State-of-the-art of 3D facial reconstruction methods for face recognition based on a single 2D training image per person

3D facial reconstruction systems attempt to reconstruct 3D facial models of individuals from their 2D photographic images or video sequences. Currently published face recognition systems, which exhibit well-known deficiencies, are largely based on 2D facial images, although 3D image capture systems...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 30; číslo 10; s. 908 - 913
Hlavní autoři: Levine, Martin D., (Chris) Yu, Yingfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.07.2009
Elsevier
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 3D facial reconstruction systems attempt to reconstruct 3D facial models of individuals from their 2D photographic images or video sequences. Currently published face recognition systems, which exhibit well-known deficiencies, are largely based on 2D facial images, although 3D image capture systems can better encapsulate the 3D geometry of the human face. Accordingly, face recognition research is gradually shifting from the legacy 2D domain to the more sophisticated 2D to 3D or 2D/3D hybrid domain. Currently there exist four methods for 3D facial reconstruction. These are: Stochastic Newton Optimization method (SNO) [Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Proc. 26th Annu. Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH. pp. 187–194; Blanz, V., Vetter, T., 2003. Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Machine Intell. 25(9), 1063–1074; Blanz, V., 2001. Automatische Rekonstruction der Dreidimensionalen Form von Gesichtern aus einem Einzelbild. Ph.D. Thesis, Universitat Tubingen, Germany] inverse compositional image alignment algorithm (ICIA) [Romdhani, S., Vetter, T., 2003. Efficient, robust and accurate fitting of a 3D morphable model. In: IEEE Int. Conf. on Computer Vision, vol. 2, no. 1. pp. 59–66], linear shape and texture fitting algorithm (LiST) [Romdhani, S., Blanz, V., Vetter, T., 2002. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. ECCV, vol. 4. pp. 3–19], and shape alignment and interpolation method correction (SAIMC) [Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., Gao, W., 2005. Efficient 3D reconstruction for face recognition. Pattern Recogn. 38(6), 787–798]. The first three, SNO, ICIA + 3DMM, and LiST can be classified as “analysis-by-synthesis” techniques and SAIMC can be separately classified as a “3D supported 2D model”. In this paper, we introduce, discuss and analyze the difference between these two frameworks. We begin by presenting the 3D morphable model (3DMM; Blanz and Vetter, 1999), which forms the foundation of all four of the reconstruction techniques described here. This is followed by a review of the basic “analysis-by-synthesis” framework and a comparison of the three methods that employ this approach. We next review the “3D supported 2D model” framework and introduce the SAIMC method, comparing it to the other three. The characteristics of all four methods are summarized in a table that should facilitate further research on this topic.
AbstractList 3D facial reconstruction systems attempt to reconstruct 3D facial models of individuals from their 2D photographic images or video sequences. Currently published face recognition systems, which exhibit well-known deficiencies, are largely based on 2D facial images, although 3D image capture systems can better encapsulate the 3D geometry of the human face. Accordingly, face recognition research is gradually shifting from the legacy 2D domain to the more sophisticated 2D to 3D or 2D/3D hybrid domain. Currently there exist four methods for 3D facial reconstruction. These are: Stochastic Newton Optimization method (SNO) [Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Proc. 26th Annu. Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH. pp. 187–194; Blanz, V., Vetter, T., 2003. Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Machine Intell. 25(9), 1063–1074; Blanz, V., 2001. Automatische Rekonstruction der Dreidimensionalen Form von Gesichtern aus einem Einzelbild. Ph.D. Thesis, Universitat Tubingen, Germany] inverse compositional image alignment algorithm (ICIA) [Romdhani, S., Vetter, T., 2003. Efficient, robust and accurate fitting of a 3D morphable model. In: IEEE Int. Conf. on Computer Vision, vol. 2, no. 1. pp. 59–66], linear shape and texture fitting algorithm (LiST) [Romdhani, S., Blanz, V., Vetter, T., 2002. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. ECCV, vol. 4. pp. 3–19], and shape alignment and interpolation method correction (SAIMC) [Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., Gao, W., 2005. Efficient 3D reconstruction for face recognition. Pattern Recogn. 38(6), 787–798]. The first three, SNO, ICIA + 3DMM, and LiST can be classified as “analysis-by-synthesis” techniques and SAIMC can be separately classified as a “3D supported 2D model”. In this paper, we introduce, discuss and analyze the difference between these two frameworks. We begin by presenting the 3D morphable model (3DMM; Blanz and Vetter, 1999), which forms the foundation of all four of the reconstruction techniques described here. This is followed by a review of the basic “analysis-by-synthesis” framework and a comparison of the three methods that employ this approach. We next review the “3D supported 2D model” framework and introduce the SAIMC method, comparing it to the other three. The characteristics of all four methods are summarized in a table that should facilitate further research on this topic.
Author (Chris) Yu, Yingfeng
Levine, Martin D.
Author_xml – sequence: 1
  givenname: Martin D.
  surname: Levine
  fullname: Levine, Martin D.
  email: m.levine@ieee.org
– sequence: 2
  givenname: Yingfeng
  surname: (Chris) Yu
  fullname: (Chris) Yu, Yingfeng
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21684180$$DView record in Pascal Francis
BookMark eNqFkE1vFSEUholpE2-r_8AFmy5nhIE7cF00Ma1fSRMX1jU5c-Zwy80UbgCN_nuZXuPChS4IkPO8b-C5YGcxRWLslRS9FHJ8feiPUDNhPwix64XqhZTP2EZaM3RGaX3GNg0znR232-fsopSDEGJUO7thP75UqNQl39UH6iBXnjxXt9wDBlh4K02x1PwNa0iRP1J9SHPhPuWVoKf5Poan4QSFZt4OwEuI-4X4cMtrhhDbjYdH2BM_Ul5XSfEFO_ewFHr5e79kX9-_u7_52N19_vDp5u1dh1oMtbOajEAxzUbCOI9br0F5NIBCTsZLM1ihJ6tmucMRrJlGj4QDeqXNVoLx6pJdnXqPUBAWnyFiKO6Y24PyTzfI0WppReP0icOcSsnk_yBSuNWyO7iTZbdadkK5ZrnF3vwVw9CMNh_rz5f_ha9PYWoCvgfKrmCgiDSHhlY3p_Dvgl8vhZ5m
CODEN PRLEDG
CitedBy_id crossref_primary_10_1371_journal_pone_0055700
crossref_primary_10_1007_s00371_013_0795_3
crossref_primary_10_1016_j_ejfs_2012_06_002
crossref_primary_10_7736_KSPE_2015_32_7_633
crossref_primary_10_1109_ACCESS_2019_2938671
crossref_primary_10_1587_transinf_E97_D_305
crossref_primary_10_1109_TIP_2022_3226413
crossref_primary_10_1145_3550454_3555509
crossref_primary_10_1016_j_cosrev_2021_100400
crossref_primary_10_1016_j_prosdent_2020_01_008
crossref_primary_10_1007_s11042_024_18665_3
crossref_primary_10_1080_02564602_2014_906863
crossref_primary_10_1007_s10846_011_9548_6
crossref_primary_10_1109_TIP_2012_2204269
crossref_primary_10_1016_j_neucom_2014_10_111
crossref_primary_10_1049_iet_cvi_2013_0220
crossref_primary_10_20965_ijat_2016_p0813
crossref_primary_10_1007_s11042_016_4325_y
crossref_primary_10_1016_j_ins_2021_09_024
crossref_primary_10_1016_j_cviu_2016_04_012
crossref_primary_10_1016_j_engappai_2023_107056
crossref_primary_10_1016_j_cag_2015_02_009
crossref_primary_10_1016_j_jasrep_2019_02_018
crossref_primary_10_1109_TIP_2021_3112059
Cites_doi 10.1007/3-540-49437-5_10
10.1016/j.patcog.2004.11.004
10.1109/TPAMI.1984.4767521
10.1109/ICCV.2003.1238314
10.1016/j.cviu.2005.05.005
10.1109/TPAMI.2003.1227983
10.1145/344779.344951
10.1007/3-540-47979-1_1
10.1145/311535.311556
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patrec.2009.03.011
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1872-7344
EndPage 913
ExternalDocumentID 21684180
10_1016_j_patrec_2009_03_011
S0167865509000567
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c402t-84e70c0bd71a6d65f4a3fc7ac01b7f172804b83d19c6a87b6fcec2cf34751a7f3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267729200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Wed Apr 02 07:25:39 EDT 2025
Sat Nov 29 03:58:33 EST 2025
Tue Nov 18 21:14:29 EST 2025
Fri Feb 23 02:26:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 3D morphable model
3D reconstruction
Face recognition
Single 2D training image
State-of-the-art
Biometrics
State of the art
Photographic image
Image processing
Video signal
state-of-the-art
Stochastic method
Volume reconstruction
Texture
Learning
Image matching
Image sequence
Computer graphics
Newton method
Computer vision
Sequence alignment
Error function
Pattern recognition
Algorithm
Interactive system
Photography
Three dimensional model
Tridimensional image
Automatic recognition
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-84e70c0bd71a6d65f4a3fc7ac01b7f172804b83d19c6a87b6fcec2cf34751a7f3
PageCount 6
ParticipantIDs pascalfrancis_primary_21684180
crossref_primary_10_1016_j_patrec_2009_03_011
crossref_citationtrail_10_1016_j_patrec_2009_03_011
elsevier_sciencedirect_doi_10_1016_j_patrec_2009_03_011
PublicationCentury 2000
PublicationDate 2009-07-15
PublicationDateYYYYMMDD 2009-07-15
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bregler, C., Hertzmann, A., Biermann, H., 2000. Recovering non-rigid 3D shape from image streams. In: Proc. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition, vol. 2. pp. 690–696.
Bergen, J.R., Hingorani, R., 1990, Hierarchical motion-based frame rate conversion. Technical Report. David Sarnoff Research Center, Princeton, NJ.
Gill, G.S., Levine, M.D., 2005. Searching for the holy grail: A completely automated 3D morphable model. Technical Report, March 15, 2005. Department of Electrical & Computer Engineering & Center for Intelligent Machines, McGill University Montreal, Canada.
Romdhani, S., Vetter, T., 2003. Efficient, robust and accurate fitting of a 3D morphable model. In: IEEE Int. Conf. on Computer Vision, vol. 2, no. 1. pp. 59–66.
Blanz, Vetter (bib6) 2003; 25
Bowyer, Chang, Flynn (bib7) 2004; 101
Brady, Yuille (bib8) 1983; 6
Zhao, W.Y., Chellappa, R., 2000. SFS based view synthesis for robust face recognition. In: Proc. IEEE Int. Automatic Face and Gesture Recognition. pp. 285–292.
Romdhani, S., Blanz, V., Vetter, T., 2002. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. ECCV, vol. 4. pp. 3–19.
Romdhani, Blanz, Basso, Vetter (bib19) 2004
Himaanshu, RoyChowdhury, Chellappa (bib11) 2004
Zhou, Chellappa (bib23) 2005
.
Hu, Y., Jiang, D., Yan, S., Zhang, L., Zhang, H., 2004. Automatic 3D reconstruction for face recognition. In: Proc. 6th IEEE Int. Conf. on Automatic Face and Gesture Recognition. pp. 843–848.
Jiang, Hu, Yan, Zhang, Zhang, Gao (bib13) 2005; 38
Baker, S., Gross, R., Matthews, I., 2002. Lucas–Kanade 20 years on: A unifying framework: Part 1. Technical Report CMU-RI-TR-02-16. Robotics Institute, Carnegie Mellon University.
Blanz, V., 2001. Automatische Rekonstruction der Dreidimensionalen Form von Gesichtern aus einem Einzelbild. Ph.D. Thesis, Universitat Tubingen, Germany.
Pollefeys, M., 1999. Metric 3D Surface Reconstruction from Uncalibrated Image Sequences. Ph.D. Thesis, Katholieke Universiteit Leuven.
Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Proc. 26th Annu. Conf. on Computer Graphics and Interactive Techniques. SIGGRAPH. pp. 187–194.
Scheenstra, Ruifrok, Veltkamp (bib21) 2005
Moghaddam, B., Lee, J.H., Pfister, H., Machiraju, R., 2003. Model-based 3D face capture with shape-from-silhouettes. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures (AMFG), Bice, France. pp. 20–27.
Romdhani, Pierrard, Vetter (bib20) 2005
Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L., 2000. Image-based visual hulls. In: Proc. Int. Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH, 2000. pp. 369–374.
Baker, S., Matthews, I., 2001. Equivalence and efficiency of image alignment algorithms. In: IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR’01), vol. 1. pp. 1090–1097.
Bowyer (10.1016/j.patrec.2009.03.011_bib7) 2004; 101
10.1016/j.patrec.2009.03.011_bib9
10.1016/j.patrec.2009.03.011_bib18
10.1016/j.patrec.2009.03.011_bib17
Blanz (10.1016/j.patrec.2009.03.011_bib6) 2003; 25
10.1016/j.patrec.2009.03.011_bib16
Brady (10.1016/j.patrec.2009.03.011_bib8) 1983; 6
10.1016/j.patrec.2009.03.011_bib15
10.1016/j.patrec.2009.03.011_bib14
Romdhani (10.1016/j.patrec.2009.03.011_bib20) 2005
10.1016/j.patrec.2009.03.011_bib12
Jiang (10.1016/j.patrec.2009.03.011_bib13) 2005; 38
10.1016/j.patrec.2009.03.011_bib22
Zhou (10.1016/j.patrec.2009.03.011_bib23) 2005
10.1016/j.patrec.2009.03.011_bib10
Himaanshu (10.1016/j.patrec.2009.03.011_bib11) 2004
10.1016/j.patrec.2009.03.011_bib2
Romdhani (10.1016/j.patrec.2009.03.011_bib19) 2004
10.1016/j.patrec.2009.03.011_bib1
Scheenstra (10.1016/j.patrec.2009.03.011_bib21) 2005
10.1016/j.patrec.2009.03.011_bib5
10.1016/j.patrec.2009.03.011_bib4
10.1016/j.patrec.2009.03.011_bib3
References_xml – reference: Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of 3D faces. In: Proc. 26th Annu. Conf. on Computer Graphics and Interactive Techniques. SIGGRAPH. pp. 187–194.
– volume: 25
  start-page: 1063
  year: 2003
  end-page: 1074
  ident: bib6
  article-title: Face recognition based on fitting a 3D morphable model
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– reference: Bergen, J.R., Hingorani, R., 1990, Hierarchical motion-based frame rate conversion. Technical Report. David Sarnoff Research Center, Princeton, NJ.
– reference: Blanz, V., 2001. Automatische Rekonstruction der Dreidimensionalen Form von Gesichtern aus einem Einzelbild. Ph.D. Thesis, Universitat Tubingen, Germany.
– reference: Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L., 2000. Image-based visual hulls. In: Proc. Int. Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH, 2000. pp. 369–374.
– reference: Bregler, C., Hertzmann, A., Biermann, H., 2000. Recovering non-rigid 3D shape from image streams. In: Proc. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition, vol. 2. pp. 690–696.
– volume: 38
  start-page: 787
  year: 2005
  end-page: 798
  ident: bib13
  article-title: Efficient 3D reconstruction for face recognition
  publication-title: Pattern Recogn.
– reference: Gill, G.S., Levine, M.D., 2005. Searching for the holy grail: A completely automated 3D morphable model. Technical Report, March 15, 2005. Department of Electrical & Computer Engineering & Center for Intelligent Machines, McGill University Montreal, Canada.
– start-page: 768
  year: 2005
  ident: bib20
  article-title: 3D morphable face model, a unified approach for analysis and synthesis of image
  publication-title: Face Processing: Advanced Modeling and Methods
– reference: Baker, S., Gross, R., Matthews, I., 2002. Lucas–Kanade 20 years on: A unifying framework: Part 1. Technical Report CMU-RI-TR-02-16. Robotics Institute, Carnegie Mellon University.
– reference: Hu, Y., Jiang, D., Yan, S., Zhang, L., Zhang, H., 2004. Automatic 3D reconstruction for face recognition. In: Proc. 6th IEEE Int. Conf. on Automatic Face and Gesture Recognition. pp. 843–848.
– reference: Romdhani, S., Blanz, V., Vetter, T., 2002. Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Proc. ECCV, vol. 4. pp. 3–19.
– year: 2004
  ident: bib19
  article-title: Morphable Models of Faces
  publication-title: Handbook of Face Recognition
– reference: Baker, S., Matthews, I., 2001. Equivalence and efficiency of image alignment algorithms. In: IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR’01), vol. 1. pp. 1090–1097.
– year: 2005
  ident: bib23
  publication-title: Beyond a single still image: Face recognition from multiple still images and videos
– volume: 101
  start-page: 1
  year: 2004
  end-page: 15
  ident: bib7
  article-title: A survey of approaches and challenges in 3D and multi-modal 3D
  publication-title: Comput. Vision Image Und.
– reference: Zhao, W.Y., Chellappa, R., 2000. SFS based view synthesis for robust face recognition. In: Proc. IEEE Int. Automatic Face and Gesture Recognition. pp. 285–292.
– volume: 6
  start-page: 288
  year: 1983
  end-page: 301
  ident: bib8
  article-title: An extremum principle for shape from contour
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– year: 2004
  ident: bib11
  article-title: Contour-based 3D face modeling from a monocular video
  publication-title: British Machine Vision Conference, BMVC04, September 7–9
– reference: Moghaddam, B., Lee, J.H., Pfister, H., Machiraju, R., 2003. Model-based 3D face capture with shape-from-silhouettes. In: IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures (AMFG), Bice, France. pp. 20–27.
– year: 2005
  ident: bib21
  article-title: A survey of 3D face recognition methods
  publication-title: Fifth Int. Conf. on Audio- and Video-Based Biometric Person Authentication
– reference: Pollefeys, M., 1999. Metric 3D Surface Reconstruction from Uncalibrated Image Sequences. Ph.D. Thesis, Katholieke Universiteit Leuven.
– reference: .
– reference: Romdhani, S., Vetter, T., 2003. Efficient, robust and accurate fitting of a 3D morphable model. In: IEEE Int. Conf. on Computer Vision, vol. 2, no. 1. pp. 59–66.
– year: 2004
  ident: 10.1016/j.patrec.2009.03.011_bib19
  article-title: Morphable Models of Faces
– ident: 10.1016/j.patrec.2009.03.011_bib16
  doi: 10.1007/3-540-49437-5_10
– volume: 38
  start-page: 787
  issue: 6
  year: 2005
  ident: 10.1016/j.patrec.2009.03.011_bib13
  article-title: Efficient 3D reconstruction for face recognition
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2004.11.004
– year: 2005
  ident: 10.1016/j.patrec.2009.03.011_bib21
  article-title: A survey of 3D face recognition methods
– ident: 10.1016/j.patrec.2009.03.011_bib22
– ident: 10.1016/j.patrec.2009.03.011_bib9
– year: 2005
  ident: 10.1016/j.patrec.2009.03.011_bib23
– ident: 10.1016/j.patrec.2009.03.011_bib1
– ident: 10.1016/j.patrec.2009.03.011_bib2
– ident: 10.1016/j.patrec.2009.03.011_bib3
– ident: 10.1016/j.patrec.2009.03.011_bib4
– volume: 6
  start-page: 288
  issue: 3
  year: 1983
  ident: 10.1016/j.patrec.2009.03.011_bib8
  article-title: An extremum principle for shape from contour
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.1984.4767521
– ident: 10.1016/j.patrec.2009.03.011_bib17
  doi: 10.1109/ICCV.2003.1238314
– ident: 10.1016/j.patrec.2009.03.011_bib10
– year: 2004
  ident: 10.1016/j.patrec.2009.03.011_bib11
  article-title: Contour-based 3D face modeling from a monocular video
– ident: 10.1016/j.patrec.2009.03.011_bib12
– volume: 101
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.patrec.2009.03.011_bib7
  article-title: A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition
  publication-title: Comput. Vision Image Und.
  doi: 10.1016/j.cviu.2005.05.005
– volume: 25
  start-page: 1063
  issue: 9
  year: 2003
  ident: 10.1016/j.patrec.2009.03.011_bib6
  article-title: Face recognition based on fitting a 3D morphable model
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2003.1227983
– ident: 10.1016/j.patrec.2009.03.011_bib14
  doi: 10.1145/344779.344951
– ident: 10.1016/j.patrec.2009.03.011_bib15
– start-page: 768
  year: 2005
  ident: 10.1016/j.patrec.2009.03.011_bib20
  article-title: 3D morphable face model, a unified approach for analysis and synthesis of image
– ident: 10.1016/j.patrec.2009.03.011_bib18
  doi: 10.1007/3-540-47979-1_1
– ident: 10.1016/j.patrec.2009.03.011_bib5
  doi: 10.1145/311535.311556
SSID ssj0006398
Score 2.1915917
Snippet 3D facial reconstruction systems attempt to reconstruct 3D facial models of individuals from their 2D photographic images or video sequences. Currently...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 908
SubjectTerms 3D morphable model
3D reconstruction
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Face recognition
Image processing
Information, signal and communications theory
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Signal processing
Single 2D training image
State-of-the-art
Telecommunications and information theory
Title State-of-the-art of 3D facial reconstruction methods for face recognition based on a single 2D training image per person
URI https://dx.doi.org/10.1016/j.patrec.2009.03.011
Volume 30
WOSCitedRecordID wos000267729200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5swFLeydIdN0z66Tes-Kh92Q64wOLF9rBbaZapQD-2UnpBxsJQqJVETVTn2T-8zNgRaTdkOO4CQYwzh_XjvYb_fewh9N3GuWcEjooSKCKNUkZwODKFTJo1UWihVEYXPeJqKyUSe93r3NRfmbs7LUmw2cvlfRQ1tIGxLnf0HcTeDQgMcg9BhD2KH_V8JvnIfycIQcO1s3Jt1B-ORLawzq5L468U2aawvIF3lZLA9iqAJKIIfrYWb2tUEFdgZhXkRRKOmpkQwu7HhPsvi1m4rL13v5p5XWTvLzmjzijjUuPBnye9xmni60HpWbkOPr8bp6UmSngZXl505CUuDIo6V6SbKvFVvz1uCPrYc2Lbi9QsyHmBhS43KULQssnRs1SfK3s07XB_ZVYNC-9yj8VHotXcnt_Yjm9dEIkZ0KBgV4TO0F_GBFH20dzxOJr8aaw4enKjzw9s_UNMvqxjBp1f-k3vzaqlW8NIZVy2l5cJcvEWv_bcHPnaYeYd6RbmP3vjvEOy1_Aqa6lIfdds-etnKW_kebR5jDC8MjkfYYQx3MYY9xjBgzPYocAsVuMIYhgOFHcZwNMI1xnCFMQz4wg5jH9DlSXLx4yfxJTyIZmG0JgL0QKjDfMqpGk6HA8NUbDRXOqQ5N1VtNJaLeEqlHirBLfOs0JE2MeMDqriJP6J-uSiLTwgrxnIJFkaZ3PrMKuecgvoRnEU5DK0PUFw_-Uz7_Pb2dudZHch4nTl52dKrMgvjDOR1gEhz1tLld9nRn9dCzbyP6nzPDFC548zDDgaay9UQ_Lyrwxf0YvuyfUV9kGPxDT3Xd-vZ6vbQA_cB9yu_Ig
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-the-art+of+3D+facial+reconstruction+methods+for+face+recognition+based+on+a+single+2D+training+image+per+person&rft.jtitle=Pattern+recognition+letters&rft.au=LEVINE%2C+Martin+D&rft.au=YINGFENG+YU&rft.date=2009-07-15&rft.pub=Elsevier&rft.issn=0167-8655&rft.volume=30&rft.issue=10&rft.spage=908&rft.epage=913&rft_id=info:doi/10.1016%2Fj.patrec.2009.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=21684180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon