.009_bib27
  doi: 10.1109/FUZZY.2000.839118
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2006.12.009_bib22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 149
  start-page: 149
  issue: 1
  year: 2005
  ident: 10.1016/j.patcog.2006.12.009_bib16
  article-title: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2004.07.013
– volume: 52
  start-page: 21
  issue: 1
  year: 1992
  ident: 10.1016/j.patcog.2006.12.009_bib29
  article-title: Distributed representation of fuzzy rules and its application to pattern classification
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(92)90032-Y
– ident: 10.1016/j.patcog.2006.12.009_bib21
  doi: 10.1109/FUZZ.2002.1005001
– ident: 10.1016/j.patcog.2006.12.009_bib12
  doi: 10.1016/B978-1-55860-377-6.50023-2
– volume: 13
  start-page: 22
  issue: 6
  year: 1996
  ident: 10.1016/j.patcog.2006.12.009_bib25
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543973
– year: 1975
  ident: 10.1016/j.patcog.2006.12.009_bib8
– volume: 44
  start-page: 42
  year: 1953
  ident: 10.1016/j.patcog.2006.12.009_bib32
  article-title: Mémoire sur les elections au scrutin, 1781
  publication-title: English translation by A. de Grazia, Math. Derivation Election Syst. Isis
– ident: 10.1016/j.patcog.2006.12.009_bib30
– start-page: 519
  year: 2003
  ident: 10.1016/j.patcog.2006.12.009_bib34
  article-title: Feature selection of intrusion detection data using a hybrid genetic algorithm/KNN approach
– volume: 14
  start-page: 533
  issue: 6
  year: 2000
  ident: 10.1016/j.patcog.2006.12.009_bib1
  article-title: Adaptive intrusion detection: a data mining approach
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006624031083
– ident: 10.1016/j.patcog.2006.12.009_bib36
  doi: 10.1016/j.cose.2004.09.008
SSID ssj0017142
Score 2.328322
Snippet Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 2373
SubjectTerms Applied sciences
Exact sciences and technology
Feature selection
Fuzzy classifier
Genetic algorithms
Information, signal and communications theory
Intrusion detection
Miscellaneous
Multi-objective optimization
Pattern recognition
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Title Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection
URI https://dx.doi.org/10.1016/j.patcog.2006.12.009
Volume 40
WOSCitedRecordID wos000246932200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjQMSgvElBmzygVsVlNhpbR-naajsME2iSL1Fju1ApzTplm6M_QX82TzHjtNugrEDl7R6ctw07-f3Yb8PhD4k49jEwnIABF-UUpJEPNXWS8lzxcYClGjRNptgJyd8NhOng8GvLhfmqmRVxa-vxfK_shpowGybOvsAdodJgQDfgelwBbbD9Z8YbwtJAzEqLm9ufg4vLkszXLRdIEL98PbAoC_zbe3FwrQFPodN2xbHEkNx18YHWtYLWdokQZulYQdos3JD1-3b07Zcp02R8XFJ_Sn_tPFb04ff59GkDpL-hw8K_iIX_e6-I01kVc439iVYCLwKspYmESUxXZe1rjSTx5RYF5zUdTTxSphQ18PrjoB3ew1nH5egqOpv7jDJbufGoldo3SH-LT0Xog-7wLazzM1iW3GOs4RkbSboNmEjAfJx--Dz0ew4nEixJHWV5_2_6tIw21jBu0_zJzPnyVI2sPgK1zVlzZSZ7qCn3gfBBw47z9HAVC_Qs66_B_bi_iU634AStlDCDkq4gxIGKOEeSrgusIcSDlDCPZQwQAl7KOEAJRyg9Ap9_XQ0PZxEvkVHpNKYrEBVgsFHJVOw5EdM8DxhUnFwMnKtDC_AV2YJ0TQniiuhpZbUjGOmGXwwonlOX6Otqq7MG4TZiBmZwss3Sqc8FpIr8C4ETGtdhCLdRbR7o5ny9ettG5Uy-xs_d1EU7lq6-i33jGcdszJvgzrbMgME3nPn_gZv-58Dg4OBIn37wEd5hx736-o92gKemD30SF2t5s3FvsfnbwAduXI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic-fuzzy+rule+mining+approach+and+evaluation+of+feature+selection+techniques+for+anomaly+intrusion+detection&rft.jtitle=Pattern+recognition&rft.au=Tsang%2C+Chi-Ho&rft.au=Kwong%2C+Sam&rft.au=Wang%2C+Hanli&rft.date=2007-09-01&rft.issn=0031-3203&rft.volume=40&rft.issue=9&rft.spage=2373&rft.epage=2391&rft_id=info:doi/10.1016%2Fj.patcog.2006.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2006_12_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon