Using an Artificial Neural Network to Assess Several Rainfall Estimation Algorithms Based on X-Band Polarimetric Variables in West Africa

Quantitative precipitation estimation using polarimetric radar in attenuation-prone frequency (X-band) in tropical regions characterized by convective rain systems with high intensities is a major challenge due to strong attenuations that can lead to total signal extinction over short distances. How...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere Vol. 16; no. 4; p. 371
Main Authors: Akponi, Fulgence Payot, Moumouni, Sounmaïla, Zahiri, Eric-Pascal, Kacou, Modeste, Gosset, Marielle
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2025
MDPI
Subjects:
ISSN:2073-4433, 2073-4433
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative precipitation estimation using polarimetric radar in attenuation-prone frequency (X-band) in tropical regions characterized by convective rain systems with high intensities is a major challenge due to strong attenuations that can lead to total signal extinction over short distances. However, some authors have addressed this issue in Benin since 2006 in the framework of the African Monsoon Multidisciplinary Analysis program. Thus, with an experimental setup consisting of an X-band polarimetric weather radar (Xport) and a network of rain gauges, investigations have started on the subject with the aim of improving rainfall estimates. Based on simulated polarimetric variables and using a Multilayer Perceptron artificial neural network, several bi-variable and tri-variable algorithms were assessed in this study. The data used in this study are of two categories: (i) simulated polarimetric variables (Rayleigh reflectivity Z, horizontal attenuation Ah, horizontal reflectivity Zh, differential reflectivity Zdr, and specific differential phase Kdp) and rainfall intensity (R) obtained from Rain Drop Size Distribution (DSD) measurements used for algorithm evaluation (training and testing); (ii) polarimetric variables measured by the Xport radar and rainfall intensity measured by rain gauges used for algorithm validation. The simulations are performed using the T-matrix code, which leverages the scattering properties of spheroidal particles. The DSD measurements taken in northwest Benin were used as input for this code. For each spectrum, the T-matrix code simulates multiple variables. The simulated data (first category) were divided into two parts: one for training and one for testing. Subsequently, the best algorithms were validated with the second category of data. The performance of the algorithms during training, testing, and validation was evaluated using metrics. The best selected algorithms are A1:R(Z,Kdp) and A12:R(Zdr,Kdp) (among the bi-variable); B2:R(Zh,Zdr,Kdp) and B3:R(Ah,Zdr,Kdp) (among the tri-variable). Tri-variable algorithms outperform bi-variable algorithms. Validation with observation data (Xport measurements and rain gauge network) showed that the algorithm B3:R(Ah,Zdr,Kdp) performs better than B2:R(Zh,Zdr,Kdp).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos16040371