Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection
Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data fo...
Saved in:
| Published in: | Pattern recognition Vol. 40; no. 9; pp. 2373 - 2391 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.09.2007
Elsevier Science |
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data for classification. The proposed fuzzy rule-based system is evolved from an agent-based evolutionary framework and multi-objective optimization. In addition, the proposed system can also act as a genetic feature selection wrapper to search for an optimal feature subset for dimensionality reduction. To evaluate the classification and feature selection performance of our approach, it is compared with some well-known classifiers as well as feature selection filters and wrappers. The extensive experimental results on the KDD-Cup99 intrusion detection benchmark data set demonstrate that the proposed approach produces interpretable fuzzy systems, and outperforms other classifiers and wrappers by providing the highest detection accuracy for intrusion attacks and low false alarm rate for normal network traffic with minimized number of features. |
|---|---|
| AbstractList | Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data for classification. The proposed fuzzy rule-based system is evolved from an agent-based evolutionary framework and multi-objective optimization. In addition, the proposed system can also act as a genetic feature selection wrapper to search for an optimal feature subset for dimensionality reduction. To evaluate the classification and feature selection performance of our approach, it is compared with some well-known classifiers as well as feature selection filters and wrappers. The extensive experimental results on the KDD-Cup99 intrusion detection benchmark data set demonstrate that the proposed approach produces interpretable fuzzy systems, and outperforms other classifiers and wrappers by providing the highest detection accuracy for intrusion attacks and low false alarm rate for normal network traffic with minimized number of features. |
| Author | Wang, Hanli Kwong, Sam Tsang, Chi-Ho |
| Author_xml | – sequence: 1 givenname: Chi-Ho surname: Tsang fullname: Tsang, Chi-Ho – sequence: 2 givenname: Sam surname: Kwong fullname: Kwong, Sam email: cssamk@cityu.edu.hk – sequence: 3 givenname: Hanli surname: Wang fullname: Wang, Hanli |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18767730$$DView record in Pascal Francis |
| BookMark | eNp9kLFqHDEQhkVwIGfHb-BCTcpdj6S71V6KQDCJHTCkSWoxJ83aOvaktaQ1nJ8-Om9IkcLVwMz__TDfOTsLMRBjVwJaAaK73rcTFhsfWgnQtUK2ANt3bCV6rZqNWMsztgJQolES1Ad2nvMeQOh6WLGnWwpUvG2G-eXlyNM8Ej_44MMDx2lKEe0jx-A4PeM4Y_Ex8DjwgbDMiXimkezrspB9DP5ppsyHmCoSDzgeuQ8lzfkUcFSW6Ef2fsAx0-XfecF-f__26-auuf95--Pm631j1yBLsxW96BVq2wFt9LbfCY22FxvYOUv90MFGC-nUTtrebh06VNSBdroOLV2_Uxfs09I7YbY4DgmD9dlMyR8wHU2V02mtoOY-LzmbYs6JBmN9ef20JPSjEWBOks3eLJLNSbIR0lTJFV7_B__rfxv7smBUBTx7SiZbT8GS86laMi76twv-ACwSnaE |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1109_TFUZZ_2021_3076265 crossref_primary_10_1155_2020_8860418 crossref_primary_10_1016_j_asoc_2020_106856 crossref_primary_10_1109_TSMCC_2012_2196794 crossref_primary_10_1007_s10489_013_0452_6 crossref_primary_10_4018_ijcvip_2013100104 crossref_primary_10_1016_j_knosys_2020_105500 crossref_primary_10_1109_TFUZZ_2019_2900856 crossref_primary_10_1007_s10115_021_01641_w crossref_primary_10_1007_s12065_007_0001_5 crossref_primary_10_1155_2018_5948146 crossref_primary_10_1016_j_patrec_2016_11_018 crossref_primary_10_1016_j_knosys_2019_02_001 crossref_primary_10_1007_s10489_022_03803_x crossref_primary_10_1109_TFUZZ_2011_2147794 crossref_primary_10_1007_s00521_015_1964_2 crossref_primary_10_1016_j_asoc_2009_06_019 crossref_primary_10_1109_ACCESS_2025_3594986 crossref_primary_10_1016_j_neucom_2018_05_027 crossref_primary_10_1016_j_engappai_2019_08_010 crossref_primary_10_1007_s11227_020_03161_w crossref_primary_10_1587_transinf_2015EDP7357 crossref_primary_10_1016_j_neucom_2008_12_038 crossref_primary_10_1007_s10489_017_1026_9 crossref_primary_10_1016_j_ins_2024_120498 crossref_primary_10_1007_s12046_019_1230_x crossref_primary_10_1186_s40537_023_00834_0 crossref_primary_10_1109_ACCESS_2018_2872784 crossref_primary_10_1007_s11042_019_7591_7 crossref_primary_10_1007_s11416_022_00431_4 crossref_primary_10_1016_j_eswa_2009_02_048 crossref_primary_10_1109_TC_2016_2519914 crossref_primary_10_1109_JIOT_2018_2873125 crossref_primary_10_1016_j_ins_2022_10_017 crossref_primary_10_1162_ARTL_a_00162 crossref_primary_10_1016_j_eswa_2011_07_032 crossref_primary_10_1109_TSMC_2015_2503381 crossref_primary_10_1016_j_ecolind_2022_108583 crossref_primary_10_1007_s10462_022_10355_6 crossref_primary_10_1016_j_cose_2008_12_001 crossref_primary_10_1016_j_patcog_2024_111212 crossref_primary_10_3390_info10110356 crossref_primary_10_1016_j_eswa_2019_113105 crossref_primary_10_1007_s11277_020_07808_y crossref_primary_10_1016_j_fss_2010_05_016 crossref_primary_10_1016_j_engappai_2024_108162 crossref_primary_10_1007_s10115_010_0340_x crossref_primary_10_1186_s40537_015_0013_4 crossref_primary_10_1016_j_eswa_2016_09_041 crossref_primary_10_1007_s00521_011_0729_9 crossref_primary_10_1186_2195_5468_2_4 crossref_primary_10_1051_matecconf_20167604030 crossref_primary_10_4018_IJISP_2022010113 crossref_primary_10_1016_j_knosys_2017_03_012 crossref_primary_10_1016_j_patcog_2021_108378 crossref_primary_10_1016_j_jnca_2010_10_009 crossref_primary_10_1016_j_ins_2021_10_075 crossref_primary_10_3390_electronics10121375 crossref_primary_10_1016_j_knosys_2020_105659 crossref_primary_10_1016_j_eswa_2014_11_009 crossref_primary_10_1109_ACCESS_2020_2996226 crossref_primary_10_1016_j_eswa_2015_07_027 crossref_primary_10_1016_j_asoc_2021_107354 crossref_primary_10_1007_s12065_019_00293_8 crossref_primary_10_1016_j_asoc_2018_08_004 crossref_primary_10_1016_j_jnca_2009_10_003 crossref_primary_10_1016_j_jksuci_2021_06_018 crossref_primary_10_1007_s10489_011_0315_y crossref_primary_10_1109_ACCESS_2017_2766844 crossref_primary_10_1016_j_fss_2017_07_003 crossref_primary_10_1109_TFUZZ_2014_2370677 crossref_primary_10_1109_JCN_2010_6388474 crossref_primary_10_1093_comjnl_bxab053 crossref_primary_10_1016_j_knosys_2020_105648 crossref_primary_10_1007_s13369_018_3507_5 crossref_primary_10_1007_s12652_019_01596_5 crossref_primary_10_1109_TFUZZ_2010_2060200 crossref_primary_10_1007_s10489_010_0263_y crossref_primary_10_1016_j_neucom_2016_03_031 crossref_primary_10_1007_s10586_017_1255_z crossref_primary_10_1016_j_ins_2015_03_005 crossref_primary_10_1016_j_comcom_2011_07_001 crossref_primary_10_1109_JIOT_2022_3194837 crossref_primary_10_1016_j_ins_2010_06_018 crossref_primary_10_1016_j_asoc_2014_09_032 crossref_primary_10_1016_j_knosys_2017_07_005 crossref_primary_10_1007_s00500_011_0794_0 crossref_primary_10_1007_s40815_016_0160_6 crossref_primary_10_1016_j_eswa_2014_08_002 crossref_primary_10_1016_j_ins_2014_06_014 crossref_primary_10_1007_s11831_024_10157_9 crossref_primary_10_1007_s10462_011_9212_3 crossref_primary_10_4018_IJISP_201907010102 crossref_primary_10_1016_j_eswa_2009_05_029 crossref_primary_10_1016_j_cose_2013_08_003 crossref_primary_10_1016_j_ijleo_2022_170079 crossref_primary_10_1038_s41598_025_85792_8 crossref_primary_10_1016_j_petrol_2021_109681 |
| Cites_doi | 10.1109/41.661317 10.1016/S0165-0114(03)00111-8 10.1109/NAFIPS.2002.1018103 10.1109/91.940965 10.1109/TSMC.1973.5408575 10.1145/846183.846199 10.1145/382912.382914 10.1109/91.842154 10.1109/3477.809036 10.1109/41.538609 10.1016/0167-8655(89)90037-8 10.1145/775047.775101 10.1109/3477.678632 10.1137/1.9781611972719.29 10.1109/NAFIPS.2001.943772 10.1016/S0164-1212(01)00088-7 10.1007/978-3-540-45248-5_3 10.1007/3-540-45474-8_8 10.1109/91.940964 10.1109/FUZZY.2000.839118 10.1109/4235.996017 10.1016/j.fss.2004.07.013 10.1016/0165-0114(92)90032-Y 10.1109/FUZZ.2002.1005001 10.1016/B978-1-55860-377-6.50023-2 10.1109/79.543973 10.1023/A:1006624031083 10.1016/j.cose.2004.09.008 |
| ContentType | Journal Article |
| Copyright | 2007 Pattern Recognition Society 2007 INIST-CNRS |
| Copyright_xml | – notice: 2007 Pattern Recognition Society – notice: 2007 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.patcog.2006.12.009 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 2391 |
| ExternalDocumentID | 18767730 10_1016_j_patcog_2006_12_009 S0031320306005218 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c402t-918183a7c60e5798b17ac8150bdce8f605712d3b2c8c9dada3e607d73e672d8b3 |
| ISICitedReferencesCount | 171 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246932200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Mon Jul 21 09:17:34 EDT 2025 Sat Nov 29 03:52:00 EST 2025 Tue Nov 18 22:17:21 EST 2025 Fri Feb 23 02:33:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Feature selection Multi-objective optimization Fuzzy classifier Intrusion detection Genetic algorithms Performance evaluation Automatic classification Expert system Multiobjective programming Intruder detector Remote sensing Accuracy Data transmission network Safety Fuzzy system Teletraffic Pattern recognition Signal classification False alarm rate Multiagent system Surveillance Genetic algorithm Signal processing Feature extraction Remote supervision |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-918183a7c60e5798b17ac8150bdce8f605712d3b2c8c9dada3e607d73e672d8b3 |
| PageCount | 19 |
| ParticipantIDs | pascalfrancis_primary_18767730 crossref_citationtrail_10_1016_j_patcog_2006_12_009 crossref_primary_10_1016_j_patcog_2006_12_009 elsevier_sciencedirect_doi_10_1016_j_patcog_2006_12_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-09-01 |
| PublicationDateYYYYMMDD | 2007-09-01 |
| PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2007 |
| Publisher | Elsevier Ltd Elsevier Science |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
| References | Wang, Kwong, Jin, Wei, Man (bib16) 2005; 149 Jin (bib19) 2000; 8 UCI Machine Learning Repository (Online), Available J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United States Military Academy, West Point, New York, June 2001, pp. 68–75. de Borda (bib32) 1953; 44 Middlemiss, Dick (bib34) 2003 C. Elkan, Results of the KDD’99 classifier learning, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, vol. 1(2), 2000, pp. 63–64. S. Maheshkumar, S. Gursel, Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context, in: Proceedings of International Conference on Machine Learning, Models, Technologies and Applications, Las Vegas, Nevadat, USA, CSREA Press, 2003, pp. 209–215. P. Meesad, G.G. Yen, Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system, IEEE International Conference on Fuzzy Systems, vol. 1, May 2002, pp. 284–289. O. Boz, Feature subset selection by using sorted feature relevance, in: Proceedings of International Conference on Machine Learning and Applications, Las Vegas, NV, USA, June 2002. Man, Tang, Kwong, He (bib25) 1996; 13 L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. SMC-3 (1973) 28–44. M. Ramadas, S. Ostermann, B. Tjaden, Detecting anomalous network traffic with self-organizing maps, in: Sixth International Symposium on Recent Advances in Intrusion Detection, RAID’03, September 2003, pp. 36–54. Tang, Man, Liu, Kwong (bib23) 1998; 45 Roubos, Setnes (bib20) 2001; 9 Setnes, Babuška, Kaymak, van Nauta Lemke (bib17) 1998; 28 Helmer, Wong, Honavar, Miller (bib11) 2002; 60 Platt (bib31) 1999 J.E. Dickerson, J. Juslin, O. Koukousoula, J.A. Dickerson, Fuzzy intrusion detection, in: Proceedings of IFSA World Congress and 20th North American Fuzzy Information Processing Society Conference, NAFIPS 2001, Vancouver, British Columbia, July 2001, pp. 1506–1510. R. Agarwal, M.V. Joshi, PNrule: a new framework for learning classifier models in data mining (a case-study in network intrusion detection), in: Proceedings of First SIAM Conference on Data Mining, Chicago, April 2001. Siedlecki, Sklansky (bib33) 1989; 10 Holland (bib8) 1975 . Özyer, Alhajj, Barker (bib10) 2003 Magdalena, Cordon, Gomide, Herrera, Hoffmann (bib26) 2004; 141 P.D. Williams, K.P. Anchor, J.L. Bebo, G.H. Gunsch, G.D. Lamont, CDIS: towards a computer immune system for detecting network intrusions, in: Fourth International Symposium on Recent Advances in Intrusion Detection, RAID’01, October 2001, pp. 117–133. Ishibuchi, Nakashima (bib28) 2001; 9 Ishibuchi, Nozaki, Tanaka (bib29) 1992; 52 Deb, Pratap, Agarwal, Meyarivan (bib22) 2002; 6 H. Ishibuchi, T. Nakashima, T. Kuroda, A hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems, in: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, May 2000, pp. 706–711. W. Lee, S.J. Stolfo, A framework for constructing features and models for intrusion detection systems, ACM Transactions on Information and System Security, TISSEC, vol. 3(4), November 2000, pp. 227–261. S. Chebrolu, A. Abraham, J. Thomas, Feature Deduction and Ensemble Design of Intrusion Detection Systems, Comput. Secur. 24(4) (2005) 295–307. J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United State Military Academy, West Point, NY, 2001, pp. 68–75. W.W. Cohen, Fast effective rule induction, in: Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA, July 1995, pp. 115–123. Jin, von Seelen, Sendhoff (bib18) 1999; 29 Lee, Stolfo, Mok (bib1) 2000; 14 K. Julisch, M. Dacier, Mining intrusion detection alarms for actionable knowledge, in: Proceedings of the Eighth ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, July 2002, pp. 366–375. G. Florez, S.M. Bridges, R.B. Vaughn, An improved algorithm for fuzzy data mining for intrusion detection, in: Proceedings of North American Fuzzy Information Processing Society Conference, NAFIPS 2000, New Orleans, LA, June 2002, pp. 457–462. Man, Tang, Kwong (bib24) 1996; 43 10.1016/j.patcog.2006.12.009_bib30 Setnes (10.1016/j.patcog.2006.12.009_bib17) 1998; 28 Roubos (10.1016/j.patcog.2006.12.009_bib20) 2001; 9 Wang (10.1016/j.patcog.2006.12.009_bib16) 2005; 149 10.1016/j.patcog.2006.12.009_bib12 10.1016/j.patcog.2006.12.009_bib13 10.1016/j.patcog.2006.12.009_bib35 10.1016/j.patcog.2006.12.009_bib14 10.1016/j.patcog.2006.12.009_bib36 Helmer (10.1016/j.patcog.2006.12.009_bib11) 2002; 60 Tang (10.1016/j.patcog.2006.12.009_bib23) 1998; 45 Jin (10.1016/j.patcog.2006.12.009_bib19) 2000; 8 Magdalena (10.1016/j.patcog.2006.12.009_bib26) 2004; 141 Lee (10.1016/j.patcog.2006.12.009_bib1) 2000; 14 Jin (10.1016/j.patcog.2006.12.009_bib18) 1999; 29 Siedlecki (10.1016/j.patcog.2006.12.009_bib33) 1989; 10 Holland (10.1016/j.patcog.2006.12.009_bib8) 1975 Platt (10.1016/j.patcog.2006.12.009_bib31) 1999 10.1016/j.patcog.2006.12.009_bib27 Deb (10.1016/j.patcog.2006.12.009_bib22) 2002; 6 10.1016/j.patcog.2006.12.009_bib5 10.1016/j.patcog.2006.12.009_bib4 Ishibuchi (10.1016/j.patcog.2006.12.009_bib29) 1992; 52 10.1016/j.patcog.2006.12.009_bib7 10.1016/j.patcog.2006.12.009_bib6 10.1016/j.patcog.2006.12.009_bib21 10.1016/j.patcog.2006.12.009_bib9 Özyer (10.1016/j.patcog.2006.12.009_bib10) 2003 de Borda (10.1016/j.patcog.2006.12.009_bib32) 1953; 44 10.1016/j.patcog.2006.12.009_bib3 10.1016/j.patcog.2006.12.009_bib2 Man (10.1016/j.patcog.2006.12.009_bib24) 1996; 43 Man (10.1016/j.patcog.2006.12.009_bib25) 1996; 13 10.1016/j.patcog.2006.12.009_bib15 10.1016/j.patcog.2006.12.009_bib37 10.1016/j.patcog.2006.12.009_bib38 Ishibuchi (10.1016/j.patcog.2006.12.009_bib28) 2001; 9 Middlemiss (10.1016/j.patcog.2006.12.009_bib34) 2003 |
| References_xml | – reference: P. Meesad, G.G. Yen, Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system, IEEE International Conference on Fuzzy Systems, vol. 1, May 2002, pp. 284–289. – reference: G. Florez, S.M. Bridges, R.B. Vaughn, An improved algorithm for fuzzy data mining for intrusion detection, in: Proceedings of North American Fuzzy Information Processing Society Conference, NAFIPS 2000, New Orleans, LA, June 2002, pp. 457–462. – reference: R. Agarwal, M.V. Joshi, PNrule: a new framework for learning classifier models in data mining (a case-study in network intrusion detection), in: Proceedings of First SIAM Conference on Data Mining, Chicago, April 2001. – volume: 149 start-page: 149 year: 2005 end-page: 186 ident: bib16 article-title: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction publication-title: Fuzzy Sets and Systems – reference: L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man Cybern. SMC-3 (1973) 28–44. – start-page: 519 year: 2003 end-page: 527 ident: bib34 article-title: Feature selection of intrusion detection data using a hybrid genetic algorithm/KNN approach publication-title: Design and Application of Hybrid Intelligent Systems – volume: 10 start-page: 335 year: 1989 end-page: 347 ident: bib33 article-title: A note on genetic algorithms for large-scale feature selection publication-title: Pattern Recognition Lett. – reference: W.W. Cohen, Fast effective rule induction, in: Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA, July 1995, pp. 115–123. – start-page: 983 year: 2003 end-page: 992 ident: bib10 article-title: A boosting genetic fuzzy classifier for intrusion detection using data mining techniques for rule pre-screening publication-title: Design and Application of Hybrid Intelligent Systems – reference: K. Julisch, M. Dacier, Mining intrusion detection alarms for actionable knowledge, in: Proceedings of the Eighth ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, July 2002, pp. 366–375. – volume: 9 start-page: 516 year: 2001 end-page: 524 ident: bib20 article-title: Compact and transparent fuzzy models and classifiers through interactive complexity reduction publication-title: IEEE Trans. Fuzzy Syst. – volume: 28 start-page: 376 year: 1998 end-page: 386 ident: bib17 article-title: Similarity measures in fuzzy rule base simplification publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics – volume: 52 start-page: 21 year: 1992 end-page: 32 ident: bib29 article-title: Distributed representation of fuzzy rules and its application to pattern classification publication-title: Fuzzy Sets and Systems – reference: H. Ishibuchi, T. Nakashima, T. Kuroda, A hybrid fuzzy GBML algorithm for designing compact fuzzy rule-based classification systems, in: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, May 2000, pp. 706–711. – reference: UCI Machine Learning Repository (Online), Available: – year: 1975 ident: bib8 article-title: Adaptation in Natural and Artificial Systems – volume: 60 start-page: 165 year: 2002 end-page: 175 ident: bib11 article-title: Automated discovery of concise predictive rules for intrusion detection publication-title: Syst. Softwares – volume: 45 start-page: 162 year: 1998 end-page: 169 ident: bib23 article-title: Minimal fuzzy memberships and rules using hierarchical genetic algorithms publication-title: IEEE Trans. Ind. Electron. – reference: J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United State Military Academy, West Point, NY, 2001, pp. 68–75. – volume: 13 start-page: 22 year: 1996 end-page: 37 ident: bib25 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. – volume: 8 start-page: 212 year: 2000 end-page: 221 ident: bib19 article-title: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement publication-title: IEEE Trans. Fuzzy Syst. – reference: W. Lee, S.J. Stolfo, A framework for constructing features and models for intrusion detection systems, ACM Transactions on Information and System Security, TISSEC, vol. 3(4), November 2000, pp. 227–261. – volume: 141 start-page: 5 year: 2004 end-page: 31 ident: bib26 article-title: Ten years of genetic fuzzy systems: current framework and new trends publication-title: Fuzzy Sets and Systems – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib22 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 44 start-page: 42 year: 1953 end-page: 51 ident: bib32 article-title: Mémoire sur les elections au scrutin, 1781 publication-title: English translation by A. de Grazia, Math. Derivation Election Syst. Isis – reference: J.E. Dickerson, J. Juslin, O. Koukousoula, J.A. Dickerson, Fuzzy intrusion detection, in: Proceedings of IFSA World Congress and 20th North American Fuzzy Information Processing Society Conference, NAFIPS 2001, Vancouver, British Columbia, July 2001, pp. 1506–1510. – reference: J. Gomez, D. Dasgupta, Evolving fuzzy classifiers for intrusion detection, in: Proceedings of IEEE Workshop on Information Assurance, United States Military Academy, West Point, New York, June 2001, pp. 68–75. – reference: S. Maheshkumar, S. Gursel, Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context, in: Proceedings of International Conference on Machine Learning, Models, Technologies and Applications, Las Vegas, Nevadat, USA, CSREA Press, 2003, pp. 209–215. – reference: M. Ramadas, S. Ostermann, B. Tjaden, Detecting anomalous network traffic with self-organizing maps, in: Sixth International Symposium on Recent Advances in Intrusion Detection, RAID’03, September 2003, pp. 36–54. – reference: C. Elkan, Results of the KDD’99 classifier learning, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, vol. 1(2), 2000, pp. 63–64. – start-page: 185 year: 1999 end-page: 208 ident: bib31 article-title: Fast training of support vector machines using sequential minimal optimization publication-title: Advances in Kernel Methods—Support Vector Learning – reference: O. Boz, Feature subset selection by using sorted feature relevance, in: Proceedings of International Conference on Machine Learning and Applications, Las Vegas, NV, USA, June 2002. – reference: S. Chebrolu, A. Abraham, J. Thomas, Feature Deduction and Ensemble Design of Intrusion Detection Systems, Comput. Secur. 24(4) (2005) 295–307. – volume: 29 start-page: 829 year: 1999 end-page: 845 ident: bib18 article-title: On generating FC3 fuzzy rule systems with data using evolution strategies publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics – volume: 14 start-page: 533 year: 2000 end-page: 567 ident: bib1 article-title: Adaptive intrusion detection: a data mining approach publication-title: Artif. Intell. Rev. – reference: P.D. Williams, K.P. Anchor, J.L. Bebo, G.H. Gunsch, G.D. Lamont, CDIS: towards a computer immune system for detecting network intrusions, in: Fourth International Symposium on Recent Advances in Intrusion Detection, RAID’01, October 2001, pp. 117–133. – volume: 9 start-page: 506 year: 2001 end-page: 515 ident: bib28 article-title: Effect of rule weights in fuzzy rule-based classification systems publication-title: IEEE Trans. Fuzzy Syst. – volume: 43 start-page: 519 year: 1996 end-page: 534 ident: bib24 article-title: Genetic algorithms: concepts and applications publication-title: IEEE Trans. Ind. Electron. – reference: . – volume: 45 start-page: 162 issue: 1 year: 1998 ident: 10.1016/j.patcog.2006.12.009_bib23 article-title: Minimal fuzzy memberships and rules using hierarchical genetic algorithms publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.661317 – ident: 10.1016/j.patcog.2006.12.009_bib37 – volume: 141 start-page: 5 issue: 1 year: 2004 ident: 10.1016/j.patcog.2006.12.009_bib26 article-title: Ten years of genetic fuzzy systems: current framework and new trends publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(03)00111-8 – ident: 10.1016/j.patcog.2006.12.009_bib6 doi: 10.1109/NAFIPS.2002.1018103 – start-page: 983 year: 2003 ident: 10.1016/j.patcog.2006.12.009_bib10 article-title: A boosting genetic fuzzy classifier for intrusion detection using data mining techniques for rule pre-screening – volume: 9 start-page: 516 issue: 4 year: 2001 ident: 10.1016/j.patcog.2006.12.009_bib20 article-title: Compact and transparent fuzzy models and classifiers through interactive complexity reduction publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.940965 – ident: 10.1016/j.patcog.2006.12.009_bib5 doi: 10.1109/TSMC.1973.5408575 – start-page: 185 year: 1999 ident: 10.1016/j.patcog.2006.12.009_bib31 article-title: Fast training of support vector machines using sequential minimal optimization – ident: 10.1016/j.patcog.2006.12.009_bib35 doi: 10.1145/846183.846199 – ident: 10.1016/j.patcog.2006.12.009_bib4 doi: 10.1145/382912.382914 – volume: 8 start-page: 212 issue: 2 year: 2000 ident: 10.1016/j.patcog.2006.12.009_bib19 article-title: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.842154 – volume: 29 start-page: 829 issue: 6 year: 1999 ident: 10.1016/j.patcog.2006.12.009_bib18 article-title: On generating FC3 fuzzy rule systems with data using evolution strategies publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics doi: 10.1109/3477.809036 – volume: 43 start-page: 519 issue: 5 year: 1996 ident: 10.1016/j.patcog.2006.12.009_bib24 article-title: Genetic algorithms: concepts and applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.538609 – volume: 10 start-page: 335 year: 1989 ident: 10.1016/j.patcog.2006.12.009_bib33 article-title: A note on genetic algorithms for large-scale feature selection publication-title: Pattern Recognition Lett. doi: 10.1016/0167-8655(89)90037-8 – ident: 10.1016/j.patcog.2006.12.009_bib14 doi: 10.1145/775047.775101 – volume: 28 start-page: 376 issue: 3 year: 1998 ident: 10.1016/j.patcog.2006.12.009_bib17 article-title: Similarity measures in fuzzy rule base simplification publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics doi: 10.1109/3477.678632 – ident: 10.1016/j.patcog.2006.12.009_bib13 doi: 10.1137/1.9781611972719.29 – ident: 10.1016/j.patcog.2006.12.009_bib7 doi: 10.1109/NAFIPS.2001.943772 – volume: 60 start-page: 165 issue: 3 year: 2002 ident: 10.1016/j.patcog.2006.12.009_bib11 article-title: Automated discovery of concise predictive rules for intrusion detection publication-title: Syst. Softwares doi: 10.1016/S0164-1212(01)00088-7 – ident: 10.1016/j.patcog.2006.12.009_bib2 doi: 10.1007/978-3-540-45248-5_3 – ident: 10.1016/j.patcog.2006.12.009_bib3 doi: 10.1007/3-540-45474-8_8 – ident: 10.1016/j.patcog.2006.12.009_bib38 – volume: 9 start-page: 506 issue: 4 year: 2001 ident: 10.1016/j.patcog.2006.12.009_bib28 article-title: Effect of rule weights in fuzzy rule-based classification systems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.940964 – ident: 10.1016/j.patcog.2006.12.009_bib9 – ident: 10.1016/j.patcog.2006.12.009_bib15 – ident: 10.1016/j.patcog.2006.12.009_bib27 doi: 10.1109/FUZZY.2000.839118 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.patcog.2006.12.009_bib22 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 149 start-page: 149 issue: 1 year: 2005 ident: 10.1016/j.patcog.2006.12.009_bib16 article-title: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2004.07.013 – volume: 52 start-page: 21 issue: 1 year: 1992 ident: 10.1016/j.patcog.2006.12.009_bib29 article-title: Distributed representation of fuzzy rules and its application to pattern classification publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(92)90032-Y – ident: 10.1016/j.patcog.2006.12.009_bib21 doi: 10.1109/FUZZ.2002.1005001 – ident: 10.1016/j.patcog.2006.12.009_bib12 doi: 10.1016/B978-1-55860-377-6.50023-2 – volume: 13 start-page: 22 issue: 6 year: 1996 ident: 10.1016/j.patcog.2006.12.009_bib25 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543973 – year: 1975 ident: 10.1016/j.patcog.2006.12.009_bib8 – volume: 44 start-page: 42 year: 1953 ident: 10.1016/j.patcog.2006.12.009_bib32 article-title: Mémoire sur les elections au scrutin, 1781 publication-title: English translation by A. de Grazia, Math. Derivation Election Syst. Isis – ident: 10.1016/j.patcog.2006.12.009_bib30 – start-page: 519 year: 2003 ident: 10.1016/j.patcog.2006.12.009_bib34 article-title: Feature selection of intrusion detection data using a hybrid genetic algorithm/KNN approach – volume: 14 start-page: 533 issue: 6 year: 2000 ident: 10.1016/j.patcog.2006.12.009_bib1 article-title: Adaptive intrusion detection: a data mining approach publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006624031083 – ident: 10.1016/j.patcog.2006.12.009_bib36 doi: 10.1016/j.cose.2004.09.008 |
| SSID | ssj0017142 |
| Score | 2.328322 |
| Snippet | Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 2373 |
| SubjectTerms | Applied sciences Exact sciences and technology Feature selection Fuzzy classifier Genetic algorithms Information, signal and communications theory Intrusion detection Miscellaneous Multi-objective optimization Pattern recognition Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Telecommunications and information theory |
| Title | Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection |
| URI | https://dx.doi.org/10.1016/j.patcog.2006.12.009 |
| Volume | 40 |
| WOSCitedRecordID | wos000246932200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjQMSgvElBmzygVsVlNhpbR-naajsME2iSL1Fju1ApzTplm6M_QX82TzHjtNugrEDl7R6ctw07-f3Yb8PhD4k49jEwnIABF-UUpJEPNXWS8lzxcYClGjRNptgJyd8NhOng8GvLhfmqmRVxa-vxfK_shpowGybOvsAdodJgQDfgelwBbbD9Z8YbwtJAzEqLm9ufg4vLkszXLRdIEL98PbAoC_zbe3FwrQFPodN2xbHEkNx18YHWtYLWdokQZulYQdos3JD1-3b07Zcp02R8XFJ_Sn_tPFb04ff59GkDpL-hw8K_iIX_e6-I01kVc439iVYCLwKspYmESUxXZe1rjSTx5RYF5zUdTTxSphQ18PrjoB3ew1nH5egqOpv7jDJbufGoldo3SH-LT0Xog-7wLazzM1iW3GOs4RkbSboNmEjAfJx--Dz0ew4nEixJHWV5_2_6tIw21jBu0_zJzPnyVI2sPgK1zVlzZSZ7qCn3gfBBw47z9HAVC_Qs66_B_bi_iU634AStlDCDkq4gxIGKOEeSrgusIcSDlDCPZQwQAl7KOEAJRyg9Ap9_XQ0PZxEvkVHpNKYrEBVgsFHJVOw5EdM8DxhUnFwMnKtDC_AV2YJ0TQniiuhpZbUjGOmGXwwonlOX6Otqq7MG4TZiBmZwss3Sqc8FpIr8C4ETGtdhCLdRbR7o5ny9ettG5Uy-xs_d1EU7lq6-i33jGcdszJvgzrbMgME3nPn_gZv-58Dg4OBIn37wEd5hx736-o92gKemD30SF2t5s3FvsfnbwAduXI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic-fuzzy+rule+mining+approach+and+evaluation+of+feature+selection+techniques+for+anomaly+intrusion+detection&rft.jtitle=Pattern+recognition&rft.au=Tsang%2C+Chi-Ho&rft.au=Kwong%2C+Sam&rft.au=Wang%2C+Hanli&rft.date=2007-09-01&rft.issn=0031-3203&rft.volume=40&rft.issue=9&rft.spage=2373&rft.epage=2391&rft_id=info:doi/10.1016%2Fj.patcog.2006.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2006_12_009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |