Constrained Model Predictive Control for dynamic path tracking of a bi-steerable rover on slippery grounds

The research works carried out in this paper deal with the control of a fast double-steering off-road mobile robot. Such kind of robots requires very high stable and accurate controllers because their mobility is particularly influenced by wheel–ground interactions. Hence, the vehicle dynamics shoul...

Full description

Saved in:
Bibliographic Details
Published in:Control engineering practice Vol. 107; p. 104693
Main Authors: Fnadi, Mohamed, Du, Wenqian, Plumet, Frédéric, Benamar, Faïz
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2021
Elsevier
Subjects:
ISSN:0967-0661, 1873-6939
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The research works carried out in this paper deal with the control of a fast double-steering off-road mobile robot. Such kind of robots requires very high stable and accurate controllers because their mobility is particularly influenced by wheel–ground interactions. Hence, the vehicle dynamics should be incorporated in the control circuit to take into account these issues, which is developed based on the road geometry parameters and the slippage-friction conditions at the wheel–ground contacts. Relying on this dynamic model, we present in this paper the design and application of a constrained Model Predictive Control (MPC). It is based on the minimization of a cost function (optimizing the deviation from the reference trajectory, and the variation of the control input) along a finite prediction horizon, however, the prediction horizon is variable according to the forward speed of the robot. On the other hand, this approach incorporates several constraints, essentially important for the stability and safety of an off-road mobile robot moving at the high velocity, namely : saturation and maximum variations of the vehicle’s actuators (i.e. steering joints and their speeds limits) as well as the tire adhesion zone bounds (allowing to validate the assumption of a linear tire model). The full optimization problem is formulated as a Linearly Constrained Quadratic Programming (QP) to compute at each time-step the optimal and dynamically-consistent front and rear steering angles that are required to reach the desired path, with respect to all these constraints. The capabilities of our proposed controller are compared with another control law which does not apply any physical or intrinsic constraints. The latter is simply a feedback controller based on the same dynamic model and LQR theory (Linear Quadratic Regulator). Both of them have been investigated through several tests on simulations via ROS/GAZEBO and experiments on a real off-road vehicle for different kinds of trajectories and velocity levels. •We propose a constrained MPC for dynamic path tracking dedicated to fast rovers.•The controller is formulated as a QP problem (tracking task and constraints).•Steering and sliding constraints are handled by the global QP problem.•The constrained MPC is compared to the LQR controller to emphasize its effectiveness.•To show their capabilities, experiments on a real off-road vehicle are conducted.
AbstractList The research works carried out in this paper deal with the control of a fast double-steering off-road mobile robot. Such kind of robots requires very high stable and accurate controllers because their mobility is particularly influenced by wheel–ground interactions. Hence, the vehicle dynamics should be incorporated in the control circuit to take into account these issues, which is developed based on the road geometry parameters and the slippage-friction conditions at the wheel–ground contacts. Relying on this dynamic model, we present in this paper the design and application of a constrained Model Predictive Control (MPC). It is based on the minimization of a cost function (optimizing the deviation from the reference trajectory, and the variation of the control input) along a finite prediction horizon, however, the prediction horizon is variable according to the forward speed of the robot. On the other hand, this approach incorporates several constraints, essentially important for the stability and safety of an off-road mobile robot moving at the high velocity, namely : saturation and maximum variations of the vehicle’s actuators (i.e. steering joints and their speeds limits) as well as the tire adhesion zone bounds (allowing to validate the assumption of a linear tire model). The full optimization problem is formulated as a Linearly Constrained Quadratic Programming (QP) to compute at each time-step the optimal and dynamically-consistent front and rear steering angles that are required to reach the desired path, with respect to all these constraints. The capabilities of our proposed controller are compared with another control law which does not apply any physical or intrinsic constraints. The latter is simply a feedback controller based on the same dynamic model and LQR theory (Linear Quadratic Regulator). Both of them have been investigated through several tests on simulations via ROS/GAZEBO and experiments on a real off-road vehicle for different kinds of trajectories and velocity levels.
The research works carried out in this paper deal with the control of a fast double-steering off-road mobile robot. Such kind of robots requires very high stable and accurate controllers because their mobility is particularly influenced by wheel–ground interactions. Hence, the vehicle dynamics should be incorporated in the control circuit to take into account these issues, which is developed based on the road geometry parameters and the slippage-friction conditions at the wheel–ground contacts. Relying on this dynamic model, we present in this paper the design and application of a constrained Model Predictive Control (MPC). It is based on the minimization of a cost function (optimizing the deviation from the reference trajectory, and the variation of the control input) along a finite prediction horizon, however, the prediction horizon is variable according to the forward speed of the robot. On the other hand, this approach incorporates several constraints, essentially important for the stability and safety of an off-road mobile robot moving at the high velocity, namely : saturation and maximum variations of the vehicle’s actuators (i.e. steering joints and their speeds limits) as well as the tire adhesion zone bounds (allowing to validate the assumption of a linear tire model). The full optimization problem is formulated as a Linearly Constrained Quadratic Programming (QP) to compute at each time-step the optimal and dynamically-consistent front and rear steering angles that are required to reach the desired path, with respect to all these constraints. The capabilities of our proposed controller are compared with another control law which does not apply any physical or intrinsic constraints. The latter is simply a feedback controller based on the same dynamic model and LQR theory (Linear Quadratic Regulator). Both of them have been investigated through several tests on simulations via ROS/GAZEBO and experiments on a real off-road vehicle for different kinds of trajectories and velocity levels. •We propose a constrained MPC for dynamic path tracking dedicated to fast rovers.•The controller is formulated as a QP problem (tracking task and constraints).•Steering and sliding constraints are handled by the global QP problem.•The constrained MPC is compared to the LQR controller to emphasize its effectiveness.•To show their capabilities, experiments on a real off-road vehicle are conducted.
ArticleNumber 104693
Author Plumet, Frédéric
Benamar, Faïz
Du, Wenqian
Fnadi, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Fnadi
  fullname: Fnadi, Mohamed
  email: mohamed.fnadi@sorbonne-universite.fr
– sequence: 2
  givenname: Wenqian
  orcidid: 0000-0002-3352-0809
  surname: Du
  fullname: Du, Wenqian
– sequence: 3
  givenname: Frédéric
  surname: Plumet
  fullname: Plumet, Frédéric
– sequence: 4
  givenname: Faïz
  surname: Benamar
  fullname: Benamar, Faïz
BackLink https://hal.sorbonne-universite.fr/hal-03151883$$DView record in HAL
BookMark eNqNkMFO3DAQhq2KSl0o7-Arhyy2k3jtSyW6akulRXCAs-VMJouXYEe2u9K-PY4WgcSlnGb0z3z_4TslJz54JIRytuSMy8vdEkrgt1O0sBRMzHEjdf2FLLha1VVZ9QlZMC1XFZOSfyOnKe1YQbXmC7JbB59ytM5jT29CjyO9i9g7yG6PtBxzDCMdQqT9wdtnB3Sy-ZEWAp6c39IwUEs7V6WMGG03Io1hj5EGT9PopgnjgW5j-Of79J18HeyY8Px1npGH37_u19fV5vbP3_XVpoKGiVwpHFrZC9Fp3aLig2wAtGpRKo7QNTUowWrsLGO2Y1q0dpB9I6AeRLdqAWR9Ri6OvY92NFN0zzYeTLDOXF9tzJyxmrdcqXrPy686_kIMKUUc3gDOzOzX7My7XzP7NUe_Bf3xAQWXbXazMuvGzxT8PBZgkbF3GE0Chx6K_YiQTR_c_0teAGo3oXE
CitedBy_id crossref_primary_10_1016_j_conengprac_2024_106155
crossref_primary_10_1038_s41598_024_68757_1
crossref_primary_10_1007_s11760_024_03405_9
crossref_primary_10_1016_j_oceaneng_2023_114449
crossref_primary_10_1186_s10033_021_00666_0
crossref_primary_10_3390_act13030103
crossref_primary_10_1016_j_conengprac_2022_105164
crossref_primary_10_3390_app112210714
crossref_primary_10_3390_app12010525
crossref_primary_10_1007_s11071_024_10858_7
crossref_primary_10_3390_sym14030580
crossref_primary_10_3390_app112210772
crossref_primary_10_3390_jmse12020285
crossref_primary_10_1016_j_conengprac_2022_105406
crossref_primary_10_1177_09544062241235079
crossref_primary_10_3390_sym15091786
crossref_primary_10_1007_s12239_025_00278_w
crossref_primary_10_1007_s10846_021_01503_1
crossref_primary_10_3390_a14080248
crossref_primary_10_1177_09544070211022904
crossref_primary_10_1016_j_conengprac_2024_106040
crossref_primary_10_14232_actacyb_302013
Cites_doi 10.1109/25.385930
10.1002/rob.20118
10.1002/rnc.4590050403
10.1002/rob.20319
10.1504/IJVAS.2005.008237
10.1016/j.conengprac.2012.09.009
10.1017/S0962492900002518
10.1016/j.trc.2015.09.011
10.1109/TCST.2007.894653
10.1017/S0263574715000260
10.3182/20140824-6-ZA-1003.01287
10.1007/s10846-016-0442-0
10.1109/TCST.2009.2017934
10.1016/j.mechmachtheory.2020.103984
10.1177/0278364916645661
10.1080/00423119608969210
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.conengprac.2020.104693
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6939
ExternalDocumentID oai:HAL:hal-03151883v1
10_1016_j_conengprac_2020_104693
S096706612030263X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c402t-8ef56d22b995e81f64cc985e681ecb43c8203eba00ab0925af6d42c3f2b75cc63
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601023600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Tue Oct 14 20:22:28 EDT 2025
Tue Nov 18 20:40:39 EST 2025
Sat Nov 29 07:07:40 EST 2025
Fri Feb 23 02:47:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Off-road robot
Slippage
Quadratic programming
Dynamics
Model Predictive Control
off-road robot
slippage
Quadratic Programming
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-8ef56d22b995e81f64cc985e681ecb43c8203eba00ab0925af6d42c3f2b75cc63
ORCID 0000-0002-3352-0809
0000-0001-9593-8859
0000-0002-4590-3452
OpenAccessLink https://hal.sorbonne-universite.fr/hal-03151883
ParticipantIDs hal_primary_oai_HAL_hal_03151883v1
crossref_primary_10_1016_j_conengprac_2020_104693
crossref_citationtrail_10_1016_j_conengprac_2020_104693
elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104693
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References DeSantis (b12) 1995; 44
Falcone, Borrelli, Asgari, Tseng, Hrovat (b15) 2007; 15
Keviczky, Falcone, Borrelli, Asgari, Hrovat (b26) 2006
Krid, Benamar, Zamzami (b27) 2016; 34
Leith, Leithead, Vilaplana (b28) 2005
Du, Fnadi, Benamar (b13) 2020; 153
Fnadi, Plumet, Amar (b18) 2019
Frasch, Gray, Zanon, Ferreau, Sager, Borrelli (b21) 2013
(pp. 1–6).
Peng, Sheu, Chang (b33) 2004
Bouton, Lenain, Thuilot, Fauroux (b8) 2007
Borrelli, Falcone, Keviczky, Asgari, Hrovat (b7) 2005; 3
Fnadi, Plumet, Benamar (b19) 2019
Blundell, Harty (b5) 2004
Liu, Peng (b30) 1996; 25
Ostafew, Schoellig, Barfoot (b31) 2016; 35
De Luca, Oriolo, Samson (b11) 1998
Falcone, Tufo, Borrelli, Asgari, Tseng (b16) 2007
Fnadi, Menkouz, Plumet, Amar (b17) 2019
Bächle, Graichen, Buchholz, Dietmayer (b4) 2014; 47
Amer, Zamzuri, Hudha, Kadir (b2) 2017; 86
Gao, Y., Gray, A., Frasch, J. V., Lin, T., Tseng, E., & Hedrick, J. K., et al. (2012). Spatial predictive control for agile semi-autonomous ground vehicles. In
Katrakazas, Quddus, Chen, Deka (b25) 2015; 60
Wang, Wang (b36) 2013; 21
D’Andrea-Novel, Campion, Bastin (b10) 1995; 5
Dugoff, Fancher, Segel (b14) 1969
Lenain, Thuilot, Cariou, Martinet (b29) 2010; 27
Fnadi, Wenqian, Rafael, Plumet, Benamar (b20) 2020
Goris (b23) 2005
Alexandre Dit Sandretto, Chapoutot (b1) 2016
Spenko, Kuroda, Dubowsky, Iagnemma (b34) 2006; 23
Wang, Boyd (b35) 2009; 18
Andersen, M. S., Dahl, J., & Vandenberghe, L. (2013). CVXOPT: A Python package for convex optimization, version 1.1. 6, Available at cvxopt. org, 54.
Boggs, Tolle (b6) 1995; 4
Gray, Gao, Lin, Hedrick, Tseng, Borrelli (b24) 2012
Cariou, Lenain, Thuilot, Martinet (b9) 2008
Pacejka (b32) 2002
10.1016/j.conengprac.2020.104693_b22
Lenain (10.1016/j.conengprac.2020.104693_b29) 2010; 27
Peng (10.1016/j.conengprac.2020.104693_b33) 2004
Amer (10.1016/j.conengprac.2020.104693_b2) 2017; 86
Katrakazas (10.1016/j.conengprac.2020.104693_b25) 2015; 60
DeSantis (10.1016/j.conengprac.2020.104693_b12) 1995; 44
Cariou (10.1016/j.conengprac.2020.104693_b9) 2008
Dugoff (10.1016/j.conengprac.2020.104693_b14) 1969
Leith (10.1016/j.conengprac.2020.104693_b28) 2005
Pacejka (10.1016/j.conengprac.2020.104693_b32) 2002
Liu (10.1016/j.conengprac.2020.104693_b30) 1996; 25
Borrelli (10.1016/j.conengprac.2020.104693_b7) 2005; 3
Fnadi (10.1016/j.conengprac.2020.104693_b20) 2020
De Luca (10.1016/j.conengprac.2020.104693_b11) 1998
Falcone (10.1016/j.conengprac.2020.104693_b15) 2007; 15
Fnadi (10.1016/j.conengprac.2020.104693_b17) 2019
Bouton (10.1016/j.conengprac.2020.104693_b8) 2007
Ostafew (10.1016/j.conengprac.2020.104693_b31) 2016; 35
Blundell (10.1016/j.conengprac.2020.104693_b5) 2004
D’Andrea-Novel (10.1016/j.conengprac.2020.104693_b10) 1995; 5
Spenko (10.1016/j.conengprac.2020.104693_b34) 2006; 23
10.1016/j.conengprac.2020.104693_b3
Wang (10.1016/j.conengprac.2020.104693_b35) 2009; 18
Krid (10.1016/j.conengprac.2020.104693_b27) 2016; 34
Boggs (10.1016/j.conengprac.2020.104693_b6) 1995; 4
Du (10.1016/j.conengprac.2020.104693_b13) 2020; 153
Gray (10.1016/j.conengprac.2020.104693_b24) 2012
Keviczky (10.1016/j.conengprac.2020.104693_b26) 2006
Falcone (10.1016/j.conengprac.2020.104693_b16) 2007
Fnadi (10.1016/j.conengprac.2020.104693_b19) 2019
Bächle (10.1016/j.conengprac.2020.104693_b4) 2014; 47
Fnadi (10.1016/j.conengprac.2020.104693_b18) 2019
Frasch (10.1016/j.conengprac.2020.104693_b21) 2013
Alexandre Dit Sandretto (10.1016/j.conengprac.2020.104693_b1) 2016
Goris (10.1016/j.conengprac.2020.104693_b23) 2005
Wang (10.1016/j.conengprac.2020.104693_b36) 2013; 21
References_xml – year: 2016
  ident: b1
  article-title: Validated explicit and implicit Runge-Kutta methods
– reference: (pp. 1–6).
– start-page: 7529
  year: 2019
  end-page: 7534
  ident: b19
  article-title: Nonlinear tire cornering stiffness observer for a double steering off-road mobile robot
  publication-title: 2019 international conference on robotics and automation (ICRA)
– reference: Gao, Y., Gray, A., Frasch, J. V., Lin, T., Tseng, E., & Hedrick, J. K., et al. (2012). Spatial predictive control for agile semi-autonomous ground vehicles. In
– volume: 34
  start-page: 2629
  year: 2016
  end-page: 2651
  ident: b27
  article-title: Design of an active device for controlling lateral stability of fast mobile robot
  publication-title: Robotica
– volume: 21
  start-page: 65
  year: 2013
  end-page: 75
  ident: b36
  article-title: Tire–road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation
  publication-title: Control Engineering Practice
– volume: 153
  year: 2020
  ident: b13
  article-title: Rolling based locomotion on rough terrain for a wheeled quadruped using centroidal dynamics
  publication-title: Mechanism and Machine Theory
– start-page: 4239
  year: 2012
  end-page: 4244
  ident: b24
  article-title: Predictive control for agile semi-autonomous ground vehicles using motion primitives
  publication-title: 2012 American control conference (ACC)
– year: 2005
  ident: b23
  article-title: Autonomous mobile robot mechanical design
– volume: 25
  start-page: 413
  year: 1996
  end-page: 425
  ident: b30
  article-title: Road friction coefficient estimation for vehicle path prediction
  publication-title: Vehicle System Dynamics
– volume: 35
  start-page: 1547
  year: 2016
  end-page: 1563
  ident: b31
  article-title: Robust constrained learning-based NMPC enabling reliable mobile robot path tracking
  publication-title: International Journal of Robotics Research
– year: 1969
  ident: b14
  article-title: Tire performance characteristics affecting vehicle response to steering and braking control inputs
– start-page: 6
  year: 2006
  end-page: pp
  ident: b26
  article-title: Predictive control approach to autonomous vehicle steering
  publication-title: 2006 American control conference
– start-page: 1771
  year: 2019
  end-page: 1780
  ident: b18
  article-title: Road bank and road grade angles estimation for a double steering off-road mobile robot
  publication-title: IFToMM world congress on mechanism and machine science
– volume: 44
  start-page: 366
  year: 1995
  end-page: 377
  ident: b12
  article-title: Path-tracking for car-like robots with single and double steering
  publication-title: IEEE Transactions on Vehicular Technology
– start-page: 1759
  year: 2008
  end-page: 1764
  ident: b9
  article-title: Adaptive control of four-wheel-steering off-road mobile robots: Application to path tracking and heading control in presence of sliding
  publication-title: 2008 IEEE/RSJ international conference on intelligent robots and systems
– volume: 5
  start-page: 243
  year: 1995
  end-page: 267
  ident: b10
  article-title: Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 27
  start-page: 181
  year: 2010
  end-page: 196
  ident: b29
  article-title: Mixed kinematic and dynamic sideslip angle observer for accurate control of fast off-road mobile robots
  publication-title: Journal of Field Robotics
– volume: 23
  start-page: 311
  year: 2006
  end-page: 331
  ident: b34
  article-title: Hazard avoidance for high-speed mobile robots in rough terrain
  publication-title: Journal of Field Robotics
– start-page: 5101
  year: 2005
  end-page: 5106
  ident: b28
  article-title: Robust lateral controller for 4-wheel steer cars with actuator constraints
  publication-title: Proceedings of the 44th IEEE conference on decision and control
– volume: 86
  start-page: 225
  year: 2017
  end-page: 254
  ident: b2
  article-title: Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges
  publication-title: Journal of Intelligent & Robotic Systems
– start-page: 1158
  year: 2007
  end-page: 1163
  ident: b8
  article-title: A rollover indicator based on the prediction of the load transfer in presence of sliding: application to an all terrain vehicle
  publication-title: Proceedings 2007 IEEE international conference on robotics and automation
– year: 2002
  ident: b32
  article-title: Tyre and vehicle dynamics, ed, Vol. 2
– volume: 3
  start-page: 265
  year: 2005
  end-page: 291
  ident: b7
  article-title: MPC-based approach to active steering for autonomous vehicle systems
  publication-title: International Journal of Vehicle Autonomous Systems
– start-page: 441
  year: 2019
  end-page: 449
  ident: b17
  article-title: Path tracking control for a double steering off-road mobile robot
  publication-title: ROMANSY 22–robot design, dynamics and control
– year: 2004
  ident: b5
  article-title: Multibody systems approach to vehicle dynamics
– volume: 15
  start-page: 566
  year: 2007
  end-page: 580
  ident: b15
  article-title: Predictive active steering control for autonomous vehicle systems
  publication-title: IEEE Transactions on Control Systems Technology
– start-page: 4136
  year: 2013
  end-page: 4141
  ident: b21
  article-title: An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles
  publication-title: 2013 European control conference (ECC)
– start-page: 1
  year: 2020
  end-page: 8
  ident: b20
  article-title: Local obstacle-skirting path planning for a fast bi-steerable rover using Béziers curves
  publication-title: 2020 international conference on robotics and automation (ICRA)
– reference: Andersen, M. S., Dahl, J., & Vandenberghe, L. (2013). CVXOPT: A Python package for convex optimization, version 1.1. 6, Available at cvxopt. org, 54.
– start-page: 171
  year: 1998
  end-page: 253
  ident: b11
  article-title: Feedback control of a nonholonomic car-like robot
  publication-title: Robot motion planning and control
– start-page: 2980
  year: 2007
  end-page: 2985
  ident: b16
  article-title: A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems
  publication-title: 2007 46th IEEE conference on decision and control
– start-page: 804
  year: 2004
  end-page: 809
  ident: b33
  article-title: A control scheme for automatic path tracking of vehicles subject to wheel slip constraint
  publication-title: Proceedings of the 2004 American control conference, Vol. 1
– volume: 47
  start-page: 12042
  year: 2014
  end-page: 12047
  ident: b4
  article-title: Slip-constrained model predictive control allocation for an all-wheel driven electric vehicle
  publication-title: IFAC Proceedings Volumes
– volume: 18
  start-page: 267
  year: 2009
  end-page: 278
  ident: b35
  article-title: Fast model predictive control using online optimization
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 4
  start-page: 1
  year: 1995
  end-page: 51
  ident: b6
  article-title: Sequential quadratic programming
  publication-title: Acta Numerica
– volume: 60
  start-page: 416
  year: 2015
  end-page: 442
  ident: b25
  article-title: Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 44
  start-page: 366
  issue: 2
  year: 1995
  ident: 10.1016/j.conengprac.2020.104693_b12
  article-title: Path-tracking for car-like robots with single and double steering
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/25.385930
– volume: 23
  start-page: 311
  issue: 5
  year: 2006
  ident: 10.1016/j.conengprac.2020.104693_b34
  article-title: Hazard avoidance for high-speed mobile robots in rough terrain
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.20118
– start-page: 171
  year: 1998
  ident: 10.1016/j.conengprac.2020.104693_b11
  article-title: Feedback control of a nonholonomic car-like robot
– volume: 5
  start-page: 243
  issue: 4
  year: 1995
  ident: 10.1016/j.conengprac.2020.104693_b10
  article-title: Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.4590050403
– volume: 27
  start-page: 181
  issue: 2
  year: 2010
  ident: 10.1016/j.conengprac.2020.104693_b29
  article-title: Mixed kinematic and dynamic sideslip angle observer for accurate control of fast off-road mobile robots
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.20319
– year: 2004
  ident: 10.1016/j.conengprac.2020.104693_b5
– volume: 3
  start-page: 265
  issue: 2
  year: 2005
  ident: 10.1016/j.conengprac.2020.104693_b7
  article-title: MPC-based approach to active steering for autonomous vehicle systems
  publication-title: International Journal of Vehicle Autonomous Systems
  doi: 10.1504/IJVAS.2005.008237
– volume: 21
  start-page: 65
  issue: 1
  year: 2013
  ident: 10.1016/j.conengprac.2020.104693_b36
  article-title: Tire–road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2012.09.009
– volume: 4
  start-page: 1
  year: 1995
  ident: 10.1016/j.conengprac.2020.104693_b6
  article-title: Sequential quadratic programming
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002518
– year: 2002
  ident: 10.1016/j.conengprac.2020.104693_b32
– ident: 10.1016/j.conengprac.2020.104693_b22
– start-page: 4239
  year: 2012
  ident: 10.1016/j.conengprac.2020.104693_b24
  article-title: Predictive control for agile semi-autonomous ground vehicles using motion primitives
– volume: 60
  start-page: 416
  year: 2015
  ident: 10.1016/j.conengprac.2020.104693_b25
  article-title: Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2015.09.011
– year: 2005
  ident: 10.1016/j.conengprac.2020.104693_b23
– ident: 10.1016/j.conengprac.2020.104693_b3
– year: 1969
  ident: 10.1016/j.conengprac.2020.104693_b14
– volume: 15
  start-page: 566
  issue: 3
  year: 2007
  ident: 10.1016/j.conengprac.2020.104693_b15
  article-title: Predictive active steering control for autonomous vehicle systems
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2007.894653
– start-page: 4136
  year: 2013
  ident: 10.1016/j.conengprac.2020.104693_b21
  article-title: An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles
– start-page: 6
  year: 2006
  ident: 10.1016/j.conengprac.2020.104693_b26
  article-title: Predictive control approach to autonomous vehicle steering
– volume: 34
  start-page: 2629
  issue: 11
  year: 2016
  ident: 10.1016/j.conengprac.2020.104693_b27
  article-title: Design of an active device for controlling lateral stability of fast mobile robot
  publication-title: Robotica
  doi: 10.1017/S0263574715000260
– volume: 47
  start-page: 12042
  issue: 3
  year: 2014
  ident: 10.1016/j.conengprac.2020.104693_b4
  article-title: Slip-constrained model predictive control allocation for an all-wheel driven electric vehicle
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20140824-6-ZA-1003.01287
– start-page: 1759
  year: 2008
  ident: 10.1016/j.conengprac.2020.104693_b9
  article-title: Adaptive control of four-wheel-steering off-road mobile robots: Application to path tracking and heading control in presence of sliding
– start-page: 804
  year: 2004
  ident: 10.1016/j.conengprac.2020.104693_b33
  article-title: A control scheme for automatic path tracking of vehicles subject to wheel slip constraint
– volume: 86
  start-page: 225
  issue: 2
  year: 2017
  ident: 10.1016/j.conengprac.2020.104693_b2
  article-title: Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-016-0442-0
– start-page: 2980
  year: 2007
  ident: 10.1016/j.conengprac.2020.104693_b16
  article-title: A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems
– start-page: 1771
  year: 2019
  ident: 10.1016/j.conengprac.2020.104693_b18
  article-title: Road bank and road grade angles estimation for a double steering off-road mobile robot
– volume: 18
  start-page: 267
  issue: 2
  year: 2009
  ident: 10.1016/j.conengprac.2020.104693_b35
  article-title: Fast model predictive control using online optimization
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2009.2017934
– year: 2016
  ident: 10.1016/j.conengprac.2020.104693_b1
– start-page: 1158
  year: 2007
  ident: 10.1016/j.conengprac.2020.104693_b8
  article-title: A rollover indicator based on the prediction of the load transfer in presence of sliding: application to an all terrain vehicle
– start-page: 1
  year: 2020
  ident: 10.1016/j.conengprac.2020.104693_b20
  article-title: Local obstacle-skirting path planning for a fast bi-steerable rover using Béziers curves
– volume: 153
  year: 2020
  ident: 10.1016/j.conengprac.2020.104693_b13
  article-title: Rolling based locomotion on rough terrain for a wheeled quadruped using centroidal dynamics
  publication-title: Mechanism and Machine Theory
  doi: 10.1016/j.mechmachtheory.2020.103984
– start-page: 5101
  year: 2005
  ident: 10.1016/j.conengprac.2020.104693_b28
  article-title: Robust lateral controller for 4-wheel steer cars with actuator constraints
– volume: 35
  start-page: 1547
  issue: 13
  year: 2016
  ident: 10.1016/j.conengprac.2020.104693_b31
  article-title: Robust constrained learning-based NMPC enabling reliable mobile robot path tracking
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364916645661
– start-page: 441
  year: 2019
  ident: 10.1016/j.conengprac.2020.104693_b17
  article-title: Path tracking control for a double steering off-road mobile robot
– start-page: 7529
  year: 2019
  ident: 10.1016/j.conengprac.2020.104693_b19
  article-title: Nonlinear tire cornering stiffness observer for a double steering off-road mobile robot
– volume: 25
  start-page: 413
  issue: S1
  year: 1996
  ident: 10.1016/j.conengprac.2020.104693_b30
  article-title: Road friction coefficient estimation for vehicle path prediction
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423119608969210
SSID ssj0016991
Score 2.4514985
Snippet The research works carried out in this paper deal with the control of a fast double-steering off-road mobile robot. Such kind of robots requires very high...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104693
SubjectTerms Computer Science
Dynamics
Model Predictive Control
Off-road robot
Quadratic programming
Slippage
Title Constrained Model Predictive Control for dynamic path tracking of a bi-steerable rover on slippery grounds
URI https://dx.doi.org/10.1016/j.conengprac.2020.104693
https://hal.sorbonne-universite.fr/hal-03151883
Volume 107
WOSCitedRecordID wos000601023600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XQ7sAfEUy0sW4raKlDhxEotThbZaEFrtYZF6i-JH1JaSltCtFv4Qf5MZ23nwEgWJS1q5shvn--JMxt_MEPJCcl3yJBKBNAkLEpWEgRCSB_BsyAFuVimubbGJ7Pw8n83ExWj0tY2F2a2yus6vr8Xmv0INbQA2hs7-BdzdoNAA3wF0OALscNwLeCzBaQs_gCmJlc5WKLPQC7uuYYCfVaajuFC7YvSYWnWOpSLUe6-ALk_kIgD0TWPjqhpUeeKmApikm41pPp9gKIiPEO6yHPiBTZ_fsIvA6jiC-jLrgV3Pyw8-qsoa0VbpZ-qPA65e4Kq5dba1283X7qNZqM6HYGAGTiE-Le2v0y9DNwaLWuVz749MUYfnMrN3S7OriOsXV9yOduUUf1r3nQtiCbDVME-cHrz6M7eD7bp8n2r7h0dgJ0xsNW_Loh-pwJEKN9IBOWQZF_mYHE5en87edBtWqXDFGdtZeNGYkxL--qx-ZwkdzFufvrVxLm-TW_7lhE4cqe6QkanvkqNBysp7ZDmgF7X0oj29qGcBBXpRTy-K9KItvei6oiUd0otaetF1TVt6UU-v--Td9PTy1Vng63UEcIuzbZCbiqeaMSkEN3lUpYlSIucmzSOjZBIrsDZjI8swLGUoGC-rVCdMxRWTGVcqjR-QcQ2X6iGhccmzKNEqrSpMX6Sl1FKJTGoWaxGW8THJ2mtXKJ_MHue-Kv6E4DGJup4bl9Bljz4vW3gKb5g6g7MA_u3R-zkg2v0Z5nM_m7wtsA1LrMCiGO-iR_9wWo_Jzf5OekLG2-bKPCU31G67-NQ88wz9BlBjwqk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Model+Predictive+Control+for+dynamic+path+tracking+of+a+bi-steerable+rover+on+slippery+grounds&rft.jtitle=Control+engineering+practice&rft.au=Fnadi%2C+Mohamed&rft.au=Du%2C+Wenqian&rft.au=Plumet%2C+Fr%C3%A9d%C3%A9ric&rft.au=Benamar%2C+Fa%C3%AFz&rft.date=2021-02-01&rft.issn=0967-0661&rft.volume=107&rft.spage=104693&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon